
High Availability Embedded
Messaging for ISVs

Improving the Availability, Reliability and Fault-Tolerance of

Packaged Applications and Hardware Devices

November 2006

Copyright ©2006. Progress Software Corporation.
All rights reserved.

WHITEPAPER

1Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

ITABLE OF CONTENTS

> 1. Introduction 3

> 2. The Business Need for Enterprise Messaging 5

> 3. Technical Enterprise Messaging Requirements 6

3.1 Java Message Service 7

3.2 Message Failures 7

> 4. Traditional Fault Tolerant Architectures 10

4.1 Hardware High Availability Architectures 10

4.2 Software High Availability Architectures 11

> 5. Sonic Continuous Availability Architecture™ 13

5.1 Broker Replication 13

5.2 Replication Connections 15

5.3 Continuously Available Client Connections 17

5.4 Message Reliability 18

5.5 Transaction Reliability 20

5.6 Flexible Deployment Solutions 20

5.7 Benefits for ISVs 21

> 6. Summary 22

2 Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

3

1. INTRODUCTION

The growing importance of conducting business 24x7 and the increasing need for real-time

operations are driving the demand for reliable and highly available packaged applications and

hardware devices. These systems consist of several tiers of servers, e.g. database server,

application server, web server and messaging server, each of which have particular availability

characteristics and represent possible points of failure. As packaged applications become more

loosely coupled and need to interoperate with other applications, message-oriented middleware

(MOM) is becoming a standard component. Additionally, MOM is being included on hardware

devices to improve reliability and fault-tolerance of software components. However, not all MOMs

are alike, especially when it comes to implementing high availability.

Increasingly, end-users of your applications are demanding continuous service availability with no

time for outages, whether planned or unexpected. Outages, poor performance, and scheduled

interruptions disrupt business operations, raise costs, and damage customer satisfaction. The costs

of outages can be seen in productivity losses both in the IT organization and the business units it

serves, lost revenue, and penalties, such as regulatory fines.

Typically, lost revenue represents the greatest financial exposure but can be the most difficult to

quantify. Certain industries are more dependent on the real-time operation of their enterprise

systems. The table below characterizes these costs for several different types of businesses.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

1. InternetWeek 4/3/2000 and “Fibre Channel: A Comprehensive Introduction”, R. Kembel, 2000, p.8, based on a survey by contingency
planning research.

The cost of an outage is the sum of:
Productivity of affected users = hourly cost of affected users x hours of disruption

+Lost IT productivity = hourly cost of affected staff x hours of lost productivity

+Impact to customer service and credibility

+Lost revenue = lost revenue per hour x hours of outage

+Other business losses incurred

Overtime payments = hourly wages x overtime hours

+ Wasted goods

+ Financial penalties or fines

Average costs of unplanned outages for U.S. industries1

Retail brokerages $6.45 million per hour

Credit card sales authorization $2.6 million per hour

Infomercial/800-number promotion $199,500 per hour

Catalog sales center $90,000 per hour

Airline reservations $89,500 per hour

ATM services providers $14,500 per hour

4

In addition, when system outages are unexpected, user impact is significantly more severe than a

planned outage. “Human factors gurus noticed that response time delays to user inquiries of more

than 2 seconds broke the inquirer’s concentration, requiring a mental reset with lost productivity

measured in minutes. System downtime longer than about 20 minutes was actually reflected in

users’ changing their task at hand, disrupting processes and yielding effective outages measured

in hours when seen from the user’s perspective.”2

Finally, system outages can damage not only the reputation of the end-user but also the vendor

that supplied the application, exposing both to customer defection and ongoing legal risks such as

lawsuits and regulatory penalties.

To differentiate your offering, maximize revenue, and address customer demands, ISVs need to

architect high availability into their applications. This paper discusses the benefits of including

messaging middleware in your application, the problems associated with current approaches to

fault-tolerant enterprise messaging solutions and introduces a new and superior paradigm for

companies to improve operational availability, the Sonic Continuous Availability Architecture ™.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

2. Forrester Research: March 15, 2004 “An Executive Guide To High Availability” by Bob Zimmerman

5

2. THE BUSINESS NEED FOR ENTERPRISE MESSAGING

The importance of enterprise messaging infrastructure to an application and device grows as

companies seek to improve operational productivity. Even during scheduled systems downtime, it

is necessary that other systems, departments, business units, and partners can continue working.

The need to connect to systems outside the firewall and to transfer mission-critical data has made

it critical to support a reliable, available, and secure exchange of information. Furthermore, in the

event of a system crash, it is extremely important that there is no loss of data.

