

Best-of-Breed ESBs

Identifying best-of-breed characteristics in
Enterprise Services Buses (ESBs)

June 2003

A white paper from Steve Craggs

Vice-Chairman, EAI Industry Consortium

Sponsored by

 2

Table of Contents

1.0 Executive Summary ..3
2.0 Introduction ...5
3.0 The Enterprise Service Bus (ESB) ..6
4.0 Core Characteristics of a Best-of-Breed ESB..8

4.1 Fundamental ESB Characteristics...9
4.2 Robustness..15
4.3 Scalability / Performance ...18
4.4 Security..19
4.5 Breadth of connectivity ..20
4.6 Development / Deployment toolset..22

5.0 Summary...24

Best-of-Breed ESBs  2003 Saint Consulting Limited

 3

1.0 Executive Summary

As business integration has cemented itself at the top of the list of business
and information technology (IT) concerns for many companies, attention has
become focused on achieving this integration quickly and effectively while at
the same time maintaining attractive levels of return on investment. In the
past, proprietary solutions dominated the market, but a number of changes
have taken place that promise to radically shift the business dynamics
underlying business integration activities. Standards have become
established that promise considerable market upheaval, offering a lower risk
approach to integration with a more attractive price point. Integration
approaches have been refined over the last ten years, resulting in the
emergence of architectures that offer flexible and adaptable platforms for
integration while at the same time making high levels of application
component reuse possible. In short, the EAI market is undergoing a
significant level of transition, as discussed in the EAI Consortium White
Paper entitled ‘Raising EAI Standards’.

One of the most exciting developments to emerge throughout this period of
change is that of the Enterprise Service Bus (ESB). ESBs address a
number of key challenges in this market and are rapidly establishing
themselves as flexible, productive and robust standards-based solutions to
many integration needs. In addition adopting an ESB approach to
integration can radically alter the business dynamics of the overall
integration initiative. Used properly, the ESB promises to become the
cornerstone of integrated operations, seamlessly linking business
operations across the company and externally with partners.

But if the ESB is to become such a critical element of operations, then
selection of the particular ESB offering to implement becomes a decision of
major importance. Making the wrong choice is likely to seriously impact the
pace and ultimate success of business integration initiatives. Therefore it is
worth taking time to contrast the characteristics of ESBs and to identify the
key areas that represent best-of-breed capabilities. When these attributes
are clearly defined, an informed decision can be made about any ESB
investment, optimizing business risk and ensuring as far as possible a
successful implementation.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 4

The key characteristics to consider are basic ESB services, robustness,
scalability/performance, security, breadth of connectivity and tooling.
This paper reviews these areas, producing checklists of best-of-breed
functionality for each key characteristic. Note that this does not mean that
ESBs satisfying every best-of-breed aspect are therefore the best – indeed,
it is highly unlikely that any ESB offering could claim to do this today.
Instead, this analysis provides a set of measurement points that give a
prospective purchaser a way to compare products.

The extent to which an ESB offering addresses these key characteristics
relies to great extent on how well the vendor understands the current market
requirements. And since ESBs are substantially standards-based, some
analysts anticipate that the offerings are likely to be virtually identical. But
that is not the case. Standards are technical specifications typically covering
only the interfaces, leaving the ESB architecture and implementation
decisions to the vendors. And that is where the differentiation is most
apparent in ESB products. The question becomes one of how well the
vendor has defined and implemented its ESB.

Particular attention should be paid to the first three of the characteristics—
basic ESB services, robustness, and scalability/performance—because
these areas are usually linked to the fundamental product architecture and
design decisions. Whereas some of the other key characteristic areas can
be improved upon over time in an evolutionary fashion, areas such as
scalability, performance and robustness are notoriously hard to address
once the initial design decisions have been made. If poor decisions have
been taken early on, it is often virtually impossible to recover from them
without having to substantially rewrite the entire product implementation.

Using these checklists as part of this product selection process will help to
ensure that the ESB selected will become a key element of integration
strategy, and will deliver the promised benefits.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 5

2.0 Introduction

Business integration has grown in importance over the last ten years with
companies continually striving to streamline and automate business operations
internally and externally across the entire value chain — while at the same time
optimizing the return on existing IT investments as much as possible. The ubiquity
of the Internet has made possible levels of integration that could only be imagined
previously, with IT being able to support business processes extending all the way
from the back office through the front office to partners and even consumers.
Although the last few years have seen extreme levels of conservatism brought
about by the global economic downturn, business integration has remained the
number one concern of IT, seen as a way to achieve the maximum return from
existing IT investments while at the same time contributing positively to the
corporate bottom line.

This intense interest in IT-supported business integration has driven major
advances in technology within the integration software space (often called
Enterprise Application Integration (EAI)). As a result the development of
technologies such as Service-Oriented Architectures (SOAs) offer ways to achieve
the desired levels of business integration effectively, mapping IT implementations
more closely to the overall business process flow. These technologies often focus
on providing what Gartner Group calls an enterprise nervous system, a backbone
for the entire scope of IT operations that can link together all the different IT
components across the enterprise and beyond in a productive, efficient and
effective manner.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 6

3.0 The Enterprise Service Bus (ESB)

One of the most promising developments in defining an enterprise nervous system
is the Enterprise Service Bus (ESB). An ESB provides a whole range of functions
designed to offer a manageable IT backbone that is modern and standards-based.
The emergence of standards in the integration marketplace has caused a major
disruption to the previous market order and promises to mark a real point of
transition, radically changing the business dynamics of EAI investments. This has
opened the way for new standards-based offerings, and it is this opportunity that
has been seized upon by ESB vendors. As companies look to improve their levels
of business integration, ESBs promise a number of key benefits such as faster
implementation and deployment of new projects, a flexible platform for future
expansion offering a high degree of reuse, seamless interoperability, and an
improved rate of return on existing skills.

