
SONIC ESB: AN ARCHITECTURE
AND LIFECYCLE DEFINITION

Copyright ©2005. Sonic Software Corporation.
All rights reserved.

CONNECT EVERYTHING. ACHIEVE ANYTHING. WHITEPAPER

1Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

TABLE OF CONTENTS

> 1.0 Introduction 2

> 2.0 Overview of Sonic ESB Architecture and Lifecycle 3

> 3.0 Services, Messages, Mediation, and Connectivity 4

3.1 ESB Services and Messages 5

3.2 ESB Processes 11

3.3 ESB Services 14

3.4 Connected Business Services 16

3.5 Connections 17

3.6 The SonicMQ Multi-protocol Communication Broker 19

3.7 Web Services 22

3.8 Security 25

> 4.0 ESB Life Cycle and Distributed Services Architecture 26

4.1 Development and Configuration 27

4.2 Deployment Tools and Migration of Configurations 33

4.3 Distributed Services Architecture 34

> 5.0 Conclusion 37

> 6.0 Glossary 41

> 7.0 Appendix – Complete UML Class Diagram 52

2

Service-Oriented Architecture (SOA) is fast becoming the systems and software approach of choice for
the majority of medium and large enterprises.1 According to the principles of SOA, IT professionals
design, implement, and deploy information systems from components that implement discrete busi-
ness functions. These components, called “services”, can be distributed across geographic and organi-
zational boundaries, can be independently scaled and can be reconfigured into new business process-
es as needed. This flexibility provides a range of benefits for both the IT and business organizations.

Core to the IT infrastructure supporting SOA is the Enterprise Service Bus (ESB), which connects,
mediates and controls all communications and interactions between services and provides error and
exception processing. ESBs have been chosen as the best method for development and deployment
of processes, ensuring reliability and ultimately success with the introduction and operation of SOA-
based systems. Its design permits rapid change in services and in the connections among services,
and provides the management visibility into services and processes across a distributed environment.

When looking at the cost of infrastructure and change in development and deployment processes,
as well as ultimate performance and reliability of SOA projects, key questions arise with regards
to technology, management, and skills transfer. These questions include:

> How do I build processes which span new service-enabled applications as well as existing
legacy systems?

> How do I provide the performance expected of enterprise systems while easily accommodating
changes in demand?

> How do I isolate applications from faults resulting from server and communication failures?
> How do I manage processes that will interact with services spread across an organization,

and between organizations?
> How do I manage and monitor the infrastructure, as well as the processes and services

deployed within it?
> How do I allow the organization to change processes, rules, data mapping and relationships

between applications with minimal effort and disruption?

Sonic ESB® (hereafter referred to simply as “ESB”) sets a reference mark for the SOA marketplace with
which to examine these questions. The ESB is complemented by additional products in the Sonic SOA
infrastructure family including Sonic Workbench, Orchestration Server, XML Server, Collaboration
Server, and Database Server.

Given the power of an ESB to support SOA implementations it is imperative to understand in detail
the functions and structure of the ESB. This paper will describe each of the key ESB functional areas
through exposition of its function and benefits accompanied by conceptual structure diagrams based
on an industry-standard approach, UML (Unified Modeling Language)2. The use of UML diagrams pro-
vides a conceptual view of the ESB components – and is useful for learning and discussion of the ESB
mechanism. Other diagrams provided in this document employ ESB notation from David Chappell’s
book Enterprise Service Bus and are used to depict examples of more expansive ESB use cases.

> 1.0
INTRODUCTION

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

1 Heffner, Randy, “Delivering Real World SOA”, Forrester Research, 2005.
2 www.uml.org
3 Chappell, David A., Enterprise Service Bus, O’Reilly Associates 2004

3

Core to a service-oriented architecture is the support of services, processes, and their interactions.
Services can be either ESB services which are natively hosted and therefore execute entirely
within the ESB environment, or connected business services which are connected to and therefore
integrated by the ESB. The connected services can be of many different types, such as web
services hosted by J2EE or .NET application servers, or legacy systems with web services
“wrappers” or JMS (Java Message System) adapters.

As an example, Figure 1 shows an SOA that integrates and mediates a multi-channel financial
trade process, where an ESB connects an order management system that is composed through a
“wrapped” connected business service to a compliance system which is an ESB service. The ESB
provides the connectivity between services, the XML transformation service to allow services with
varying interfaces to communicate, and the business process of the service invocations which
invokes services’ actions in sequence.

This example illustrates how an equity trade order message, originating as a message from an
order management system on the left, would undergo a set of processing steps. First would be
a transformation of data elements to support the requirements of the compliance and trading
services. Second would be the actual trading services step. Third and fourth would be the
triggering of the funds transfer process and ultimately a logging service would record the trade
as complete. Again, rather than an integrated application, in this case the trade process is
executed as a sequence of heterogeneous process steps, coordinated by the SOA infrastructure.

Figure 1. Example of SOA Application

The ESB provides a single service abstraction4 across all operating environments and all network
topologies. The advantage to this approach is the ability to simplify access to all systems through
a common services paradigm including common development, deployment, and management tools.

2 3 41 5

Compliance
Service

Funds
Transfer
Service

Logging
Service

XML
Transform

Service

Trading
Service

Order
Management

Service

External
Service

Service
Interface

Process Step

Message

Trading
Process

Service
Implementations

HTTP
Request/Reply

2 3 41 52 3 41 5

Compliance
Service

Funds
Transfer
Service

Logging
Service

XML
Transform

Service

Trading
Service

Order
Management

Service

External Trading

Service
Implementations

> 2.0
OVERVIEW OF SONIC
ESB ARCHITECTURE
AND LIFECYCLE

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

4 This service abstraction can be described in industry-standard WSDL, effectively hiding the details of a services’ implementation from
other services.

4

A principal benefit of SOA, this helps to reduce cross-service dependencies that make distributed
systems hard to change.

To reconcile otherwise incompatible operating environments or network topologies, the ESB
provides special mediation services which transform and route information between the services
that provide the core business functions of a SOA application. Furthermore, these mediation
services allow the flexibility to integrate new components as services into the SOA application
without requiring changes to existing components.

SOA applications are often termed “composite applications” because services are integrated
through mediation services and business processes to create broad-reaching applications. The
breadth of these applications can be understood in the perspectives of both business function
and geographical distribution.

The practical concerns of SOA applications include how to manage the development and distributed
deployment of the applications as well as how to monitor and manage the production systems. The
Sonic ESB distributed services architecture provides the ability to configure, deploy, monitor, and
manage world-wide ESB-based SOA applications.

In the next section, this paper will present the ESB architecture by looking first at the core ESB
capabilities for sending messages between services, the types of services supported by the ESB,
ESB mediation, and connectivity between services. Then, in section 4, there will be a review of
the ESB lifecycle from development to production, followed by an overview of the mechanisms
which provide reliability and scalability to the distributed services architecture5.

This section defines the key capabilities of the ESB with regards to the integration of services
through messages and mediation, the kinds of available ESB services and connected business
services, and the core infrastructure to support connectivity between services.

Communications between services are message-based. These messages carry the requests from
one service to another as well as the reply. The contents of the message could be in XML, or a
proprietary binary data format. The transformation service is a mediation service which converts
the format of data carried in messages to and from services with otherwise incompatible data
format specifications.

Data transformation is one kind of mediation. Others include the content-based routing of
messages from one service to another, the interconnection of synchronous and asynchronous
services, and the creation of business processes as the composition of services invocations.

> 3.0
SERVICES,
MESSAGES,
MEDIATION, AND
CONNECTIVITY

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

5 For additional detail, please refer to the Sonic ESB documentation set, “Sonic ESB V6.1 Documentation”,
http://www.sonicsoftware.com/products/sonic_esb/documentation/.

5

The benefit of performing transformation and routing logic within an ESB as opposed to within
applications is derived from configuration-driven, late-bound behavior of the ESB. As business
requirements begin to drive demand for more complex transformation and routing logic, the ESB
serves as the point where such changes can be made rapidly from a single console. By contrast,
executing a set of related changes in multiple applications typically involves complex dependency
analysis and coordinated development and deployment. In an ESB, applications can become loosely
coupled, avoiding the traditional inter-lock between application deployment cycles of multiple appli-
cation components, often owned by different divisions or businesses.

Figure 3 shows a UML class diagram6 with the basic ESB structures supporting services and
communications between services: ESB service, ESB message, ESB address, ESB endpoint, and
connection7. The union of all of the UML class diagrams in this paper is shown in a single diagram
in the Appendix.

Figure 3. Class Diagram for ESB Messages

An ESB service creates an ESB message, with either XML or other content, and sends it to a
designated destination ESB address. The ESB address provides a reference to an ESB endpoint
which is a named destination for receipt of messages. The receiving ESB service listens on the
ESB endpoint for receipt of a message. If the sending service requires a reply, then a reply-to
address referring to the sending service is sent included in the message.

Has entry

Employs

Sends

Has destinationCreates

Reads

References

Has reply-toESB Message ESB Address

ESB EndpointESB Service

ESB ConnectionDispatcher

Copyright ©2005. Sonic Software Corporation. All rights reserved.

SONIC ESB: AN ARCHITECTURE

AND LIFECYCLE DEFINITION

> 3.1
ESB SERVICES
AND MESSAGES

6 In a UML Class Diagram, the classes, shown as boxes, represent a set of instances of the class. Associations between the classes are
shown as named lines. The arrowhead, next to the name of the association is the ‘reading direction’ of the association, so in Figure 3, you
can read “An ESB Service reads an ESB Message”.

7 The first mention of each class will be highlighted in bold type.

6

The fact that the ESB uses a logical endpoint and connection abstraction between the service
and the transport layer provides several advantages:

> ESB service logic can be far simpler; it need not accommodate specific details of the
transport layer.

> ESB services can be adapted to new transport and protocol requirements through configuration-
driven mechanisms rather than re-coding and re-compiling “hard-wired” logic in the service.
The net effect is a more agile environment, one which encourages greater service reuse.

The endpoint provides the capability for ESB services to receive messages with a specified
quality-of-service (QoS): “exactly once” which uses persistent message stores to ensure that no
messages are lost or delivered more than once; “at least once” to guarantee by using a persistent
message store that each message is delivered, but may be delivered more than once; or “best
effort” which provides no guarantee of delivery, but does not require the use of persistent
message storage making it faster.