As an ISV or hardware vendor you recognize that you have a choice of building or buying

components for your system. The three main options for message-oriented middleware (MOM) are:

the application server MOM, an independent MOM, or open source MOM. To determine the right

choice for your system, there are several factors to consider, such as:

> How easy is the product to embed into the application or device?

> How easy will it be for an end-user to install, configure and manage?

> Does the embedded middleware support current and future initiatives, such as multi-platforms,
open standards, and multiple connectivity options?

> Will it scale as my business and end-user’s business grows?

> Will the product increase the availability and reliability of my offering?

> Does the product fit my business model?

> Can I bet my business on this technology and the vendor I select?

Each of these factors is important in their own right, but which one is the most important? A

recent survey of over 100 ISVs and hardware vendors regarding the most important factor when

selecting embedded middleware for their application showed:

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

What is THE most important factor when selecting embedded middleware

6

As high availability and reliability equal 57%, one can conclude that if an application does not

consistently deliver expected results, that the other factors are less important – or failure is not

an option. But what are some of the typical use cases for high availability embedded messaging?

Some of the more common scenarios include:

> Medical equipment companies who require 99.999% availability of their device.

> Financial ISVs whose end-users require no downtime, zero lost trades and in-order messaging

> Communications hardware providers who need highly available and reliable messaging for
their Session-Initiated Protocol (SIP) applications, so push-to-talk messages are delivered

> Government system integrators providing mission-critical applications to the armed forces

The rest of this paper presents the technical details of high availability messaging solutions.

3 TECHNICAL ENTERPRISE MESSAGING REQUIREMENTS

To address the business challenges mentioned in the previous section, most companies have

implemented an IT infrastructure based on a RPC (remote procedure call) type of messaging

system. RPC based systems, such as those provided by application servers have become popular.

RPC messaging evolved during the 1990’s into CORBA, COM/DCOM, and RMI. Unfortunately,

these systems are very brittle, as applications are tightly coupled with synchronous

communications. They employ point-to-point connections, and lack a common interface.

An RPC type messaging system requires that enterprise client applications be developed along

very constrained guidelines. The synchronous nature of the system requires that all systems and

applications be available when they are needed. Each client application requires an intimate

knowledge of the API’s associated with other applications. As applications change or new ones

are integrated into the system, the number of interfaces required grows exponentially. While

connecting a limited number of applications together using this approach may be reasonable, a

larger heterogeneous environment could suffer from these tightly-coupled synchronous

interactions.

In the 1990’s, message-oriented middleware (MOM) systems evolved as a more scalable approach

consisting of a loosely-coupled, asynchronous architecture. A MOM-based system manages

functions such as guaranteed delivery of messages and error handling through a standardized

messaging interface. Since applications can communicate asynchronously with one another,

there is no requirement that all systems be running in order to maintain the health of the

application network. Overall, MOM represents a significant improvement over the RPC model of

communication as there are fewer network connections, increased flexibility in deployments (less

brittleness), and less coding required to support configuration changes.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

7

3.1 Java Message Service

In 1998, Sun Microsystems released the Java Message Service (JMS). The JMS API, developed by

Sun in close cooperation with leading enterprise messaging vendors, combined key elements of

RPC and MOM. Enterprise messaging is now recognized as an essential tool for building enterprise

client applications. Detailed information regarding JMS may be found at:

http://java.sun.com/products/jms/.

In 1998, Progress Software developed an enterprise messaging product, SonicMQ®, based on JMS

that is acknowledged as the industry’s most robust and resilient standards-based enterprise

messaging system . Information regarding SonicMQ can be found at:

http://www.progress.com/sonic

Enterprise messaging and JMS in particular provides a reliable, flexible service for the

asynchronous exchange of critical business data and events in an application and throughout an

enterprise. JMS enables client applications to communicate with each other using a well defined

and loosely coupled messaging protocol. The JMS API adds to this a common API and provider

framework that enables the development of portable, secure and reliable message based

applications.

Many enterprise client applications cannot tolerate dropped or duplicated messages. It is critical

for many JMS applications to ensure delivery of a message once and only once. This level of

message service delivery is referred to as exactly once message reliability.

JMS defines several message reliability mechanisms. The most reliable way to produce a message

is to send the message as a persistent message within a transaction. The most reliable way to

consume a message is to receive the message from a queue or durable subscription within a

transaction.