A number of vendors now deliver commercial ESB implementations, some as
stand-alone offerings, others as part of offerings such as Application Server
platforms. Major analyst groups see the ESB becoming a major market force over
the next couple of years. But how should the prospective buyer evaluate the
different offerings in the marketplace? Before looking at the specific characteristics
by which to judge an ESB offering, look more closely at the concept of an ESB and
why it has become such a popular technology innovation. The ESB concept
evolved out of the principles of a Service-Oriented Architecture (SOA). SOAs
describe a type of IT infrastructure where IT components can be accessed as
services with a defined form of invocation. Typically business operations running in
an SOA comprise a number of invocations of these different components, often in
an event-driven or asynchronous fashion that reflects the underlying business
process needs. SOAs are popular for a number of reasons – they clean up
interfaces between components and enable so-called composite applications to be
assembled from a mix of existing and new components. SOAs also adapt naturally
to a business process approach and dramatically improve reuse. The results show
a reduction in time-to-market and increase in quality of new projects.

It is possible to adopt an SOA approach to integration without using ESBs.
Numerous vendors supply various different forms of EAI products, including
message brokers and process integration solutions, which could also provide the
foundation for an SOA. Application servers frequently offer functionality that can be
used in a similar fashion. Indeed, one of the technologies receiving the most hype
today, Web services, can also help significantly in delivering an SOA. That’s due to
a Web service’s focus on standards to govern the access to and invocation of
components.

Message brokers tend to be rather heavy duty and often require significant
additional skills as well as the strong likelihood of needing expensive external
professional services to successfully implement the deployment. Application server
vendors are so intent on providing homogeneous integration within their own world
that they rarely implement the technology in such a way that it can interoperate
with other vendors’ application server implementations. Web services suffer from
rather incomplete and competing standards definitions that might not ensure easy

Best-of-Breed ESBs  2003 Saint Consulting Limited

 7

interoperability across different implementations. In addition, although most of
these offerings can be used to build an SOA, they do not offer a complete package
but instead provide simply the functionality - the majority of work to build the SOA
is left to the user.

In contrast, an ESB is a pre-packaged SOA implementation, already consisting of
the necessary functional components to achieve the SOA aims. The diagram
below illustrates the general concept of an ESB.

Web Service
(Vendor 1)

MOM facilities
• Asynchronous, message-based comms
• Publish/Subscribe
Transformation services
Content-based routing

J2EE
Application

Packaged
Application

.NET
Application

JMS JCA SOAP/HTTP

SOAP/HTTPSOAP/HTTP

Web Service

(Vendor 2)

Enterprise
Service Bus

(ESB)

An ESB offers a backbone that can extend Messaging Oriented Middleware (MOM
facilities) throughout the entire business value chain, connecting components
across different spheres of business operation. It has its own communications
capabilities so it can carry out this linkage by offering asynchronous, message-
based communications and queued messaging as well as publish/subscribe
messaging, a mechanism that allows the broadcasting of information to users that
have registered an interest in a subject. As well as dealing with the ‘backbone’
style communications, the ESB also offers integration with the broad spectrum of
components likely to be encountered through the use of various ‘standard’ binding
approaches such as Web services, J2EE Connector Architecture, JMS, COM, and
other common mechanisms. This integration is dealt with by the ESB in a
standard, service-oriented way, independent of the particular binding technologies.
The ESB also offers a level of transformation capabilities and XML services to
address the problem of differing data format requirements in the heterogeneous
components, and intelligent routing facilities to govern the flow between
components.

The value of this backbone, in concept, should be quite apparent. With an ESB in
place, operational IT flows can move seamlessly between different components,
departments, disciplines and other companies in the value chain. As information

Best-of-Breed ESBs  2003 Saint Consulting Limited

 8

flows across the ESB on its specified path, value is added at each component
stage until the operation is complete. The information flow typically contains all the
details necessary to carry out the business service, removing the need found in
traditional integration broker implementations of having to constantly return to a
central hub for this knowledge. And all of this comes with the advantages of a
packaged solution approach, avoiding the need to try to assemble this type of
functionality from a set of different vendor offerings.

In summary, an ESB can offer:
- An easy route to enhancing, streamlining and automating business operations
- End-to-end connectivity both internally and with third parties and consumers
- A flexible base for future developments
- Significant opportunities for reuse of components
- Rapid time to market and increased productivity for new projects

But there are vast differences between the different ESBs on the market today,
because even though the concept of an ESB is well-defined and interfacing to that
ESB is governed in a number of cases by standards, the way the ESB concept
has been implemented by the vendor makes a huge difference.

The rest of this paper focuses on the core characteristics that should be evaluated
as part of any purchase decision.

4.0 Core Characteristics of a Best-of-Breed ESB

ESBs can provide real business value to companies looking to operate and
compete more efficiently and effectively. ESB implementations take advantage of
the intellectual investment made in developing standards thereby yielding
numerous benefits to the end user. Standard-based solutions are generally easier
to swap in and out than proprietary ones, offering a level of flexibility, a better
bargaining position over price and reduced business risk due to vendor lock-in.
But the secret of a best-of-breed ESB lies in the design and development decisions
and effort invested in the particular product implementation. Therefore to maximize
the opportunity for success in any investment in ESBs, it is important to know what
metrics to use to gauge the quality and effectiveness of an ESB implementation.

In its most effective setting, the ESB is the backbone of the entire corporate value
chain, supporting every area of activity and forming a critical component of the
corporate IT infrastructure. Legacy investments such as in-house applications and
commercially available packages are leveraged by being attached to the ESB,
while new applications can be built ‘integration-ready’, able to automatically take
advantage of the ESB capabilities right from the start. The backbone offers
connectivity beyond the corporate IT structure into third parties and even to
consumers.