The messaging and its QoS are supported by an ESB connection which provides the communica-
tions channel and queuing mechanism. For Sonic ESB, while a variety of connection types can
be used to interact with connected services, including HTTP(S) and JMS (Java Message Service),
JMS provides the connections between ESB services and ESB processes. Connections are
described in section 3.4.

For example, Figure 4 shows a UML object diagram8 matching the portion of Figure 1 in which the
compliance system sends a message containing a trade request to the trading system.

Figure 4. Object Diagram for Message sent between ESB Services

Figure 5 shows the example in Figure 4 extended to show a confirmation reply sent back to
the compliance service. The reply-to address sent in the trade request message becomes the
destination address for the confirmation response message.

3. Has entry

Employs

Has destination

4. Reads

ReferencesTrade Service
Reference

(ESB Address)

Trading Service
Entry

(ESB Endpoint)

Trading Service
Connection

(ESB Connection)

2. Sends

1. Creates

Trade Request
(ESB Message)

Compliance Service
(ESB Service)

Trading Service
(ESB Service)

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

8 An object diagram is an example of instances of the classes. Shown with each object is a name of the instance as well as its class name.

7

Figure 5. Object Diagram for request and reply between ESB Services

It is important to note the power of the “reply-to” address in the context of the ESB. The reply-to
feature allows the service to be invoked from many different contexts. It provides the intelligence
not only to respond to the specific requester, but also to respond using the correct protocol. For
example, a single ESB service could be exposed as a web service, a native JMS service, another
ESB service, or as an EDI protocol. This ESB service would have the capability to respond correctly
in any context.

As shown in Figure 6, each ESB service or ESB process can be configured with a set of ESB
addresses for the receipt of messages and for the sending of pre-defined types of responses.
These addresses are:

> Entry: The address of the endpoint from which the dispatcher accepts incoming messages for
invocation of the service.

> Exit: The address for the service’s response message. This is often set to ‘reply-to’ to send the
message back to the requester. It could also be configured to send the response to the next
service in a business process.

> Fault: The address for sending a service error message indicating that the service was unable
to process the request. Typically, this is configured to a fault destination address, but this could
also be configured to the reply-to address of the requester.

> Reject: If a message cannot be delivered because, for example, it is improperly formatted or has
an invalid address, then it is sent to the configurable rejected message address.

Note that the use of these standard addresses allow the developer to remove a certain amount
of application handling logic from the service and move it to the more configurable ESB. This can
greatly simplify the overall effort to create services.

3. Has entry

Employs

Has destination

7. Has entry

6. Sends

Has destination

5. Creates

4. Reads

8. Reads

References

Has reply-to

References

Employs

Trade Service
Reference

(ESB Address)

Compliance Service
Address

(ESB Address)

Compliance Service
Connection

(ESB Connection)

Compliance Service
Entry

(ESB Endpoint)

Trading Service
Entry

(ESB Endpoint)

Trading Service
Connection

(ESB Connection)

2. Sends

1. Creates

Trade Request
(ESB Message)

Compliance Service
(ESB Service)

Trade Confirmation
(ESB Message)

Trading Service
(ESB Service)

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

8

Figure 6. Class Diagram for Standard ESB Services and Process Configuration

When an ESB process has configured endpoints which differ from those of services invoked as a
process step, the process configuration overrides that of the service. This allows the behavior of
the service to be specialized for each use in a process. For example the configured fault and
rejected message addresses for a service may be different depending on which process employs it.

Each ESB address can refer to one of:

> ESB Endpoint: An abstraction of the underlying communication transports.
> ESB Service: This refers directly to the service name, and has the same effect as referring

to the configured entry endpoint of the service.
> ESB Process: This is a sequence of services composed into a business process as explained

in detail in the next section.

Each service instance has one or more dispatchers which accept incoming messages to a service,
prepare the message contents for the service, invoke the service, accept its output, format an
outgoing message and resolve the addresses on messages and send them to the proper end-
points, services and processes.

For example, an ESB service such as the compliance service in Figure 1 can configure its address
set as shown in the object diagram in Figure 7. The dispatcher is configured to listen for service
invocations on the “compliance service test” endpoint. The exit is configured to responses to the

Addresses response to

Addresses fault to

References

ReferencesReferences

Invokes

Addresses reject to

Resolves

{XOR}

Addresses fault to

Addresses response to

Addresses reject to

Dispatcher

ESB Endpoint

ESB ProcessESB Service

ESB Address

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

9

“reply-to” endpoint, which will route the response to the requesting service. Faults and rejects are
sent to the test error processing service. When this service is used in an ESB process, as described
in the following section 3.2, these addresses can be overridden by the ESB process configuration.

Important to the development and distribution of ESB services is that the setting and changes
to the standard service configurations are done through interactive tools without requiring
programming. This will be explained in additional detail in section 4.

Figure 7. Object Diagram for Standard ESB Services Configuration

As illustrated in Figure 8, the dispatcher plays a central role in the execution of a service.
The dispatcher manages the sending and receiving of ESB messages, invokes the service when
a message arrives on its entry point, and, as will be explained in the next section, interprets the
ESB itinerary for ESB processes.

The dispatcher logic is a common component in every ESB container, the deployed distributed
services execution environment. This frees the service developer to focus on service business
logic, rather than worrying about underlying dispatching requirements such as itinerary processing,
message format transformations, monitoring and error recovery.

Compliance Service
(ESB Service)

Compliance Service
Service Test

(ESB Endpoint)

Sends response to

Sends fault to

Reply-To
(ESB Address)

Listens on

Sends rejects to Test Error
Service Reference

(ESB Address)

Test Error Service
(ESB Service)

References

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

10

Figure 8. Dispatcher in ESB Container

A dispatcher invokes a service each time a message arrives at the service’s entry endpoint. From a
programming perspective, all services communicate through standard methods for reading messages
and for sending messages. In particular the service obtains its input message from its inbox. Output
messages are placed in either the outbox or faultbox for delivery by the dispatcher when the service’s
invocation is complete.

There can be multiple dispatcher instances to work with multiple instances of a service deployed in
a given ESB container. In addition, dispatchers in multiple containers distributed across the enterprise
can listen on ESB endpoints with the same name and hence be triggered by the same events. These
two models provide great flexibility to scale services and provide service redundancy. Multiple services,
configured with the same entry endpoint, naturally load balance as the service instances compete to
consume messages from the shared endpoint. Additional instances of an ESB container can be, with
its configured set of services, created dynamically in response to rapid increases in load.

The simplicity and symmetry of standard input and output methods with configurable service entry
and exit endpoint addressing provides great flexibility in the arbitrary combination of services. This
approach combined with the scalability model afforded by having multiple containers, each with
multiple threads of a given service, contributes greatly to the ESB’s support of service re-use and
location transparency, principal benefits of SOA.

Reads

Fills

Reads

Fills

Sends to

Listens on

Dispatches

Interprets

Invokes

ESB Endpoint

Dispatcher

ESB Message

ESB ServiceInbox

Outbox

Faultbox

ESB Itinerary

Fills

Reads

ESB Container

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

11

The ESB provides for the management of business processes as a sequence of services, as
shown by example in the five-step trading process in Figure 1. The ESB process is defined by an
ESB itinerary which contains a sequence of process steps. Each process step can invoke one (or
multiple) ESB services, other ESB processes, or a connected web service. The ESB itinerary travels
with an associated ESB message providing a completely distributed execution environment for the
ESB process. The distributed nature of an ESB process makes it highly scalable. Process state
always travels with the message, so ESB process capacity scales with increased throughput of
the underlying communications infrastructure. Quality of service guarantees of the underlying
communications infrastructure makes this approach highly reliable as well.

The same ESB service can be used in many different ESB processes with the usage specialized
to that process’ needs. Optionally associated with each process step are runtime parameters
which customize the invocation of a service for this particular process. For example, the XML
transformation service can be specialized by associating a specific XSLT stylesheet with the use
of the XML transformation service in a process step. In this example, the runtime parameter value
might be the URL for the XSLT stylesheet defining the transformation logic.

Figure 9 shows the key classes for the configuration and execution of ESB processes including the
ESB itinerary, process step, runtime parameter, WSDL definition, and ESB container classes.

Figure 9. Class Diagram for ESB Process and Addressing

ESB Endpoint

Addresses response to

Address rejected

Dispatches

References

ReferencesReferences

Contains

Travels with

Hosts

Has entry

References

Defines

Resolves

Invokes

Sends reject to

Describes

Describes

Has entry

Has

{XOR}

{XOR}

Interprets

ESB Endpoint

ESB Container

Dispatcher

ESB Address ESB Process ESB Itinerary

Runtime ParameterProcess Step

ESB Message

ESB Service

WSDL Definition

Addresses fault to

Process
Context

Addressing

> 3.2
ESB PROCESSES

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

12

As will be explained in more detail in section 4.3, ESB services execute within the ESB container.
The ESB container instantiates ESB services and provides: the systems management interface for
its services, the management of communication protocols, the capability to have multiple threads
executing services for scalability, and the standard capability to execute distributed processes
(by the dispatcher). Using a lightweight ESB container to host services avoids the need to deploy
monolithic application servers on every machine to host services.

There is no central processing engine for the ESB itinerary because each ESB container can
process and route the next step in the ESB itinerary. The itinerary can be likened to a baggage
tag on a piece of baggage which states the initial flight and connecting flights to get the bag
from its source to its destination. Similarly, the ESB itinerary travels with the ESB message
from service to service in a process until it reaches its last service, the final destination. In
addition to the baggage metaphor, itineraries can call for message replication to multiple
destinations as well as for content-based routing.

This distributed approach provides efficient execution without the need to communicate to a
central site as processing can continue even with losses of connectivity. This provides for
“stepwise” reliable processing in which processing can continue in an individual container
independent of the status of other containers. Appropriate QoS messages from one container
to another are held waiting for any container experiencing outages. Furthermore, transparent
load balancing by the ESB allows for multiple containers to listen in parallel on a single ESB
endpoint allowing for ongoing processing even if one container fails.

The WSDL (Web Services Definition Language) definition applicable to the ESB process and ESB
service allows their interfaces to be described using the Web service standards as defined by the
W3C9. These interfaces can be used within ESB processes or in order to make an ESB service
externally callable as a Web service. This will be described in more detail in section 3.5.