3.2 Message Failures

In normal operations, JMS provides exactly once message reliability. However, none of the JMS

reliability mechanisms can provide exactly once reliability in the event of hardware, networking or

operating system failure. There are four classes of message failures that can occur which have a

critical impact on business operations.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

8

1. Trapped messages

After system failure, messages are lost in the failed messaging system and never

received by the client application.

2. Duplicate messages

After system failure, messages are left in an unknown state. Upon failover, this may

result in duplicate messages being sent by either the client application or the

messaging broker, e.g. a financial service debit order is sent twice.

3. Out-of-order messages

After system failure, message delivery and transit is left in an in doubt state. Upon

restart, this can result in out-of-order messages being received by the client application,

e.g. a “Cancel” or “Update” order is received before the initial order.

4. Broken transactions

After system failure, transactions are left in an incomplete state. Upon restart, the

broken transactional messages must be rolled back and discarded.

These failures can cause a significant delay in the completion of operational business processes.

In all cases, a “forensic” team is required to intervene and reconstruct the message state. This

involves the rollback of transactional messages, recovery of trapped messages, identification and

elimination of duplicate messages and the reconstruction of out-of-order messages. If this

reconstruction of the message state is not completed, then enterprise client applications will

receive corrupted message streams resulting in incomplete or inaccurate transactions.

In order for an enterprise messaging system to provide exactly once message reliability in the

face of hardware, network or system failures, IT must provide system redundancy. This

redundancy is provided through a primary and secondary (backup) broker pair, which must support

the following fault tolerant requirements:

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

9

1. Full-state recovery:

In the event of a system failure, the secondary broker must be able to assume the role of

its failed primary partner. The secondary broker must gracefully recover the full message

state prior to the failure.

2. Hot-failover:

In the event of a system failure, the secondary broker must transition to an active state

with minimum failover latency. Minimum latency ensures that client application buffers

will not overflow or applications fail.

3. Client Failure Transparency:

In the event of a system failure, enterprise applications must transparently failover to the

secondary messaging broker. The enterprise application connection to the message

system stays warm until the transition to the secondary broker is complete.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

10

4 TRADITIONAL FAULT TOLERANT ARCHITECTURES

When a message travels from a client to a destination, it may traverse many networks, systems,

and applications. Higher levels of availability can be achieved by hardening the various

components, such as clients, middleware, and databases. Fault tolerance for the messaging

infrastructure has traditionally been based on combining two or more servers which are tightly

coupled and centrally managed. The servers are configured to provide an enterprise client

application with a secondary server in the event of any system failure. This is referred to as

“failing over” from one server to another.

A high-availability/fault tolerant system appears to users and applications as a single

environment. In addition to providing increased application availability, clustering technology can

also be used to increase system capacity and provide administrative efficiency.

High availability (HA) solutions have been available since the 1980s when used in DEC’s VMS

systems. IBM’s sysplex is an HA approach for a mainframe system. Microsoft, Sun Microsystems,

and other leading hardware and software companies offer HA packages that are said to offer

scalability as well as availability. As traffic or availability assurance increases, all or some parts

of the system can be increased in size or number.

High availability architectures ensure that an operating system crash does not cause a lengthy

application outage, and it provides an environment that supports online maintenance and

upgrading of the individual computer systems that compose the system. High availability can be

implemented through both hardware solutions and software solutions.

4.1 Hardware High Availability Architectures

Hardware high availability (vertical scaling) is a hardware-based method in which a group of

servers act like a single system. In common practice, this architecture is created by installing a

number of blade servers on the machine that will control the system. Each of the blade servers

functions independently of the others, although they all respond to the same requests. The

operating system of the controlling server is responsible for monitoring the system and performing

administrative tasks, such as deciding when failover is necessary and assigning the load of a

failed node to a functioning server.

Hardware high availability architectures may be active-passive, in which case some redundant

servers are reserved for failover duty and do not run any applications of their own. It can also be

active-active, in which case all servers run their own applications but also reserve resources to

allow them to perform failover duty for each other. Hardware fault tolerance involves the

purchase and configuration of expensive specialized hardware; therefore, it is used predominantly

in high-end enterprise systems.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

11

4.2 Software High Availability Architectures

Software high availability (horizontal scaling) is a method of turning multiple servers into a fault

tolerant solution. Operating system clustering software is installed on each of the servers in the

system, and typically the primary and secondary servers have mirrored applications. Each of the

servers maintains the same information and collectively they perform administrative tasks such as

load balancing, determining node failures, and assigning failover duty.