Fundamental ESB functionality includes basic functions such as the messaging
backbone, XML services, intelligent routing, transformation, management, the
overall service-based architecture, and support for distributed deployments.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 9

In addition, value is added when the essential components involved in critical
business operations are highly resilient and robust, and are able to handle
whatever loads the business might generate, now and in the foreseeable future.
Components must be capable of widespread deployment and corresponding wide
physical distribution. Since components will be spanning different departments
and locations and might be going outside company boundaries, security must offer
authentication and authorization mechanisms that adhere to the corporate policies.
Another key area for an ESB is its connectivity capabilities—it must be able to
interconnect component types in as many environments as possible. And in order
to ensure maximum productivity, it is essential that the development toolset be
powerful, comprehensive, well documented, and capable of covering the project
life cycle.

These factors establish the fundamental characteristics and the key value-add
characteristics that should be addressed by a best-of-breed ESB:

o Fundamental ESB characteristics:
• XML, messaging, transformation, intelligent routing services
• Basic connectivity (Web Services, J2EE Connectors, JMS)
• Service-oriented architecture
• Support for highly distributed deployments
• Manageability

o Key, value-add characteristics:
• Robustness
• Scalability and Performance
• Security
• Breadth of connectivity
• Development / Deployment toolset

Each of these characteristics is discussed at length to help develop checklists for
prospective ESB buyers as they evaluate products. It is important to note that
these checklists do not define a product specification. Beyond basic ESB
functionality, the other categories suggest key areas that might be more or less
important in a specific implementation. As most ESB vendors do not satisfy every
characteristic completely, the checklist provides a set of questions to present to a
vendor.

Consider though that some functionality can be added in later product releases, but
base functionality, robustness, and scalability result from fundamental design
decisions, and trying to improve these aspects of a product is usually a very
difficult task.

4.1 FUNDAMENTAL ESB CHARACTERISTICS
ESB characteristics are essentially requirements rather than best-of-breed
characteristics. In other words, if an offering does not satisfy these basic service
needs then it cannot claim to be an ESB. These services cover the overall
architectural approach of the integration offering, the basic services available over
the ESB, the on-ramp and off-ramp connectivity services, support for a high level of
distribution, and the manageability of the overall implementation. When properly
assembled, the fundamental ESB characteristics are not just a collection of parts,
but rather a packaged, out-of-the-box solution that has been thoroughly tested and

Best-of-Breed ESBs  2003 Saint Consulting Limited

 10

documented. The Service Oriented Architecture (SOA)—offering its approach to
allow IT components to be invoked as steps within the overall business service
delivery— is an essential attribute of any offering claiming to be an ESB. The
workspace for development and deployment of the basic ESB functionality must
enhance ease of use and accelerate project delivery.

The fundamental ESB consists of:
- Bus-related engines that provide transformation, XML and intelligent routing

services and the communications bus itself
- Definition tools and repository services
- Administration and management services
- Support for the standard forms of connectivity such as Web services
- Adherence to industry standards for enterprise application integration

Basic bus services
The bus services for transformation, XML services, routing, and communication are
broadly interpreted by vendors so look a bit closer to evaluate the effectiveness
and completeness of an ESB’s bus services.

Transformation services are essential in an ESB. The various components
hooked into the ESB have their own expectations of data formats, and these might
differ from other components. One of the most frequently noted examples is the
variation in date formats between the US and Europe. A major source of value in
an ESB is that it shields any individual component from any knowledge of the
implementation details of any other component. The transformation services make
it possible to ensure that data received by any component is in the format it
expects, thereby removing the need to make changes. Using the date formatting
example, transformation rules could automatically switch the date format when
passing from a European-based to a US-based component.

The areas of differentiation in an implementation of transformation services are
likely to be the extent to which the implementation uses a standards-based
approach to transformation rather than a proprietary engine, and the types of tools
provided to make the mapping definitions. Most companies find that a GUI-based
tool that allows record mappings to be manipulated through the use of cut-and-
paste or drag-and-drop provides the best productivity. In addition, there are
standards emerging in this area that might also be beneficial, such as XSLT and
XQuery.

XML services are generally accepted and are unlikely to differ significantly
between vendors. The power of XML in making data structures ‘self-defining’
provides an important cornerstone of ESB functionality, since the very nature of an
ESB is to pass information or data between different IT components as part of an
overall business service. Transient XML support will certainly be required, and
persistent XML support might also be of interest although the performance gains of
the latter approach tend to be outweighed by the corresponding increase in
complexity. However there are other aspects of XML document handling that could
also be of interest but that are not considered to be part of the standard XML
services package, such as handling very large XML documents and even providing

Best-of-Breed ESBs  2003 Saint Consulting Limited

 11

some sort of document management capabilities. The XML services offered within
any ESB should therefore be reviewed carefully.

Intelligent routing services provide another part of core ESB functionality. In order
to be able to define the business services that are made up of the various
components on the ESB, it is necessary to be able to specify the required flow from
component to component. But the path used to physically get from one component
to another has to be understood by the ESB, and indeed the ESB may well want to
dynamically alter this path, such as a reaction to a failure in part of the network.

A particular service might want to take decisions on the component flow based on
the results of a particular step. For example, a financial payments service might
want to use a different component flow for handling large value items than it would
for other items. In this case, the ESB must provide a routing service that can
intelligently consider the content of the information being passed from one step to
another and choose the appropriate next business step based on that information.
This sort of intelligent routing is fundamental if the integration solution intends to
handle the company’s business rules effectively.

The ESB must provide some form of communications pipe that can act as the
bus over which all processing can happen. This pipe must support asynchronous
messaging, a key to being able to map IT services more closely to business
operations. Business operations often consist of steps that can be carried out in
parallel, or that have widely different expectations of time to completion. An
asynchronous mechanism is essential to be able to implement this type of model.

Communications can add robust features such as publish/subscribe messaging
and store-and-forward messaging. Under publish/subscribe, information is
published to any subscriber authorized to receive on a topic where a publisher is
sending messages. Filters can be added to let subscribers further refine the
information that matches their registered interest, a highly efficient way to operate
in a many-many environment. Store-and-forward holds messages in situations
where variable levels of availability are likely, such as in operations that cross
many time zones. The information can be stored until the next step in the service is
open for business.