Figure 10 shows an object diagram of the ESB process shown in Figure 1. In particular it includes
the ESB itinerary with its sequence of references to the five services in the process, in which each
service’s dispatcher will in turn send the service’s resulting message on to the next service in the
process. It also shows an XSLT stylesheet as a runtime parameter for the XML transform service
that provides customized behavior for that service as used in this process. Section 4.1 will show
how in addition to steps as service invocations, the ESB itinerary can include other kinds of steps
such as decision steps, fan-out steps, and the invocation of Web services and other processes.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

9 World Wide Web Consortium, “Web Services Activity”, http://www.w3.org/2002/ws/

13

Figure 10. Object Diagram for an example ESB Process

Travels with

References

Defines

Contains

Invokes

Has

Trade Request
(ESB Message)

Trading Itinerary
(ESB Itinerary)

XSLT
(Runtime Parameter)

Step 1
(Process Step)

XML Transform
Reference

(ESB Address)

XML Transform
Service

(ESB Service)

Trade Transform
Service Dispatcher

(Dispatcher)

Step 2
(Process Step)

Trading Process
(ESB Process)

References

References

Invokes

Compliance Service
Reference

(ESB Address)

Compliance Service
(ESB Service)

Compliance
Service Dispatcher

(Dispatcher)

References

References

Invokes

Trading Service
Reference

(ESB Address)

Trading Service
(ESB Service)

Trading
Service Dispatcher

(Dispatcher)

References

Process Context

Step 3
(Process Step)

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

14

ESB services can be of a number of types. These types are shown in Figure 11 as sub-classes
of ESB service type10.

Figure 11. Class Diagram for ESB Services

The mediation services provide transformation and processing of messages in order to provide
the right content in the right format to services which implement business functions.

The ESB mediation services include but are not limited to:

> XML Transformation Service: Provides data conversion from one XML document to another
according to either an XSLT specification or a transformation defined in JavaScript.

Runs

DescribesESB Dispatcher Type

XSLT Stylesheet

WSDL Definition

Runs

Runs

Runs

Runs

Runs

Content-Based
Routing Service

Routing Rule
Specification

Javascript
Routing Rule

Runs
XML Service

Worklist Service

XML
Action List

Runs
Database Service SQL

Statement

ESB Mediation
Services

User Defined
Services

Advanced ESB
Services

XML Transformation
Service

User Defined
Mediation Resource

User Defined
Mediation Service

Runs User Defined
Resource

Activity
Definition

User Defined
Business Service

Orchestration
Service

Collaboration
Service

> 3.3
ESB SERVICES

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

10 In the UML diagram, the association with the hollow arrowhead is a “generalization” association showing sub-classes. This is sometimes
read as “is a”, so for example from Figure 10 “the XML Transformation Service is a ESB Service Type”. The sub-class inherits the associa-
tions of the parent class.

15

> Content-Based Routing Service: Directs messages to various other service endpoints according
to either configured routing rules or a JavaScript rule.

The ESB also provides the infrastructure for the development of and deployment of custom
user-defined services for both mediation and business logic. This extensibility is a critical ESB
differentiator which allows for the creation of ESB services which leverage capabilities available
to all included services.

The ESB User-defined service types typically fall into two categories:

> User-defined Mediation Service. Implements a mediation function such as data transformation
between data formats other than XML. The resource files used to define this mediation are
customized according to need. A common scenario creates a user-defined mediation service
to move and transform files to and from a legacy application with proprietary data formats.

> User-defined Business Service: Implements core business logic. This is a business service
which executes entirely within the ESB environment. By contrast, connected business services
(see below) execute in external environments such as application servers or legacy systems.

Another group of ESB services are the advanced ESB services which provide SOA related process
control and storage services within the Sonic SOA Suite.

The ESB advanced services are:

> Orchestration Service: Extends the capabilities provided by the ESB process and provides
support for business process management (service orchestration) which require or benefit from
centralized management of the process state. In particular, process joins require a centralized
process state, and long-lived transactions are typically more easily managed in a centralized
process model. The orchestration service business process is specified by a process activity
definition which is created in Sonic Workbench in the form of a UML activity diagram.
Additionally, the orchestration server supports process models specified in the BPEL4WS11

workflow standard.
> Collaboration Service: Provides for business processes extending across enterprises. It supports

specific business-to-business (B2B) protocols such as RosettaNet and ebXML as well as the
BPEL4WS workflow standard. Like the orchestration server, its processes are specified by
process activity definitions.

> Worklist Service: Provides management and presentation of end-user task lists generated
by the execution of business processes by the orchestration and collaboration services.

> XML Service: Stores, transforms and queries XML documents according to a sequence of actions
specified in an XML action list.

> Database Service: Provides full access to standard relational databases. The SQL statement
resource includes SQL statements and instructions for passing parameters and results in
ESB messages.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

11 Microsoft et. al., “Busines Process Execution Language for Web Services Version 1.1”, http://www.oasis-open.org/committees/down-
load.php/2046/BPEL%20V1-1%20May%205%202003%20Final.pdf, May 2003.

16

Connected business services are services implementing business logic in environments external
to the ESB operating environment. These services are integrated through a variety of types of
connections described in the next section. A composite SOA application typically comprises
connected business services integrated by the ESB with ESB services into a business process.
In Figure 1 the order management system is a connected business service which communicates
via an HTTP connection. The compliance service, trading service and funds transfer service are
business services that have been interfaced directly to the ESB as user-defined ESB services.

The classes of connected business services are shown in Figure 12.

Figure 12. Class Diagram for Connected Business Services

The connected business services include:

> Web services: Services with interfaces defined according to web standards. The interface to a
Web service is defined by a WSDL (Web Services Definition Language) definition which can be

Registered in

Describes

Connected
Business Service

Connected WSDL

UDDI Registry

Enterprise System

JMS Application

Application Server
Application

Web Service

Web Client

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 3.4
CONNECTED
BUSINESS SERVICES

17

stored in a registry meeting the OASIS UDDI standard12. As explained in section 4.1, the ESB
development tools can link to a UDDI registry to obtain the WSDL definition for a connected
Web service.

> Application server applications: Those applications which are implemented on J2EE or .NET
application servers. These are for applications which have interfaces accessible by HTTP(S)
communications, but not as standard Web services.

> JMS (Java Message Service) applications: Any application with a native J2EE or JMS adapter
can be a connected business service. Sonic and other third parties provide JMS adapters for a
wide variety of enterprise applications.

> Legacy systems: This is a “catch-all” for existing systems which have adapters or “wrappers”
implemented for one of the ESB-supported connection types: HTTP(S), JMS or JCA (Java
Connection Architecture), as described in the next section.

Each of these types of connected business services can communicate with each other through the
ESB, and with ESB services providing mediation and business logic.

The ESB connection specifies which supporting communications channel is used by an ESB
endpoint to connect with an ESB service or a business service. As shown in Figure 13, this ESB
connection may be implemented as a web services connection, JMS connection or JCA (J2EE
Connector Architecture) connection.

Figure 13. Class Diagram for Connections

JCA Adapter

ESB Service

Listens on

ESB Message

Sends

Reads

Employs

Listens on

Employs

Employs

Employs

Employs

Has destination

References

Has reply-to

Employs

Employs

Listens on

Listens on

ESB Message

JMS Destination JMS Connection

Web Services
Connection

JCA Adapter

Web Services Endpoint

JCA Endpoint

ESB Connection
Connected Business

Service

ESB Address

ESB Endpoint

> 3.5
CONNECTIONS

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

12 OASIS, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

18

The connection employs user configurable asynchronous and synchronous delivery semantics
including “publish-and-subscribe”, “send-and-forget” and “request-reply”. In the example in Figure
1 theconnection between the order management service and the trading process is HTTP request-
reply. If a connected business service or ESB service needs to change the manner in which it con-
nects, this can be affected without requiring changes to its implementation. When services require
differing types of connections, the ESB provides the mediation between the differing protocols13.

Figure 14 shows examples of some of the key objects used in various connection scenarios.

Figure 14. Example Object Diagram for Connections

Listens on

Listens on

Listens on

Employs

Sends Has destination ReferencesCompliance Service
(ESB Service)

Funds Transfer
Request

(ESB Message)

Funds Transfer
Service

(JMS Application)

Funds Transfer
Reference

(ESB Address)

Funds Transfer
Endpoint

(JMS Destination)

Trade Processing
Connection

(JMSConnection)

c. ESB Service to connected JMS Application

Employs

Sends Has destination

Listens on

ReferencesCompliance Service
(ESB Service)

ERP Request
(ESB Message)

ERP Service
(Enterprise Application)

ERP Reference
(ESB Address)

ERP Endpoint
(JCA Endpoint)

ERP Connection
(JCA Adapter)

d. ESB Service to connected Enterprise Application

Employs

Sends Has destination ReferencesCompliance Service
(ESB Service)

Trade Request
(ESB Message)

Trading Service
(ESB Service)

Trade Service
Reference

(ESB Address)

Trading Service
Endpoint

(ESB Endpoint)

Trade Processing
Connection

(ESB Connection)

a. ESB Service to ESB Service

Employs

Sends Has destination ReferencesOrder XML Transform
Service

(ESB Service)

Order
(ESB Message)

Order Management
Web Service

(Web Service)

Order Service
Reference

(ESB Address)

Order Service
Endpoint

(Web Endpoint)

Order Processing
Connection

(Web Connection)

Defined byOrder Management
WSDL

(Connected WSDL)b. ESB Service to connected Web Service

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

13 A special optimization capability for intra-container messaging (for in-memory connections) is also available for situations in which
multiple services are hosted in the same ESB container. Refer to the Sonic ESB Developer’s Guide for more information.

19

The ESB requires a reliable, scalable multi-protocol broker to implement communications infrastructure
and for connections with integrated business services, including Web services. SonicMQ provides a
robust infrastructure for the ESB. Many of the attributes of the ESB with regards to reliability and
scalability derive from the reliability and scalability of SonicMQ.

The broker is referred to as “multi-protocol” because of the need to support multiple connection
types including JMS, HTTP(S), and the WS-* web services protocols on top of SOAP and HTTP(S).
Typically, JMS protocol is preferred for ESB service-to-ESB service communications for its high
throughput and low latency, and WS* protocols provide on-the-wire interoperability with connected
services. In either application, the SonicMQ broker supplies the required protocols and also bridges
to other widely-used messaging systems.