Although not absolutely essential for a solution to qualify as an ESB, JMS-based
messaging implementations are by far the most likely choice for this
communications bus. The benefit of choosing a standards-based approach has
already been discussed, and JMS functionality matches well to the ESB
communications requirements.

Basic connectivity
An ESB must quickly and easily enable new components to be attached to the bus
for use by any authorized services. That’s basic connectivity. Later, in section 4.5,
the breadth of connectivity is discussed but this section looks at only the basic level
of connectivity required for a product to be considered as a true ESB.

A commonly stated benefit of using an ESB as an integration tool is that it resolves
a problem created by the various application server vendors with their Web

Best-of-Breed ESBs  2003 Saint Consulting Limited

 12

services implementations. Web services covers a set of standards that
theoretically make it easy to call different application components in a standard
fashion to perform a well-defined service – very similar to part of an ESB’s
functionality. However, the application server vendors have tended to carry out
their Web services implementations with a distinctly inward focus. As a result, it is
likely that even though such a Web service is wrapped in standards, the different
implementations across the application server vendor community might not
interoperate readily—an expectation in the value proposition of Web services.

When an ESB is used, the differences can be handled and rendered effectively
transparent. Therefore, support for Web services as a form of connecting to
components is an essential requirement in any ESB, but even more so it is
important that ESBs can interoperate with any of the more common Web services
implementations.

Anyone that intends to build an integration solution will likely have a wide breadth
of connectivity needs to span all of the applications and environments that are in
use. Some of the earlier integration offerings such as message brokers have
invested large amounts of money in trying to offer as wide a spread of connectivity
options as possible. However an ESB is inherently positioned as a lighter-weight
and more affordable offering. An ESB would likely find it impractical to try to offer
connectivity to every possible application, package, database and environment.
Instead, given the general theme of standards utilized by ESB implementations, it
is much more important that an ESB should support whatever standard
approaches exist to connectivity. This leads to the need to offer J2EE Connector
services as part of any credible ESB offering.

The J2EE Connector Architecture provides a standardized way to integrate with a
particular application component. The reason why this is so important is that many
of the larger application package providers have realized that their customers need
to integrate their applications with others, and that currently they have to struggle
to do this spending considerable sums of money on complex integration products
and extensive (and expensive) external professional services. As a result, these
package providers are keen to take a more ‘open’ position in the market and
provide some form of standard connectivity to avoid this time-consuming and
expensive work. As a result, many of the key package vendors are implementing
J2EE Connector-based interfaces as well as web services interfaces to make their
packages more accessible in an integration scenario. So support for J2EE
Connector services is another key requirement of any ESB.

The question is where to draw the line between connectivity services that
absolutely have to be made available in order for an offering to qualify as an ESB,
and connectivity services which are valuable to have but which more fairly fit into
the category of best-of-breed differentiators rather than essential base functions.
Perhaps the only other connectivity requirement on the ‘must have’ list should be
the ability to interoperate with other messaging products, since it would hardly
make sense to introduce an ESB backbone that cannot interoperate across other
communications facilities. The objective has to be to allow information to be
exchanged seamlessly across the entire enterprise.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 13

Support for highly distributed deployments
An ESB has to support widely distribute deployments. This is where the service-
based SOA approach comes into its own—in a widely distributed solution, it is
imperative that services can be accessed in a standard way without the need to
understand the underlying technologies or global location. Intelligent routing is also
vital, since trying to continually refer back to a central hub holding the information
about the next step in the operation would bog down even a modest deployment.
Indeed, when there are a large number of nodes in an ESB deployment there may
be numerous possible paths to use in routing the information from one step to
another, with unavoidable performance implications if less efficient routes are
chosen. The combination of intelligent routing with the global location transparency
is an essential requirement in any large-scale worldwide deployment.

Manageability and associated deployment tools are tied to this characteristic
because a widely distributed environment makes it important to centralize
definitions and metrics to provide management views of an entire domain from one
or many global locations.

Manageability
Many software vendors provide smart technology to address technical problems
and challenges, but often these same vendors do not supply the operational tools
needed when actually running a production implementation of the product. This is a
particularly important issue for ESBs – the highly distributed nature of ESB-based
operations and the fundamentally asynchronous nature of ESB communications
both contribute to a high degree of management complexity that must be
addressed by any ESB.

This area tends to consist of three segments:
- Administration / Deployment
- Monitoring
- System actions

Because of the distributed nature of an ESB implementation, both within a
company and outward to its partners, administration and deployment are vital
issues for ESBs to address. Support is best provided on a ‘single point of control’
basis so that system definitions can be defined and maintained then distributed
across the full breadth of the ESB topology. If this is not the case then it becomes
almost impossible to use an ESB in anything but the simplest of circumstances.

While creating a deployment is one challenge, there is a distinct need for
definitions to be adjusted, added or replaced in a dynamic runtime environment.
This is even more of a challenge, since a particular set of definitions might be ‘in
use’ at the time a change is being made. Careful design must ensure that these
types of situations are handled effectively without compromising the integrity of the
system.

When the system is running in a production scenario, it is very important to be able
to monitor the system behavior and performance to ensure that the correct level of
service is being provided. Careful monitoring of system activity can help to identify
potential problems before they are manifested in overloads or failures. For

Best-of-Breed ESBs  2003 Saint Consulting Limited

 14

example, when a particular resource is in danger of being completely consumed
then as long as the operations staff are aware this situation is arising they may be
able to take corrective action before a failure occurs. This type of activity is very
familiar to mainframe users, who are used to having tools that watch over the
overall system performance and warn of emerging problems. In the case of an
ESB, the issue is wider than just a company’s own systems. System behavior
needs to be monitored across company boundaries to effectively maintain the
availability of the ESB-based business services, and this monitoring should be
capable of at least interoperating and sharing alerts with corporate management
frameworks. While specialty toolsets such as those offered by expert systems
management vendors provide the recording and visualization of metrics, an ESB
product under consideration must have the data collection and notification hooks in
place to allow this function to be added at a later date. A good indicator of this
potential is capturing of comprehensive system statistics, even if the data is
currently in the form of system reports. If an ESB is gathering these statistics then
the facilities are in place to allow this information to be gathered dynamically in a
live environment.

Once a problem or potential problem is identified, there is a need for functional
capabilities in the ESB to take action to resolve the problem or prevent its
continued manifestation of an emerging problem. These facilities are ideally
available from a central, single point of control to provide an overview of
extensively distributed resources. These tools could be more universally usable
through a Web-based interface to allow them to be used remotely, since it may be
necessary to have someone participate in the problem situation and take action
from systems that are not specifically set up to run management tools.
Functionality needs to cover the range of operational activities (such as starting
and stopping processes, re-routing operations and perhaps even re-booting
servers) as well as a set of problem-determination functions such as application
tracing and message editing. Without these tools and facilities, the ability to
manage the ESB would become observational, handling issues only after things
break.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 15

Key Characteristics: Fundamental ESB Services

• SOA implementation
• All-in-one package
• Support for standards
• Bus services

o XML support
o Transformation
o Intelligent routing
o Communications services

� Asynchronous
� Pub / Sub
� Store and Forward
� JMS-based

• Support for highly distributed
implementations

o Service-based approach
o Location transparency
o Technology transparency
o Intelligent routing
o Single point of control
o Deployment support

• Connectivity services

o Web services
o J2EE Connectors
o JMS
o WebSphere MQ

• Administration / Deployment
o Single point of control
o Dynamic change

• Monitoring
o Problem determination
o Problem prediction
o Internal and external support
o Support for enterprise

management frameworks
• System actions

o Single point of control
o Remote access capability
o Start / stop facilities
o Manual routing support
o Tracing
o Message editing

4.2 ROBUSTNESS
Providing the levels of integration possible when using an ESB can deliver huge
returns to a business. However, by its very nature, an ESB is involved across
widespread business activities, and therefore could represent significant business
risk. If all operations take advantage of the ESB to become more efficient and
effective, then any disruption in the ESB’s availability or level of service could have
serious implications. It is therefore extremely important that the chosen ESB is
highly robust. The more robust the ESB is, the lower the level of business risk
becomes.

So robustness is an essential best-of-breed characteristic for ESBs. But what does
this mean in practice? Robustness is often considered in two ways:
- Fault avoidance, ensuring problems do not happen
- Fault tolerance, ensuring that if and when problems do happen, they have

little or no impact on service

It is important to consider both these aspects of robustness. Obviously not having
problems at all is wonderful, but in reality problems are going to happen, if for no
other reason than human error. So it is necessary to be able to address problems
quickly and effectively, preferably without the end-user becoming aware that
anything is going wrong.

Fault avoidance
Perhaps the most obvious contribution to reducing the occurrence of problems is to
ensure that the quality of the software product has been thoroughly and vigorously
tested. Unfortunately this can be quite hard to judge when making an assessment,

Best-of-Breed ESBs  2003 Saint Consulting Limited

 16

generally only becoming apparent after some months of experience. However,
discussing a candidate vendor’s development process and testing procedures
provides an indication of code quality, and asking another user is even better. But
fortunately there are other factors that can be evaluated more easily and might give
additional indications of efforts taken by the vendor to reduce the occurrence of
problems.

One such factor is the use of standards. The EAI market (in which the ESB
concept fits) has seen a lot of standards introduced over recent years, such as
XML, JMS, J2EE Connectors and Web services (and their standards for SOAP,
UDDI, and WSDL), that cover a wide range of technical interface specifications.
Adoption of these standards within an ESB implementation will improve product
quality for two main reasons. Firstly, standards specifications are common and
therefore have already received a degree of validation in the marketplace, proving
that they work. Secondly, use of standards tends to reduce the amount and levels
of specialist skills required to implement an ESB, therefore once again reducing the
likelihood of introducing new problems through lack of understanding of a new or
exotic technical discipline.

This last point leads to another factor that should be assessed in evaluating the
area of fault avoidance - ease of use. This translates in business terms into the
level of skills required to develop, deploy and operate the ESB solution, and the
level of productivity of these resources. Having to hire skills from third parties
because the product is too complex for in-house staff to handle can cause major
problems in the future, because once the hired skills complete the project, in-house
staff might unwittingly cause a problem because of a lack of understanding of the
implementation. But if the ease of use of the ESB is good enough, existing staff—
with some training—can ensure that they are less likely to introduce errors in
project deployment or make operational errors once the project is in production.
The trick is to identify the skills required to develop and deploy solutions with the
ESB under consideration and then to review these skills against those that are
already available in-house.

Another key factor in fault avoidance is scalability. It is essential that growth in
usage of the ESB does not run into some issue constrained by the limits of the
ESB that brings the system down or prevents the ESB from functioning normally.

Fault tolerance
Even with the best fault avoidance plans, problems still occur. The way that an
ESB responds to problems is therefore of great concern. Problems should be able
to be isolated and resolved without impacting running systems. But that is not
always possible. So, a more realistic goal is to ensure that any problems that do
occur create the minimum possible impact on operations.

One aspect of fault tolerance of particular importance in an ESB solution is that of
intelligent routing. The basic feature of an ESB to choose the route for
information to flow intelligently means that it is possible for an ESB to offer the
ability to route around problems in the network wherever appropriate. For example,
if a network problem blocks a particular path between nodes, an ESB should try to
reroute information around the failure so that the target can still be reached. The

Best-of-Breed ESBs  2003 Saint Consulting Limited

 17

presence of this type of functionality or the lack of it can be a good indicator to how
well the ESB in question can deal with problems.