The ESB normally uses JMS to implement connections between ESB services as shown in Figure
15 in which ESB connections and ESB messages are implemented as JMS connections and JMS
messages. The next section will show how HTTP(S) and web services are implemented by the
multi-protocol broker.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 3.6
THE SONICMQ
MULTI-PROTOCOL
COMMUNICATION
BROKER

20

Figure 15. Class Diagram for SonicMQ support of ESB Connection

A node can be either a broker or a cluster. The broker provides the JMS connection as well as
HTTP(S) and Web services. Brokers can be clustered for scalable throughput. A broker can also
be associated with other brokers in a cluster to act as an active secondary server, providing
stateful failover.

Implemented as

Contains

Hosts

Sent to

Received from

Provides

Supports

Is Failover
for

Dynamically
routes to

ESB

SonicMQ

Sends

Sends

Provides

Hosts

Implemented as

May
Contain

Recieves

Secured by

Secured by

ESB Connection

Node

Cluster

JMS Destination

Topic

Queue

Message Store

Broker

HTTP(S)
Connection

ESB Message

SOAP Message

JMS Message

Web Services
Acceptor

Cipher Suite

JMS Connection

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

21

As an example, Figure 16 shows the objects involved the implementation of the trade processing
ESB connection as would support the process in Figure 1.

Figure 16. Example Object Diagram for SonicMQ

The example in Figure 16 shows the ESB connection reading from a queue in which another service
writes. By using the publish-and-subscribe messaging model, the queue could be changed to a
topic, and many services could read from it without making changes to the writer. This is another
important aspect of loose-coupling in an SOA, in which the cardinality of service relationships can
be changed without disruption of existing services. In the ESB this model is implemented by a JMS
topic. Figure 17 illustrates the behaviors of queues and topics.

Implemented as

Implemented as

Sent to

Received from

Hosts

Supports

Provides

Trade Request
(ESB Message)

Trade Request
Message

(JMS Message)

JMS Input Queue
(Queue)

Trade Processing
ESB Connection

(ESB Connection)

Trade Processing
JMS Connection

(JMS Connection)

Headquarters Broker
(Broker)

Headquarters
Message Store

(Message Store)

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

22

Figure 17. Queue and Topic Behavior

The ESB can make full use of Web services interoperability, including:

> Exposing ESB services and processes as Web services for use by Web services clients.
> Calling of Web services from within ESB processes.
> Communications from within ESB processes to ESB services, processes, and endpoints

using Web services interfaces and SOAP protocols.

Industry-standard WSDL (Web Services Definition Language) definitions can be created for ESB
service, ESB process, and ESB endpoints. This allows the use of standard tools and integration
with other SOA infrastructure components such as a UDDI registry. For example, in Figure 1 the
entire trading process itself is exposed as a web service. The WSDL definition can be stored in
either the ESB repository or in a UDDI registry.

Figure 18 shows the classes which provide web services functionality by the ESB. Inbound Web
service requests are made through SOAP messages to the Web services acceptor on the broker,
and forwarded to the entry endpoint for processes and services. Outgoing Web service requests
are structured according to the Web services call file (created in the development tools, see
section 4.1) and sent over Web Service Connection (implemented as a JMS connection) to a
broker which manages the actual HTTP(S) connection. The broker also implements Web services
standard (and proposed standard) protocols including:

Producer Consumers

Service A

Service B’

Service B

Topic

Publisher Subscribers

Service A

Service B’

Service B

Queue

2 Messages

1
2

1

2

aQueue

Persistence

2 Messages

1
2

aTopic

Persistence

1
2

1
2

Queues provide
point-to-point

Topics provide
publish-subscribe

Messages Not
Copied

Messages Are
Copied

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 3.7
WEB SERVICES

23

> WS-ReliableMessaging14: Provides reliable delivery for Web services (SOAP) messages.
> WS-Addressing15: Provides for asynchronous messages to Web services (rather than only

synchronous request-reply) as well as for fault handling. The WS-Addressing Endpoint
Reference construct is very similar to the ESB Address, providing for straightforward
interoperability with Web services.

> WS-Security16: Provides authentication, signing, and encryption for Web services messages
in entirety or in part.

> WS-Policy17: Specifies in WSDL (by WS-PolicyAttachment18) the policy options needed by
WS-ReliableMessaging, such as “Exactly-Once Ordered”, and for WS-Security, such as
“encrypted payload”.

Figure 18. Class Diagram for Web Services

Supports

Contains

Provides

Hosts

Stores

Provides

Provides

Employs

Registered in

Describes

Employs

Routes to

Stores

Sent to

Listens on

Stores
Stores

Describes

Serves

UsesSends

Sends Provides

Has entry

Describes

References

Employs

Connected
Web Services
Environment

ESB Processes and Services
as Web Services

Web Services Broker

WSDL Definition
Connected WSDL

UDDI Registry

Web Service

Dynamic Routing
Definition

ESB Repository Node

Cluster

Web Client

SOAP Message

Web Services
Acceptor

HTTP(S) Connection

ESB Service

Web Services
Connection

ESB Endpoint

Has documentation

References

Employs

ESB Message

Web Services Call File

ESB Process

ESB Address

Web Services Endpoint

Web Services
Connector

Broker

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

14 Microsoft et. al., “Web Services Reliable Messaging Protocol (WS-ReliableMessaging)”, http://msdn.microsoft.com/library/en-us/dnglob-
spec/html/WS-ReliableMessaging.pdf, February 2005.

15 World Wide Web Consortium, “Web Services Addressing (WS-Addressing)”, http://www.w3.org/Submission/ws-addressing/, August
2004.

16 OASIS, “Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)”, http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0.pdf, March 2004.

17 Sonic Software, et. al., “Web Services Policy Framework (WS-Policy)”, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-policy.asp, September 2004.

18 Sonic Software, et. al., “Web Services Policy Attahment (WS-PolicyAttachment)”,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-policyattachment.asp, September 2004.

24

The implementation of these protocols provides interoperability among all Web services connected
through the ESB and ESB services exposed as Web services. When Web services need to commu-
nicate with a non-Web service, the ESB provides the mediation required to reconcile the different
protocols and QoS models. Figure 19 shows an object diagram of an SOA application providing
Web services through the ESB. It shows the sequence in an ESB service made available as a Web
service being invoked by an external Web services client19.

Figure 19. Object Diagram example for Web Services Communications

The ESB provides Web services brokering with all of the reliability, scalability, and distributed
qualities inherent to the ESB.

Supports

Provides

Hosts

-ESB EndpointDescribes

Provides

Employs

Connected Web
Services Environment

ESB Processes and Services
as Web Services

Web Services Broker

1. Sends

Employs

Has entry

Serves

2. Sent to

7. Employs

3. Sends

6. Sends

May contain

4. Reads

Stores

Employs

5. Sends

8. Employs

Order Management
System

(Web Client)

Trading Process
(ESB Process)

Trading Process Entry
(ESB Endpoint)

Trading Process WSDL
(WSDL Definition)

Headquarters Broker
(Broker)

Trading Process
Connection

(HTTP(S) Connection)

Trading Process
Connection

(WS Connection)

WS Acceptor
(Web Service Acceptor)

Trade Request
(JMS Message)

Trade Response
(SOAP Message)

Trade Response
(ESB Message)

Corportate
ESB Repository

(ESB Repository)

Order Connection
(HTTP(S) Connection)

Trade Request
(SOAP Message)

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

19 In resolving the ESB Address “Trade Process Entry” the ESB Dispatcher recognizes it as an ESB process and dynamically loads the ESB
Process Definition into the ESB Message as an ESB Itinerary. The dispatcher then determines the first step in the Itinerary and addresses
the ESB message to its entry point, start the process executing its first step.

25

Security is provided for users (person or system) and administrators through authentication and
authorization managed by the broker. As shown in Figure 20, the broker maintains its own security
store and can also reference an industry standard LDAP security repository, such as Microsoft
Active Directory™ or Sun Java System Directory Service™.

Encryption can be chosen for the connection protocol as well as for the message contents.
A Quality-of-Protection (QoP) with regards to privacy and integrity can be set for each destination.
As explained in the previous section, the WS-Security standard is supported for web services
interoperability.

Figure 20. Class Diagram for Security

Specific security controls implemented by the ESB infrastructure include:

> Authentication: The broker implements authentication for both the producer and consumer of
each message. The ESB includes full support for authentication by user name with password,
or it can link to an external security repository to perform the authentication of credentials.

> Authorization: Authorization is also performed for each producer and each consumer. Access
Control Lists (ACLs) set permissions assigned to users or groups to perform actions such as
“send” or “publish” on specific destinations.

> Encryption: Encryption can be chosen for the communications layer through SSL or HTTPS.
Encryption at the message level can be chosen for specified destinations, queue or topic, using a
variety of algorithms, including the AES standard. The cipher suite supports both the communications
layer and message encryption. In addition, the ESB repository stores themselves can be encrypted.

> Integrity: The use of Message Authentication Codes (MAC), including message digests, can
be required by destination. This code allows the receiver to check that the message has not
been altered.

Implemented as

Supports

Hosts
Used by

Secured by
Supports

Provides

LDAP Security
Repository

ESB Repository Node ESB Connection

JMS ConnectionBroker

JMS Destination

Topic

Queue

Trust Store Cipher Suite

Employs

Connected Business
Service

HTTP(S) Connection

Web Service
Acceptor

ProvidesSecured by

Hosts

Security

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 3.8
SECURITY

26

As will be described in section 4.3, the ESB extends these controls across multiple security
domains in a distributed deployment. This allows for management of security infrastructure from
any point on the network and provides a common layer of security for all service access. The
ESB’s security layer is flexible enough to link with different security requirements at each end-
point (for example, application services, .NET, or legacy environments). It can also provide the
necessary mediation between different security models imposed by different organizations,
allowing spanning business process to be conducted securely, while still abiding by the security
requirements imposed by each specific organization.

Intrinsic to the ESB is rich support for the entire services lifecycle from development to deploy-
ment to management. A critical requirement is to allow such a migration to occur in the easiest
error-free manner possible. In particular, the ESB allows the migration of services, processes, and
resource files seamlessly between development, test and production systems, allowing adminis-
trators to modify deployment, policies, and connectivity without requiring changes to the services
or processes themselves.

Figure 21 shows the SOA lifecycle stages overlaid above an outline of the full ESB class diagram
in Appendix. This shows the flow and use of ESB components from development and configura-
tion of services through to deployment in multiple environments and finally to the monitoring and
management of production operations. This section will follow these stages across the diagrams
explaining the tools and mechanisms of development, of service and process configuration, of
deployment tools and the migration to production, and of the distributed services architecture
supporting reliability, scalability, and manageability in the production environment.

Figure 21. Overview of the ESB Lifecycle

Configure Stage/Test Deploy MonitorOperate

Configure
Services

and
Define

Processes

Distributed ESB Containers

Configuration
Repository

Distributed
Multi-protocol

Reliable, Scalable
Communications

Brokers

Management Console

C
on

ne
ct

ed
Se

rv
ic

es

Ex
te

ns
ib

ili
ty

D
ev

el
op

m
en

t

ProcessesDeployment

Deploy

Workbench

-

Services

ManageDevelop

> 4.0
ESB LIFECYCLE
AND DISTRIBUTED
SERVICES
ARCHITECTURE

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

27

Development and configuration of the ESB is done through the Sonic Workbench, an integrated
services environment (ISE) which includes a number of editors, test tools, and the management
console as shown in Figure 22.

Figure 22. Class Diagram for Development Tools

Defines

Manages Stores

Creates

Includes

Defines

Stores

Edits

Stores

Includes

Includes

Defines

Includes

Includes

Workbench

Management
Console

ESB Component
Configuration

ESB Container
Configuration

ESB Process
Configuration

ESB Endpoint
Configuration

ESB Service
Configuration

Content-based Routing
Service Configuration

XML Transformation
Service Configuration

ESB Service Type
Configuration

Other Configurations

User Defined
Service Configuration

Test Tool

Resource Editor

Development Project

ESB Repository

User Defined
Service Type

Process Debugger

Resource File

Development

Configuration

> 4.1
DEVELOPMENT AND
CONFIGURATION

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

28

The Sonic Workbench provides each developer with a set of tools for ESB development and
deployment including creation of custom ESB service type implementations. The service type
implementations include all of the code for execution of the custom service types; these imple-
mentations are distributed automatically through the distributed services architecture described
in section 4.

For example, in Figure 1, the compliance system is a custom ESB service type. With a set of
editors, in concert with third-party and industry-standard development environments, developers
create resource files which are configurations stored in the ESB repository. Resource files are
typically simple files containing such things as an XQuery, or XSLT, or custom configurations
needed by custom services, such as a compliance rule set, for the custom compliance service.

The Sonic Workbench provides for the creation of development projects containing all of the
configuration files for a specific service development project in support of a composite or ESB
application. In the trading example this would include files describing the ESB process, the WSDL
file used to expose the process as a Web service, and the compliance service implementation,
among other resource files.

Test tools are provided to create scenarios and monitor the flow of messages through the ESB.
Special support is given for the testing of Web services in the context of ESB applications.

The management console provides the management framework for configuring the infrastructure
elements such as ESB services, ESB containers, and the broker. The management console allows
for the configuration of new instances of ESB services and ESB containers to allow remote
deployment of new functionality or remote deployment of additional services for increased
throughput. For example, using this console, the connection type between all ESB Services
in the Figure 1 trading process could be set to “once-and-only-once” to prevent the chance of
message loss.

Figure 23 shows the class diagram for the most commonly-used resource editors in the Sonic
Workbench.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

29

Figure 23. Class Diagram for Workbench Editors

These editors include:

> ESB Process Editor for visually creating and editing business process itineraries tying together
multiple services to create a composite SOA application.

> Routing Rules Editor to create the condition-destination routing rule specification used by
content-based routing services.

> XSLT Editor for creating the XSLT stylesheet defining an XML transformation for use by XML
transformation services.

> Web services Call Editor to define the mapping between WSDL interfaces and ESB services,
processes, and endpoints in a Web services call file.

> XML Editor for creating XML documents used by many services as XML resource files.

Includes

Creates

Creates

Creates

Creates

Creates

Creates

Creates

Creates

Creates

Workbench Resource Editor Resource File

ESB Process Editor

Routing
Rules Editor

Web Service
Call Editor

XSLT Editor

XML Editor

XML Schema Editor

XQuery Editor

Database Query
Editor

Third Party Editor

ESB Process
Definition

Routing Rule
Specification

Web Services
Call

XSLT Stylesheet

XML Resource

XML Schema

XQuery Expression

SQL Statement

Resource

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

30

> XML Schema Editor for defining an XML schema file used to define the types of data required
for a Web services call.

> XQuery Editor for creating XQuery expressions for use as queries against data structured as
XML documents.

> Database Query Editor for creating SQL statement resource files defining queries against
relational database.

As a more detailed example of the types of specifications created by the editors, Figure 24 shows
the class diagrams for two types of specifications: the ESB itinerary of an ESB process and the
routing rules specifications for the content-based routing service.

Figure 24. Class Diagram for Selected Mediation Specifications

The ESB process editor creates ESB process definitions which consist of a sequenced ESB
itinerary of process steps passing messages from one step to the next. Each step is one of:

> Service Step – Invokes an ESB service
> Process Step – Invokes another ESB process

Has condition

Creates

References

Specified by

a. ESB Itinerary Specification

b. Content-based Routing
 Rules Specification

Creates

ESB Process Step
Definition

ESB Service Step

ESB Process Step

Web Service Step

WSDL Definition
Fanout Step

Decision Step

ESB Endpoint Step

ESB Process
Definition

ESB Process Editor

Creates

Contains

Has destination

Content-based
Routing Rule

ESB AddressCondition

Routing Rule
Specification

Routing Rules
Editor

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

31

> Web Service Step – Invokes a Web service
> Fanout Step – Replicates the ESB message for delivery to multiple ESB addresses
> Decision Step – Performs content-based routing among multiple ESB addresses
> Endpoint – Delivers the message to a service endpoint

When composing services into a process, the default service address set configuration, and
in particular the address for messages upon service exit, can be over-ridden for customized use
within the context of the process.

Figure 25 shows the user interface for the process editor in an Eclipse-based20 development
environment.

Figure 25. Example of ESB Development Tools - ESB Process Editor

A content-based routing rule contains a set of conditions with an associated message destination for
the associated condition. The condition typically is a test on some value contained in the message
received, or it may be derived from local data for a “context-based” routing decision. For example,
consider a trading process in which a trade request is sent to one service if it is a stock trade and is
sent to another service if it is an option trade. The user interface for the content-based routing rule
editor is shown in Figure 26.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

20 eclipse.org, http://www.eclipse.org/.

32

Figure 26. Example of ESB Development Tools - CBR Editor

Users can create completely new ESB service types to extend the mediation or business service
capabilities of an ESB. Third-party vendors can also create ESB service types for use in the ESB.
When creating a new service type, an Integrated Development Environment (IDE) is used in con-
junction with Sonic Workbench to create all of the implementation files for the new service type.

The lifecycle of the ESB service types from configuration through deployment to production is the
same regardless of ESB service type - including the ESB mediation services, XML transformation
and content-based routing, as well as the advanced ESB services (section 3.3).

Given either pre-defined or user-defined service types, configuration is performed to prepare a
service for deployment to an execution environment. The management console provides configu-
ration controls to the standard service configuration items such as the entry endpoint and the exit
ESB address. Additionally, configuration properties specific to that type of service are set.

For example a content-based routing service can be specialized with the specific rules shown in
Figure 26.

ESB containers are configured by assigning services to each container and defining how many
parallel threads of execution will be provided for each service in the container. (Each thread
creates a separate dispatcher along with associated inbox, outbox, and faultbox for that thread’s

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

33

instance of the service). Furthermore, multiple containers with the same services can listen on a
single ESB endpoint providing transparent load balancing and redundancy.

As shown in Figure 22, these ESB component configurations are stored in the ESB repository
(along with all of the resource files needed by the services). These configurations are typically
first stored in a development ESB repository and then migrated to test and production as explained
in the next section.

Moving configurations from development to test and staging to production environments is done
with the deployment tool shown in Figure 27. Selected resource files and configurations are
moved through the creation of intermediate archive files and the use of the deployment map file
to map service and message parameters to operate properly in the targeted environment where
quality of service settings, security policies and ESB addresses may differ. The tailoring rules file
specifies which service parameters can be set in the deployment map.

Figure 27. Class Diagram for Deployment Tool

Figure 28 shows the promotion and deployment of configurations from the development ESB
repository to the test ESB repository to the production ESB repository.

Promotes from

Uses

Deploys to

Uses

Tailoring Rules File

Deployment Tool Deployment
Map File

ESB Repository

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 4.2
DEPLOYMENT
TOOLS AND
MIGRATION OF
SERVICES AND
CONFIGURATIONS

34

Figure 28. Object Diagram for Deployment Tool

This diagram shows a relatively simple case with one development environment, one test environment
and one production environment. Many environments are more complex and may comprise multiple
development environments, including individual developer workstations, multiple test environments
including integration test, acceptance test, and staging, and production environments in many geo-
graphic locations. The ESB deployment tool can be used with appropriate map files for all of these
situations, providing reliably reproducible deployment.

The ESB provides flexibility, availability, scalability, and manageability though its distributed
services architecture, which has the following important capabilities and properties:

> New services and new service types can be implemented through configuration, without the
need to write programs.

> An ESB service interface can be changed without requiring coding changes and a consequent
development cycle to recompile and deploy that service.

> Service instances can be remotely provisioned in ESB containers located anywhere on the network,
allowing flexibility to deploy new functionality and to manage performance through load-balancing
or multiple service instances. Allows the deployment of services to the physical location where
they may perform best, due to host processing capability or proximity to other resources.

> Local access to configuration artifacts needed by services, providing quick service startup and
ability to run even in the event that a network failure prevents access to the ESB repository.

> Automatic distribution of ESB service implementation and configurations across a distributed
network for deployment of new or changed services.

> The distributed ESB service containers and communication brokers can be managed using the
same underlying messaging infrastructure as that used for service communications, with the
ability to partition communications for scalability and reliability.

Development
Repository

(ESB Repository)

Test to Production Map
(Deployment Map File)

1. Promotes from

USER A
(Deployment Tool) Uses

2. Deploys to

Test Repository
(ESB Repository)

Production Repository
(ESB Repository)

4. Deploys to

3. Promotes from

Development
to Test Map

(Deployment Map File)

Uses

Parameter Rules
(Tailoring Rules File)

Uses

Development
Environment

Production
Environment

Deployment
Tool

Test Environment

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 4.3
DISTRIBUTED
SERVICES
ARCHITECTURE

35

> Events, including entry and exit of services invoked by an ESB process, can be tracked to
manage process execution across even a highly-distributed deployment.

> Automatic load balancing across multiple instances of a service in support of performance
and reliability goals.

> CAA (Continuous Availability Architecture) provides high reliability multi-protocol messaging
through back-channel replication of message data from primary to secondary brokers. This
ensures continuous, ordered delivery of messages in the event a communication broker fails21.