A common aspect of fault tolerance is redundancy. This is the concept that having
backup or spare components makes it possible to continue providing a service
even in the event of failure. This is just as applicable to ESBs as it is to any other
aspect of IT. However, this has a number of particular implications on an ESB.
ESBs must have some form of information storage, where they can record the
system definitions they require and information about the particular services that
are using the ESB. Without this information the ESB cannot function, and therefore
it is likely that a fault-tolerant ESB will offer some type of support for mirroring this
information in some way. Cluster support for the various High Availability (HA)
clustered servers adds further redundancy for critical nodes in the enterprise.

Another aspect of fault tolerance is the area of recovery. This refers to the
situation where, for whatever reason, an application or a system fails. At the
application level this generally requires some sort of rollback or checkpoint-based
recovery mechanism to be supported by the ESB.

For example a business service that consist of multiple components on multiple
platforms may have tied file updates in different locations that form a single logical
operation, called a single unit of work. If money is being transferred from one
account to another, for instance, then it either must be removed from one and
entered into the other, or left alone, unchanged. It must never be allowed to be
removed from one account and then fail to be entered into the other. The ESB will
therefore have to participate at some level in synchpoint management and unit-of-
work management to ensure that the system integrity is maintained. In addition it
may be necessary for compensatory transactions to be supported that can
correct out-of-step actions in the event of an unrecoverable failure.

This recovery issue is particularly complicated in the event that long-running
transactions are being carried out over the ESB. These are transactions that have
a long lifetime as opposed to the normal sub-second lifetime of an operation. A
problem resolution service for instance might need to be ‘in the system’ for a
matter of days while various activities are carried out as part of the service
operation. This means that state has to be maintained over this period in case
recovery is required, another issue for a best-of-breed ESB to handle.

Key Characteristic: Robustness

• Fault avoidance

o Vendor quality procedures
o Standards adoption
o Ease of use
o Scalability (see later)

• Fault tolerance

o Routing around failures
o Redundancy support

� Mirroring
� HA clusters

o Recovery
� Unit of work management
� Compensatory

transactions

Best-of-Breed ESBs  2003 Saint Consulting Limited

 18

4.3 SCALABILITY AND PERFORMANCE
Given that an ESB is likely to become an IT cornerstone of business operations, it
is of paramount importance that an ESB provide the optimal levels of scalability
and performance. A high level of performance is essential to ensure that newly
integrated and automated operations can be carried out effectively and efficiently,
despite the inevitable spikes in demand for particular services. Scalability, on the
other hand, is critical in ensuring that an ESB can deal not just with current projects
(likely in themselves to be highly distributed, probably across company boundaries)
but can also provide an extensible, adaptable platform for future growth.

Scalability is particularly important for any pervasive integration solution.
Experience has shown that once this type of integration backbone is in place,
perhaps for a relatively small number of projects, it often triggers a sudden surge in
new projects being added as different areas of business operations see the value
in the increased level of business integration. ESB traffic and overall usage is likely
to start to grow very rapidly as the benefits are proven, and the worst possible
scenario is for this to cause the ESB implementation to break down or be unable to
manage the volume of work. If this were to happen then it would cause major
setbacks to corporate integration strategy and plans, with serious repercussions on
bottom-line company performance and competitiveness.

Whenever a new layer of technology is provided in an IT solution there is a
legitimate concern about the additional overhead introduced. However, in the case
of an ESB, these concerns translate into how well the particular ESB
implementation has been designed. For example, asynchronous communications
mechanisms introduce the possibility of carrying pieces of a business operation in
parallel rather than serially as would be the case with synchronous
communications. If this is achieved effectively then it is likely that any overhead
introduced by the ESB will be more than adequately balanced by more efficient
business operations realized from multi-tasking.

However achieving multi-tasking and parallel processing of business operations
requires some sophisticated design and development work. If elements of a
business operation are occurring in parallel, it is important to keep track of the
status of these operational steps to maintain the integrity of the overall operation.
In addition there might be steps in an operation that must be done sequentially—
for example, not shipping goods in stock until the credit authorization has been
received. These factors must be addressed by the ESB to make these
performance advantages worthwhile.

Then there is the question of performance spikes. Most operations have a band of
tolerance for response time, beyond which customer satisfaction could be
compromised or competitive responsiveness lost. Unfortunately many businesses
have to struggle with heavy fluctuations in demand. Sometimes system resources
are overloaded by data volume spikes rather than traffic volume because some
operations require the transmission of very large amounts of data between
operational steps. Therefore any ESB implementation has to cope with these
situations while maintaining an acceptable level of performance and response time.
With load-balancing intelligence, ESBs can allow new threads and even new
servers to be employed automatically when required.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 19

Heavy volumes will almost certainly make some level of activity prioritisation
capability essential, and indeed varying classes of service are also likely to prove
useful. Another aspect of scalability that is often overlooked is that, as deployments
become more and more complex, it is no longer practical to shut down the ESB
temporarily while new components are added or changes are made to definitions.
Once changes have been validated and their quality has been assured, they need
to be deployed transparently without any disruption to ESB operations.

Key characteristic: Scalability and Performance

• Performance

o Asynchronous messaging
o Multi-threading
o Load balancing
o Large data handling
o Optimized path selection

• Scalability

o Prioritization services
o Classes of service
o Dynamic change support
o Transparent resource addition

4.4 SECURITY
With ESB integration projects spanning multiple departments and quite possibly
companies, and the likelihood that these projects are fundamental to business
performance, security is of major importance. There is a realistic instinctive fear
that improved connectivity means that sensitive information might now be
intercepted or mutilated by malicious lurkers. This is an issue that any best-of-
breed ESB must address.

Security concerns with integration projects center around three specific areas of
concern:
- Access to components or services
- Exposure of information as it passes from one component to another
- Control of system tools and facilities

The universal connectivity theme behind ESBs naturally causes concerns over
access to the components hooked into the ESB and the overall services offered
that flow across the ESB, particularly if these are being made available to external
companies. This makes it very important to be able to restrict usage only to those
who are authorized. There are a number of security technologies available in the
market that can be used to carry out this authorization task and to control access
based on the level of authority granted by the system, so it is only necessary to
ensure that the ESB supports the techniques that the particular user wants.
However there are one or two specific issues here that the ESB needs to address,
such as the question of a component’s authority to access another component as
opposed to a user’s authority.