> DRA (Dynamic Routing Architecture) allows messages, including Web services requests and
responses, to be automatically routed across a federated multi-hub deployment of brokers.
This permits messages to enter any broker in the ESB, and be routed to the correct destination,
regardless of the domain which hosts this destination, subject to enforcement of security rights22.

Figure 29 shows the key classes used to support distributed services architecture in a production
environment. The classes are grouped according to: distributed ESB containers, distributed ESB
management, distributed ESB broker, and connected business services.

Figure 29. Class Diagram of Distributed Services Architecture

ESB service configurations and ESB container configurations are stored in the production ESB
repository. As introduced in section 3.2, the ESB container instantiates ESB services and provides:
the systems management interface for its services, the management of communication protocols,
the capability to have multiple threads executing services for scalability, and the standard capability
to execute distributed processes. The management console is used to place ESB containers and
their configured services onto multiple distributed systems where interaction policies, transport
bindings, and communication layer security policies are established.

Broker

Supports

Contains

ESB Repository Cache

ESB Service

Hosts

Stores

Pushes Changes to

Requests
Configurations from

Is failover for

Listens on

Employs

Provides

Manages

Manages

Manages

Employs

Supports

Provides

Stores

Writes to

View with

Includes

Dynamically routes to

Employs

Employs

Provides

Employs

Provides

Has entry

Employs

ESB Process

ESB Repository
Cache

Dynamic Route
Definition

Hosts

Uses

Distributed ESB Containers Distributed ESB Broker Connected
Business
Services

Distributed ESB
Management

ESB Endpoint
ESB Connection

Management
Connection

Node

Cluster

JMS Connection

Connected
Business Service

Web Service

JCA Connection

HTTP(S) Connection

ESB Service

ESB Component
Configuration

Tracking Message
Viewer

ESB Container

Management Console
Log

ESB Repository

Broker

Web Services
Connection

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

21 Sonic Software, “Continuous Availability for Enterprise Messaging, Reducing Operational Risk and Administration Complexity”, April 2004.
22 Sonic Software, “Clustering and DRA in SonicMQ, Bringing Scalability and Availability to the Enterprise Backbone”, January 2004.

36

The ESB provides highly reliable support for distributed systems. An ESB repository cache is
used to provide local copies of the configuration files used by ESB containers and ESB services
executing on distributed systems. The cache is populated by requests from the container to the
ESB repository as well as changes pushed from the ESB repository. The cache provides the ability
for distributed systems to be both fast and reliable, and allows continued independent operation
even when the production ESB repository is unavailable or unreachable.

There is a separate management connection between each ESB container and the brokers
used for management communications. This permits management communication messages
to use a physically separate set of systems from the service communications messages. The
management connections have security controls and configuration independent of the services’
connections. Management functions are built making use of standard JMX (Java Management
Extensions) capabilities.

A key capability of the ESB infrastructure is to allow the generation of tracking messages to
monitor the progress of an ESB process through the entry and exit at each step of the process.
These messages are sent from across the distributed environment to a common destination for
review and monitoring. A process can be configured with a tracking endpoint for receipt of the
tracking messages.

In addition, trace logs of all activities can be generated for review and monitoring. Activities
which can be traced include ESB container events, endpoint tracing, message dispatching, ESB
invocation, and application debugging messages. In addition to the ESB management console,
third-party monitoring tools can be used.

Reliability and scalability of the communications infrastructure is provided through clustering of
brokers, with linear scalability as brokers are added. Transactional fault-tolerance is achieved
through failover brokers using the Continuous Availability Architecture.

Dynamic route definitions in the Dynamic Routing Architecture (DRA) allow local clusters to
be connected in a global network, transparent to the ESB applications. The ESB security model
supports cross-domain authorization and authentication for DRA.

An important advantage of the ESB’s distributed services architecture is that the topology,
clustering, failover configuration, and quality-of-service of the infrastructure can be changed
without requiring any change to the services.

The flexibility for distribution of ESB services and ESB containers with a fault-tolerant and
high-performance infrastructure is illustrated in Figure 30.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

37

Figure 30. Distributed ESB Containers

This figure shows:

> Multiple instances of a service in multiple distributed containers for reliability, performance,
and load balancing

> Multiple instances of a service in a single container for increased throughput
> ESB repository cache at each container for performance and fault-tolerance
> Dynamic routes (DRA) for transparent linkage between central and remote sites
> Use of CAA with primary and secondary brokers for fault-tolerance
> Different services in the same container for optimal messaging performance between the services
> Management console using management connections for integrated view of entire distributed ESB

In this paper we described the architecture and lifecycle of the ESB. Key capabilities of this
approach to development, deployment, and management include:

> Rich set of development and configuration tools allow for easy configuration of ESB mediation
services, processes, and the development of custom services. New business requirements can
be implemented rapidly.

> Deployment tools provide support for the ESB lifecycle and allow for the automated mapping of
configurations and movement of implementation resources from development to staging/test to
production environments.

> Distributed execution and management environment that implements a distributed services
architecture allows for flexible, high-performance, scalable, and continuously available SOA
systems as illustrated in Figure 31.

London

Legend

Chicago Tokyo

ESB
Repository

XML
XML

XML

XMLXML
XMLXML

XMLXMLTradingTrading TradingTrading TradingTradingFunds TradingTrading

Service

Container

Repository Cache

Wide Area NetworkBroker Cluster

Management Console

Management Connection

> 5.0
CONCLUSION

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

38

Figure 31. World-wide Distributed Services Architecture

In the book Enterprise Integration Patterns23 defining standard patterns for enterprise application
integration (EAI), the “message bus” is defined as the “architecture [which] enables separate
applications to work together but in a decoupled fashion such that applications can be easily
added or removed without affecting the others.” It is exactly this architecture which is provided
by the ESB in an off-the-shelf “configure and go” reliable and scalable package.

Now we can answer the questions posed in the introduction.

> How do I build processes which span new service-enabled applications as well as existing
legacy systems?

By using the ESB to connect, mediate, and control both new ESB services and their interaction
with existing applications integrated as connected services. Multiple forms of connections
support existing applications which can be integrated into a seamless distributed business
process. Synchronous and asynchronous applications or data sources can be integrated without
any changes to the application or data implementations.

> How do I provide the performance expected of enterprise systems while easily accommodating
changes in demand?

By creating composite SOA applications implemented on the ESB infrastructure, SOAs can
achieve increased reliability, scalability and performance. Distributed services architecture
allows for the scaling of processing capacity with no change to the applications. Multiple
instances of services can be dynamically deployed to process requests in parallel –with no
changes to behavior of the services. Similarly, the supporting infrastructure can be dynamically
reconfigured to increase throughput with no changes to the running processes or services.
Services and infrastructure can be dynamically deployed when and where it is needed.

> How do I isolate applications from faults resulting from server and communication failures?

Any number
of processes

Any number
of locations

Any number
of services

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

23 Hohpe, Gregor, and Wolf, Bobby, Enterprise Integration Patterns, Addison-Wesley, 2004.

39

The ESB distributed services architecture provides multiple layers of fault-tolerance including:

> Services deployed to multiple containers on multiple machines in multiple locations
> Broker clustering with Continuous Availability Architecture (CAA) failover
> Distributed ESB repository cache able to continue operations if the ESB repository is unavailable
> Distributed process implementation which operates – without a single central point-of-failure.

Each of these complementary approaches is transparent to the implementation of the services.

> How do I manage processes that will interact with services spread across an organization,
and between organizations?

The ESB allows for creation of business processes which can include both ESB services and connected
services, including Web services. These services can be geographically and organizationally distributed.
Unique capabilities including dynamic routing architecture (DRA) for connections across multiple clusters
of nodes. The collaboration service extends the model to support commonly used business-to-business
protocols such as ebXML. ESB itineraries provide a visually-defined and managed business process
which spans domains in an organization’s network infrastructure. Federated security permits full local
access and deployment control as well as seamless global access and control across multiple security
domains subject to the enforcement of local security rights.

> How do I manage and monitor the infrastructure as well as the processes and services deployed
within it?

The ESB supports distributed deployment of ESB services and processes to any ESB container or
group of containers. It provides management and monitoring of the SOA infrastructure through
management capabilities integrated into the deployed containers controlled through the manage-
ment console. Processes, services, and containers are instrumented with tracking capabilities at
both the message and composite SOA application level.

> How do I allow the organization to change processes, rules, data mapping and relationships
between applications with minimal effort and disruption?

An ESB provides the loose coupling required to achieve the flexibility promised by SOA. Services
are mediated by the semantics of asynchronous messages; the messages they exchange are
mediated by the transformation and other services hosted by the ESB. The logic controlling the
sequence of execution, the destination of message delivery, and the recovery from errors is kept
formally separate from the service’s business logic. These architectural practices eliminate the
hidden dependencies between services which make change difficult.

Processes, data mapping, and relationships between applications such as through content-based
routing are implemented in the ESB with interactive tools through configuration rather than pro-
gramming. This allows for easy modifications and incremental change. Changes can be deployed
to the production environment through the deployment tool and then automatically propagated

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

40

throughout the distributed ESB. New services can be added and processes modified without requir-
ing changes to the existing services. The ESB provides flexibility to change the quality of service of
existing services to allow for new uses without requiring any changes to the existing service.

As an organization introduces SOA to their systems development architecture and processes,
it is dependent on people, processes and technology to move through the levels of SOA maturity
from initial services to optimized business services. The Sonic ESB and entire SOA Suite provide
the proven SOA infrastructure to support this process, enabling business agility and transforma-
tion at the same time it promotes cost reduction through service reuse.

The Sonic ESB provides connection, mediation, and control of services and their interaction
through visually modeled business processes. Its distributed services architecture supports the
agility, scalability, availability and reach needed to respond to ever-changing business requirements
in a complex enterprise. Combined with the development, deployment and management tools to
support comprehensive lifecycle management, Sonic ESB fulfills the promise of enterprise SOA.

For more details on how the ESB sets the standard for business agility, global reach, service
scalability and availability please call 1 866 GET SONIC (1-866-438-7664) or send email to
eval@sonicsoftware.com.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

41

Activity Definition
A process definition in the form of a UML Activity Diagram created with the Activity Editor and
stored in the ESB Repository. Used by Orchestration and Collaboration Service to execute business
processes.

Application Server Application
A connected business service implemented on J2EE or .NET application servers.

Broker
A communication server which provides reliable communications between ESB Endpoints using a
variety of protocols including web services. The Sonic ESB uses the SonicMQ multi-protocol
Broker to provide continuous communications even in the event of a server failure.

Cipher Suite
A suite of encryption software for securing JMS and HTTPS connections.

Cluster
A group of Brokers which behaves as a logical Node and shares processing load. Topics and
queues are made available to all brokers in a cluster. A cluster can be configured for Continuous
Availability.

Collaboration Service
An optional ESB Service Type provided by Sonic for modeling, running and managing business
processes with partners using B2B protocols. The processes are defined with an Activity Editor
and stored as Activity Definitions.

Condition
An XPath expression or JavaScript Rule which defines a condition for routing messages based on
their content or context.

Connected Business Service
A generalization of any service which is hosted outside the ESB but is connected through some
protocol and transport so that it can interact with ESB Services and ESB Processes. Examples
include Web Services and Web Clients, Application Server Applications, JMS Applications and
Enterprise Systems.

Content-based Routing Rule
An individual rule for routing messages based on a True/False test contingent on particular mes-
sage content.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

> 6.0
GLOSSARY

42

Content-Based Routing Service
A prepackaged ESB Service Type which offers an XPath- or JavaScript-based content-based
routing service. One of the most commonly used ESB Service Types. It is used by the Decision
Step in an ESB Process.

Database Service
An optional ESB Service provided by Sonic for service enabling relational databases. SQL
Queries are created with the Database Query Editor and configured to run with a set of database
connection parameters. Supports high performance query and update of database including:
DB2, Oracle, Sybase, MS SQL Service and any JDBC compatible RDBMS.

Deployment Map File
A file contains rules for transforming identifiers and properties within deployment artifacts so
they match the target ESB domain into which they are being promoted.

Deployment Tool
A graphical tool for selecting and extracting development artifacts (resource files, configuration
data and service implementations) for migration from development to test to production within
different ESB domains.

Development Project
A set of related implementation and resource files and ESB component artifacts that will be
developed, tested and deployed as a project. Stored in the ESB Repository as a folder with
subfolders for development, test and production uses.

Dispatcher
A listener within the ESB Container which is configured to read messages on behalf of an ESB
Service as well as to process ESB Itineraries. Before the ESB Service is invoked the dispatcher
fills the Inbox and following execution of the service it reads the Outbox and Faultbox for results.
If the service or dispatcher fails, the original message is not acknowledged and the transaction
rolls back. If the service succeeds, the dispatcher acknowledges receipt and the message
processing transaction completes. The service may put multiple messages in each of the Outbox
and Faultbox boxes. Each message contains an address which is resolved by the dispatcher.

Dynamic Route Definition
Configuration data used to define routing rules for message flow between Node, often used to
provide forwarding between different locations. It can be used to map an ESB Address to a Web
Services URL such that the external Web Service consumers and providers can directly address
an ESB Service or ESB Process.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

43

Enterprise System
A connected business service exposed as an ESB Endpoint but implemented using either an ESB
Service and a custom interface or one of the other types of ESB Endpoints. Once connected, these
Enterprise System Services can be used within ESB Process Definitions as a normal ESB Endpoint.

ESB Address
A reference to an ESB Service, ESB Process or ESB Endpoint. Is resolved through lookup by the
dispatcher in the ESB Repository Cache.

ESB Component Configuration
A generalization of all configuration data which is used to specify the name, parameters and
related properties of an ESB Service, ESB Process, ESB Container or ESB Endpoint.

ESB Connection
A component which provides a logical abstraction and a configurable layer of indirection between
an ESB Endpoint and the physical connection(s) used to deliver messages.

ESB Container
A Java-based management container that hosts ESB Services, Dispatchers and ESB Endpoints. The
container requires IP connectivity and a management Connection to the ESB Repository for loading
its configuration data and obtaining resource files. The management connection also is used for
sending lifecycle commands and collecting systems management events.

ESB Container Configuration
Configuration data containing the ESB Container name, its properties and a list of ESB Services
which are to be hosted in the container.

ESB Endpoint
A component which provides a logical abstraction and a configurable layer of indirection between
an ESB Service and the underlying transports. The endpoint defines the quality of service (QoS)
for both senders and receivers.

ESB Endpoint Configuration
Configuration data comprising the ESB Endpoint name and its type (JMS, Web Service, or JCA).

ESB Itinerary
The part of an ESB Message containing the remaining Process Steps in an ESB Process Definition.
Each Process Step may contain associated runtime parameters which override the Initialization
Parameters of that Service. ESB Itineraries may also include decision points and branching instructions.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

44

ESB Message
A normalized message used by the ESB between two ESB Endpoints. It contains headers and
parts with specific content types. Messages which are part of an ESB Process will contain an ESB
Itinerary to control the process.

ESB Process
A sequence of process steps which are defined in a Process Editor and embedded in ESB
Messages as an ESB Itinerary to control the flow of service invocations across a distributed set
of ESB Containers.

ESB Process Configuration
Configuration data containing the ESB Process name, its entry, exit, fault and rejected message
addresses along with other properties such as QoS and Time-to-Live.

ESB Process Editor
A graphical editor for creating ESB Process Definitions including the ESB Process Step Definition.

ESB Process Step Definition
The development-time specification of an individual Process Step in an ESB Process Definition.
Contains the name of the step, an ESB Address and related Runtime Parameter values. There are
at least six Step types including: ESB Service, ESB Process, Web Service, Fanout, Decision and
ESB Endpoint.

Process Step
The ESB Address and runtime parameters necessary to invoke the next step of an ESB Itinerary.

ESB Repository
A configuration repository for storing ESB Service Type implementations, Resource Files, and
related configuration artifacts. Each ESB installation has an ESB Repository which controls the
unique naming of ESB Services, ESB Processes and ESB Endpoints. Used during development
by Editors related tools and at runtime by the Dispatcher for dynamic deployment of artifacts
and ESB Addresses resolution.

ESB Repository Cache
A data store maintained by each distributed ESB Container for local copies of configuration data,
resources files and ESB Service implementation files. Provides resilience in processing when
communications with the ESB Repository are interrupted.

ESB Service
An instance of an ESB Service Type, configured and running in a deployed ESB Container.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

45

ESB Service Configuration
Configuration data containing the name and initialization parameters needed to start an ESB
Service (of any type) running within an ESB Container. Included are the entry, exit, fault, and
rejected message addresses. At runtime these configurations may be overridden by ESB Itineraries
containing Runtime Parameters. This allows ESB Processes to change the behavior of configured
ESB Services to meet a specific context.

ESB Service Type
A generalization of all ESB Services and their implementations. ESB Service Types come pre-pack-
aged, as in the case of the Content-based Routing Service or can be User-Defined. For example a
File-polling ESB Service Type is frequently implemented to allow files to be collected and delivered
as ESB Messages. Each ESB Service Type has a set of resource files, allowable parameters (initial-
ization and runtime) and an XML definition file to register the service type in the ESB Repository.
Once an ESB Services Type is created it is automatically available for use as a Process Step within
ESB Process Descriptions and will be dynamically deployed to any and all ESB Container(s) where
references to the Service Type appear within an ESB Itinerary.

Faultbox
An object within the ESB Container which the Dispatcher reads at the end of an ESB Service
invocation. The contents of the Faultbox will be the error messages from the service.

HTTP(s) Connection
The standard application protocol for World Wide Web communications. HTTPS is secured and
encrypted by using SSL as the HTTP transport.

Inbox
An object within the ESB Container which the Dispatcher fills prior to invoking an ESB Service.
The contents of the Inbox will be the standard input to the service.

JavaScript Routing Rule
A resource file optionally used by the Content-Based Routing Service Type used in making routing
decisions according to the execution of the JavaScript rule against the contents of the message.

JCA Adapter
A standards-based Java Connectivity Architecture connection between J2EE applications and the
ESB Container. Implemented through extensibility of ESB Endpoint Type components (not treated
in this Definition document).

JCA Endpoint
A specialization of ESB Endpoint for communicating with JCA-compliant Application Server
Applications.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

46

JMS Application
A connected business service exposed as an ESB Endpoint and implemented using the Java
Message Service. Typically these applications are hosted in an application server external to the
ESB and connected directly to the ESB through a JMS Connection to a JMS Destination (Topic
or Queue). ESB Process Definitions can employ a JMS Destination as a normal ESB Endpoint
within an ESB Itinerary.

JMS Connection
A connection between an ESB Endpoint and the Broker for reliable and scalable communication
of JMS Messages.

JMS Destination
A named destination (Topic or Queue) hosted by a Node.

JMS Message
A Java object used to encapsulate messages of any type including: text, XML, binary and multi-
part. ESB Messages are implemented as multipart JMS messages when they are configured to
flow across an ESB Connection which uses JMS.

LDAP Security Repository
Short for Lightweight Directory Access Protocol, a set of protocols for accessing
information directories.

Log
A disk file that is appended to by the ESB Container as events occur. For example, tracing events
such as ESB Service invocation and exit.

Management Connection
A JMS Connection used by the Management Console, distributed ESB Containers, the ESB
Repository, and Nodes for reliably transmitting systems management, configuration management,
and monitoring actions.

Management Console
An administrative console for creating, configuring, and monitoring both ESB and Broker
components.

Message Store
The persistent data store for unconsumed messages in a Broker.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

47

Node
The identity of a communications Broker or Cluster. Dynamic Routing Definitions enable the

movement of messages from one Node to another over JMS Connections.

Orchestration Service
An optional ESB Service Type provided by Sonic for modeling, execution and management of
business processes using centrally-stored process state. The processes are defined with an
Activity Editor and shored as UML Activity Diagrams.

Outbox
An object within the ESB Container which the Dispatcher reads following an ESB Service
invocation. The contents of the Outbox will be the standard output from the service.

Process Debugger
A test tool for single stepping through the execution of an ESB Itinerary.

Queue
A communications channel that delivers a message to a single ESB Endpoint.

Resource Editor
A graphical component in the Workbench for creating, editing and debugging Resource Files.
There are a number of such editors including: ESB Process Editor, Routing Rules Editor, Web
Service Call Editor, XSLT Editor, XML Editor, XML Schema Editor, XQuery Editor, Database Query
Editor, XAction Editor, and Third Party Editor.