Also, another feature worth considering is whether any form of non-repudiation is
provided as part of the access control capabilities. Non-repudiation is particularly
important in the financial industry, and refers to the ability to be able to prove that a
request really did come from an authenticated and authorized user. As an
illustration of this point, suppose a bank receives a request from an account holder
to transfer money to someone else. If that account holder were now to approach

Best-of-Breed ESBs  2003 Saint Consulting Limited

 20

the bank claiming that authorization for this transfer had never been given and
seeking recompense, it is important that the bank can show proof that it did indeed
receive a transfer request and that it indisputably originated from and was
authorized by the account holder.

The issue of exposure of information is a very sensitive one. The concerns here
are twofold – has anyone been able to see the information as it passed along the
connectivity pipe from one component to another, and has anyone been able to
alter it as it was transferred. To address the visibility of information, the most
common tactic is some form of encryption capability so that sensitive information
can be encrypted before transfer, and decrypted on receipt. However, an ESB
needs to ensure that the definition tools used to build the integrated service can
specify for any component whether encryption is required. The reason is that
encryption is expensive in performance terms, and hence it is preferable to encrypt
only the sensitive pieces of information rather than an approach where everything
is encrypted.

The concern over information integrity, whether threatened by malicious outside
activity or the possibility of some sort of transmission glitch, is addressed through
the provision of some sort of checksum-type mathematical algorithms that can
validate that the information received by a component is the same as the
information that was sent. This allows any integrity failure to be detected
immediately and recovery actions to be called.

The last area to consider in this section is the control of system tools and facilities.
This simply refers to the fact that since the ESB is of critical importance to business
operations, the ability to alter the system definitions or deploy new elements of a
business service is obviously highly dangerous and therefore needs to be policed
rigorously. This requires security protection on access to the system and
administration tools in addition to that provided for general ESB. It must be ensured
that only personnel with the required level of authorization and clearance can
change system definitions or use any operational tools other than purely passive
ones.

Key characteristic: Security

• Access control

o User authentication
o Component authorization
o Non-repudiation

• Information security

o Privacy (encryption)
o Integrity checking

• Tools usage
o Authorized users only

4.5 BREADTH OF CONNECTIVITY
Connectivity is an essential part of ESB functionality. Basic connectivity was
discussed in the section on fundamental ESB services. However, beyond these
basic requirements, the extent and breadth of connectivity options is a useful best-
of-breed differentiator in selecting the most suitable ESB offering.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 21

Firstly, connectivity to the major database brands is valuable. There are situations
where a component step in a business service flow involves running a stored
procedure within a database implementation, or perhaps just a set of database
operations. A connectivity mechanism to access the DBMS would be highly
beneficial in satisfying these needs.

Legacy systems are of great importance to any integration solution, due to the fact
that a lot of business value is currently contained within legacy operations and
components. Perhaps top of the list for these legacy components are leading
transaction processing environments such as CICS, IMS and Tuxedo. Any
company with an IBM mainframe is almost certainly using CICS or IMS to run a
major portion of its mission critical operations. Being able to leverage this value in
new ESB-based solutions would provide an extremely attractive return on existing
investments. Therefore a best-of-breed ESB characteristic is to offer connectivity
for some if not all of these key environments. IBM provides various types of
interfaces to help make this as easy as possible for CICS in particular, but the ESB
will need to provide functionality to access these interfaces.

Another area for differentiation in connectivity services is that of the other EAI
providers. Installations may already have considerable investment in the older,
proprietary forms of EAI such as message brokers. Although the benefits of an
ESB may well be convincing for new integration deployments, it is certain that
companies in this situation will need to have some form of handshaking
interoperability between the ESB and the existing implementation. This requires
specific ESB support.

Application Servers often drive Web services. However if a company has invested
heavily in a particular application server and is now interested in ESBs, some form
of more general interconnectivity support for application servers is valuable. It is
likely that many of the applications in this environment will not yet have been
converted into Web services, but it will still be important for the ESB to be able to
drive these components.

There may also be other ‘standard’ forms of communication interfaces that could
be listed within the best-of-breed connectivity requirements. COM and CORBA
based applications were quite popular in the late 1990s, and connectivity to these
is advantageous in many project implementations. Also there is the much more
interesting question of support for Microsoft’s .NET architecture. Connectivity to
this environment should almost certainly be a feature of any ESB best-of-breed
connectivity list.

Finally, many ESB implementations are likely to extend outwards through some
sort of Internet-based communications capability. This could be out to a portal or
perhaps to some other Internet-based form of service. This implies that a best-of-
breed ESB should also have direct connectivity to the more common Internet
services, supporting such interfaces as HTTP and even email and FTP services.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 22

Key characteristic: Breadth of Connectivity

• DBMS access
• Legacy systems

o CICS
o IMS
o Tuxedo

• Other EAI solutions
o Message brokers
o Message-oriented

middleware
o BPM solutions

• Application servers

o WebSphere
o WebLogic
o Others

• Other ‘standards’
o .NET
o COM / CORBA

• Internet facilities

4.6 DEVELOPMENT / DEPLOYMENT TOOLSET
Major benefits possible when utilizing an ESB include achieving integration aims
quickly, easily, cheaply and with less risk. The best of breed solutions will offer
tools and functionality in the areas of development and deployment to help achieve
these aims. For instance, most integration infrastructures require the use of exotic,
expensive skills that are often not available within the company. The intention
behind the packaged, standards-based ESB approach is to empower existing IT
staff to carry out the necessary integration work instead. This introduces a strong
requirement for easy-to-use development tools as well as functionality to assist in
the deployment of the newly-built integration solution components.
There are four important areas in the development and deployment toolset:
- Configuration
- Connectivity
- Incremental deployment
- Life-cycle management

Firstly, developers need tools to make the definitions required to support an ESB-
based integration solution as easily as possible. As business services are
assembled, it is necessary to define aspects like the linkage between the different
components, the rules that govern application flow, the transformation mapping
required, and the mechanism to be used to link to particular components. GUI-
based tools are generally the most productive for achieving these aims, supporting
such facilities as drag-and-drop, cut-and-paste and the use of templates. It is
important that these tools are as easy to understand as possible to support the
desire to utilize existing IT skills.

While connectivity has been discussed in its own section, there is one aspect of
connectivity that is absolutely vital to the success of an ESB-based project. Beyond
the many standard forms of connectivity supported, there is a need to tie in legacy
components that were produced long before such standard forms of connectivity
were introduced. For example, many companies still have huge numbers of
mainframe-based CICS applications that provide essential services to the
business, and these are certainly not going to be replaced or rewritten unless
absolutely necessary. In order for an ESB to deliver results quickly with the
minimum possible effort, it is therefore necessary for the ESB to be able to
accommodate chunks of legacy application code in the integration solution. Indeed,

Best-of-Breed ESBs  2003 Saint Consulting Limited

 23

the objective is to make the legacy code look to other components on the ESB as
though it were just another ESB component. The way this is achieved is by
providing ‘wrappering’ tools. The principle behind wrappering is that software is put
in place to surround the legacy component in such a way that from the outside the
legacy code looks and behaves like any other ESB component whereas from the
inside the legacy code is not aware that it is participating in an ESB solution at all.

Not only does wrappering reduce the cost and difficulty of integrating legacy
components, but it is also a major contributor to easing the task of migrating to an
ESB-based integration. It allows legacy components to be accessed quickly but
non-intrusively, allowing more permanent re-architecting of the wrappered
components in the future if required. This ‘incremental deployment’ approach is a
critical aspect of any best-of-breed ESB.

Apart from wrappering, the overall SOA approach, location and technology
transparency and manageability already discussed all contribute to achieving this
goal. By using this approach a company can avoid the business risk implications of
a revolutionary, ‘big bang’ approach to integration but can instead adopt a more
controlled and less risky evolutionary approach of staged deployment. In fact, one
of the great advantages of an ESB approach is that it offers this incremental
deployment capability while at the same time leading to a flexible infrastructure
capable of supporting enterprise-wide usage across all business operations.
The final area of tooling is life-cycle management. In highly distributed ESBs that
cross multiple locations and companies, great care must be taken when new
developments are introduced to the overall implementation.

For example it could be that a company’s quality of service practices require it to
validate new changes internally for a period of time before they are exposed to
partner usage. Therefore tooling that can manage this move through the various
different stages of development and deployment will be of value, particularly it is
quite likely that there will be a single repository for holding all system definitions
which introduces considerable scope for confusion in this case. There must be
clear demarcation lines between new definitions and components that are in the
development, testing, quality assurance or production phases, and these lines
must be enforced by software.

Key characteristic: Tooling

• Configuration

o ESB definition tools
o Flow control definitions
o GUI interface
o Ease of use

• Connectivity
o Wrappers

� CICS
� Other legacy

systems

• Incremental deployment

o Wrappers
o Location/technology transparency
o Service-based approach
o Manageability

• Life cycle support
o Development, Test, QA,

Production
o Integrity of phases
o Process for progression across

the phases

Best-of-Breed ESBs  2003 Saint Consulting Limited

 24

5.0 Summary
ESBs offer an excellent basis for integration, delivering a flexible and
adaptable environment that enables integration projects to be put in place
productively, effectively, and in a staged manner. They leverage many of
the developments made in integration technology over the last ten years,
packaging them in a standards-based and affordable way. As a result it is
likely that ESBs will be used extensively over the coming years, expanding
both in numbers of deployments and pervasiveness within the companies
adopting them.

It is therefore essential that the greatest possible care is taken in selecting
the most suitable ESB for both today and tomorrow. By reviewing the best-
of-breed ESB characteristics listed above, and the implications of those
characteristics on functionality, the prospective purchaser can reduce the
business risk associated with this decision and ensure a successful
implementation. Perhaps not all the desired functions are completely
satisfied today, yet if the basic architecture, design and implementation of
an ESB and its vendor profile fit the pattern of your business needs, then
you are ready to start developing and implementing an Enterprise Service
Bus in your business.

Best-of-Breed ESBs  2003 Saint Consulting Limited

 25

About Sonic Software Corporation
Sonic Software provides the first comprehensive business integration suite
built on an enterprise service bus (ESB). The Sonic product line delivers a
distributed, standards-based, cost-effective, easily managed infrastructure
that reliably integrates applications and orchestrates business processes
across the extended enterprise.

Sonic is the world's fastest growing integration and middleware company
and counts global leaders among over 500 customers in financial services,
energy, telecommunications and manufacturing. Sonic is an independent
operating company of Progress Software Corporation (Nasdaq: PRGS), a
$300 million software industry leader. Headquartered in Bedford, Mass.,
Sonic Software can be reached on the Web at www.sonicsoftware.com, or
by phone at +1-781-999-7000 or 1-866-GET-SONIC.

Best-of-Breed ESBs  2003 Saint Consulting Limited

	Executive Summary
	Introduction
	The Enterprise Service Bus (ESB)
	Core Characteristics of a Best-of-Breed ESB
	Fundamental ESB Characteristics
	
	
	Basic bus services
	Basic connectivity
	Support for highly distributed deployments
	Manageability

	Key Characteristics: Fundamental ESB Services

	Robustness
	
	
	Fault avoidance
	Fault tolerance

	Key Characteristic: Robustness

	Scalability and Performance
	
	
	
	
	Key characteristic: Scalability and Performance

	Security
	
	
	Key characteristic: Security

	Breadth of connectivity
	
	
	Key characteristic: Breadth of Connectivity

	Development / Deployment toolset
	
	
	Key characteristic: Tooling

	Summary
	
	About Sonic Software Corporation