Resource File
A file that supports an ESB Service Type implementation and is employed at runtime. It can be
created by an Editor and is stored in the ESB Repository. An example would be an XSLT stylesheet
used by the XML Transformation Service Type. Resource files have URLs and can be loaded dynam-
ically by an ESB Service at initialization or runtime using an ESB Itinerary.

Routing Rules Specification
A resource file used by the Contend-Based Routing Service Type used in making routing decisions
based on the content of the message. Each rule has a condition and a destination ESB Address
selected when the Condition is true.

Runtime Parameter
A set of parameters associated with an ESB Itinerary which override the Initialization Parameters
of the itinerary’s ESB Services at runtime. These are authored in the Process Editor. For example
a Runtime Parameter could override the initialized XSLT Stylesheet for a given XML Transformation
Service. Initialization Parameters permit ESB Services to be easily reused in multiple ESB Processes.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

48

SOAP Message
A standards-based XML document which is compliant with the Simple Object Access Protocol
standard. Used as a normalized message format between Web services.

SQL Statement
A JDBC-compatible instruction for querying or updating a relational database.

Tailoring Rules File
Specifies which service parameters can be set in the deployment map.

Test Tool
A client application for creating and sending test messages to ESB Services.

Topic
A communication channel that delivers copies of a message to multiple ESB Endpoints.

Tracking Message Viewer
A graphical tool for collecting and analyzing message flow from a given ESB Process or Service.

Trust Store
A keystore file containing the trusted SSL certificates.

UDDI Registry
A Universal Directory Discovery Interface (UDDI) compatible registry of Connected WSDL files
and related artifacts. Used by the Web Service Call Editor to obtain WSDL files during the
development of a Web Service Call resource file.

User-defined Business Service
An ESB Service Type created by a user to perform business logic within the ESB. Examples in
Figure 1 in this Definition document include: Compliance, Trading and Funds Transfer ESB services.

User-defined Mediation Resource
A custom resource file defined by a user and run by a User-defined Mediation Service type.

User-defined Mediation Service
An ESB Service Type created by a user to extend the mediation capabilities of their ESB.
Examples include binary file transform, file drop, process aggregation, and protocol bridges
to enterprise messaging systems, SMTP, EDI and AS2.

User-defined Resource
A resource file defined by a User and run by a User-defined Business Service.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

49

User-defined Service Type
Any ESB Service Type whose implementation was developed by a User of the Sonic ESB. Service
types are loosely categorized as being either for mediation or business logic.

Web Client
A client application that requests a service by using an HTTP(s) Connection. It may expect to
receive its reply synchronously and immediately over the same connection. For accessing ESB
Services as Web Services, it uses the SOAP protocol.

Web Service
A connected business service supporting standard Web service protocols. It is exposed in the ESB
through a proxy ESB Service Type (not in Definition document). Typically hosted external to the
ESB and connected through a Web Services Endpoint and HTTP Connection. ESB Services and
ESB Processes can be exposed as Web Services in their own right through the use of WSDL
Definition. ESB Process Definitions can employ Connected Web Services as Process Steps.

Web Service Call Editor
A graphical editor for creating Web Service Call parameters which are used in Web Service Steps
within ESB Process Definitions. Reads Connected WSDL file as the basis for mapping SOAP
Messages into ESB Messages.

Web Services Acceptor
An HTTP daemon (Web server) hosted by the Broker and supporting HTTP(S) Connections with Web
Service and Web Client connected applications. Routes messages to the Broker for delivery to
JMS destinations employed by ESB Endpoints.

Web Services Call
A configuration file for mapping ESB messages parts to SOAP Message parts. This file is created
within the Web Service Call Editor and stored in the ESB Repository. Once a Web Service Call is
created it can be used in any ESB Itinerary regardless of the location of the ESB Container in which
that Process Step executes. Compatible with WS-Reliable Messaging.

Web Services Connection
A variation of an ESB Connection which employs standards-based HTTP(S) connection for commu-
nications between the Broker and an external Web Service or Web Client. In the case of asynchro-
nous messaging there would be separate HTTP(S) Connections for the reply.

Workbench
An Integrated Services Environment (ISE) for configuring ESB Service Types and ESB Processes.
It includes various editors, debuggers, testing tools, and related deployment tools.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

50

Worklist Service
An optional ESB Service Type provided by Sonic for managing the human-workflow tasks
associated business processes of the Collaboration and Orchestration Service Types.

WSDL Definition
Web Services Description Language (WSDL) file which defines an ESB Service or ESB Process
for use by Connected Services (Web Service and Web Client). See also Connected WSDL.

XML Action List
A script created by a User with XAction Editor and run by the XML Service to execute a pipeline
of XML processing steps.

XML Editor
A graphical editor for creating XML Resource files.

XML Resource
An XML file used as a resource to define a User Defined ESB Service.

XML Schema
An XML Schema (.XSD) file.

XML Schema Editor
A graphical editor for creating, editing, and validating XML Schema files.

XML Service
An optional ESB Service provided by Sonic for storing XML documents. The service runs scripts
called XML Actions to pipeline a series of storage, retrieval, query and transformation steps into
one service invocation. Used most often for message aggregation.

XML Transformation Service
A pre-packaged ESB Service Type which offers a configurable XSLT processing engine to
transform XML documents within an ESB Message from one format to another or split the
document into multiple parts, with each part becoming a separate ESB Message. One of
the most commonly used ESB Service Types.

XQuery Editor
A graphical editor for creating, editing, testing and debugging XML Query Expressions.

XQuery Expression
An ASCII file with an XQuery expression.

Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

51

XSLT Editor
A graphical editor for creating, editing, testing and debugging XSL transforms.

XSLT Stylesheet
A resource file used by the XML Transformation and XML Service Types. Based on the Transform
subset of the eXtensible Stylesheet Language (XSL) functional programming language.

Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

52 Copyright ©2005. Sonic Software Corporation. All rights reserved.SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

Describes

Runs

Runs

Runs

Stores

Defines

References

Includes

Edits

Stores

?

Includes

Defines
Includes

Includes

Database Query Editor

Includes

Creates

Has condition

Has destination

Contains

Contains

References
Specified by

Deploys to

Uses

Promotes from

Uses

Manages

Stores

Includes

Employs

Components

Management TooDevelopment and Configuration

Process Specification

Deployment To

Has

References

Resource FilesTools Resource and Configurati

Sonic ESB: Architecture

XAction Editor

CBR Specification

Complete UML

ESB Service Type

XML Transformation
Service

Routing Rules Editor

Third Party Editor Resource

Mediation

Business

Content-based
Routing Service

User Defined
ESB Service

Mediation
Service

Business
Service

Orchestration
Service

Collaboration
Service

Worklist
Service

XML
Service

Database
Service

Resource Editor Resource File

Workbench Process Debugger Test Tool Development
Project

Management
Console

Management
Connection

Deployment
Map File

Deployment
Tool

ESB Repository

Tailoring
File

Track

Creates
Web Service Call

Creates
ESB Process

Definition

Creates
Activity

Definition

Creates
XML Action List

Creates
XQuery Expression

Creates
SQL Statement

Creates
XML Resource

Creates
XML Schema

Runs

Runs

Runs

Runs

Runs

Runs

Creates

Creates

Creates

Creates

ESB Service
Implementation

XSLT Stylesheet

JavaScript Routing
Rule

Routing Rule
Specification

IDE Code Editor

Web Service
Call Editor

ESB Process
Editor

Activity Editor

XSLT Editor

ESB Process Step
Definition

Decision Step
Content-based
Routing Rule

Condition
ESB Process Step

ESB Service Step

ESB Endpoint Step

Fanout Step

Web Service Step

Has

ESB Component
Configuration

ESB Container
Configuration

ESB Process
Configuration

ESB Endpoint
Configuration

Content-based Routing
Service Configuration

XML Transformation
Service Configuration

ESB Service Type
Configuration

Other Configurations

User Defined
Service Configuration

ESB Service
Configuration

Initialization
Parameters

XAction Editor

XQuery Editor

Database Query
Editor

XML Editor

XML Schema Editor

53Copyright ©2005. Sonic Software Corporation. All rights reserved. SONIC ESB: AN ARCHITECTURE AND LIFECYCLE DEFINITION

Employs

Has reply-to

Addresses fault to

Addresses rejected to

Addresses response to

Reads

Reads

Fills

Reads
Fills

Addresses response to

Dispatches

Interprets

Addresses fault to

References

Contains

Travels with

Listens on

References

Defines

Resolves

Describes

Describes

ESB Process Context

Has

Defined By

Employs

Listens on

Employs

Employs

Employs

Has destination

Employs

Employs

Listens on

Listens on

Hosts

Sent to

Received from

Supports

Distributed Multi-Protocol Broker

Is Failover for

Dynamically routes to

Hosts

Registered in

Receives

Stores

Web Client

Serves

Uses

Used by

Secures

Trust Store

Supports

Supports

Contains

Hosts

Uses

Pushes Changes to

Requests Configurations from

Provides

Manages

Manages

Supports

Provides

Writes to

View with

Employs

Provides

Distributed Services Architecture

ESB Service Invocation

Security

Connected Servicesools

Provides

Secures

Supports

ools

Development Environment

Production Environment

Test Environment

Stores

tion Repository

and Lifecycle Definition

Addresses reject to

Implemented as

Implemented as

Copyright Sonic Software, 2005. All Rights Reserved.

Based on Sonic ESB 7.0 Early Access

This diagram appears in the Appendix of the Sonic ESB: An

Architecture and Lifecycle Definition

Creates, Reads and Sends

May contain

Send to

Sent to

Sends

Sends

References

References

{XOR}

Has entry

Has entry

Sends
reject to

Sends to

Invokes

Class Diagram

WSDL Definition

Node

Cluster

JMS Destination

Web Services
Acceptor

HTTP(S) Connection SOAP Message

Connected Business
Service

Connected WSDL

UDDI Registry

Application Server
Application

Web Service

Web Client

JMS Application

Enterprise System

ESB Message

Web Services
Endpoint

Web Services
Connection

JCA Endpoint

ESB Connection

JCA Adaptor

Topic

Cipher Suite

JMS Connection JMS Message

LDAP Security
Repository

Trust Store

Queue

Broker

Message Store

Rules
e

cking Message
Viewer

ESB Container Log ESB Repository
Cacher

Fills

References

Dynamic Route
Definition

n
s

Inbox FaultboxOutbox

ESB Address ESB Process

Runtime Parameter Process Step

ESB Itinerary

ESB Service

Dispatcher

ESB Endpoint

Copyright ©2005. Sonic Software Corporation. All rights reserved.