Because servers can easily be added or removed from the cluster as needs dictate, software fault

tolerance is a scalable solution. However, the typical software fault tolerance architecture (Figure

1) for enterprise messaging does require the use of a shared database to maintain current and

complete message state information. Two messaging servers (primary and secondary) designate

this messaging database at a network accessible location. Only the primary server will have

read/write access until failure. A RAID array database system is used to ensure that the database

doesn’t expose a single point of failure.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

HARDWARE CLUSTER

CLIENT CLIENT

Shared Storage
(RAID)

Figure 1. This diagram shows
a traditional fault tolerant
solution. Upon failure of the
primary server, the secondary
(backup) server starts up and
begins the recovery process
from shared storage.
Messaging problems may arise
such as trapped messages on
the failed server, duplicate
messages sent and received,
out-of-order messages and
broken transactions

12

In the event of a primary server failure, the third-party system will initiate a fail-over process to

the secondary server. The secondary server begins reading message state information from the

shared database and initializing internal logs and files. This failover process may take several

minutes or longer. The fault tolerance system also notifies enterprise applications of the failure

and provides re-connection information. The client applications connect to the secondary server

and complete the recovery process.

Despite this complex process, the failover and re-initialization process still does not provide

exactly once message reliability. Enterprise client applications may still encounter trapped,

duplicated, out-of-order and broken transactional messages. All four messaging failure classes

can impact the operational system.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

13

5 SONIC CONTINUOUS AVAILABILITY ARCHITECTURE™

Sonic has a unique messaging architecture, the patent-pending Sonic Continuous Availability

Architecture (CAA). Superior to traditional high availability solutions provided by current enterprise

messaging vendors, Sonic CAA provides users with significant benefits of higher levels of

operational availability as well as reduced development, deployment and administration costs.

Sonic CAA provides high availability for the messaging layer, including the Sonic message brokers,

Sonic clients and the communications among clients, brokers, and destinations, guaranteeing

exactly once message reliability under both normal and failure conditions. Sonic CAA eliminates

the requirement for expensive RAID, OS clustering software or third-party HA frameworks in the

messaging layer. No matter how complex, in-process transactions continue to their destinations

without any costly roll back or recovery time.

Sonic CAA (Figure 2) is based on primary/secondary broker replication through backchannel

synchronization and fault tolerant client connections. This architecture supports the extended

business enterprise in a way not possible until now, and fully complements existing high

availability solutions, such as those for the database, application server, and web server.

5.1 Broker Replication

The central concept of Sonic CAA is backchannel broker replication. The primary broker provides

message services to enterprise client applications. Concurrently, the primary broker uses a backend

replication channel to stream messaging state to a secondary broker. This replication channel is

supported on a private network dedicated to the synchronization of the broker state and messaging

data. The primary/secondary broker pair uses the replication channel to routinely seek the

heartbeat of the other and watch for any interruption in the data flow or connection. The

secondary broker accepts no client connections while in its hot standby role, but is prepared to

immediately transition to the active role should the primary broker become unavailable.

In the event of a system failure, the secondary broker assumes the active role. All client

applications failover from the primary broker and reconnect to the designated secondary backup

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

CLIENTS

Real-time
replication

Figure 2. This diagram
illustrates the Sonic CAA
architecture, which provides
real-time replication between
primary and secondary servers
without the risk of trapped,
duplicate, out-of-order
messages or broken
transactions.

14

broker. This hot-failover process is immediate and transparent to the client applications. The

secondary broker in the active role is sensitive to re-establishment of the replication channel. This

reconnection may come from a recovery of the primary broker or from a replacement primary

broker. Once reconnected, the brokers actively replicate to achieve synchronization at which point

the primary broker is again prepared to resume the active state.

State Diagram

The behavior of the broker is determined by the broker’s replication state. A state diagram (Figure 3)

serves to illustrate the roles, states and events associated with the fault tolerant broker pair.

The broker states are grouped into two main roles, the active role and the standby role. A broker

in the active role is providing messaging services to enterprise application clients. The broker in

the standby role absorbs replicated state information and is continuously prepared for a hot-

failover.

Upon startup, a broker enters the WAITING state and does not accept client connections. A

broker will change state if one of the three events occurs:

> A broker in the waiting state may transition directly to STANDALONE state in response to
administrative intervention, or if it is configured to do so.

> If a replication connection is established, and the other broker is in the STANDALONE state,
the broker will transition to the STANDBY SYNC state and begin runtime synchronization.

> If a replication connection is established, and the other broker is also in the WAITING state,
the brokers choose roles based on their previous role, synchronization state and
administratively defined preferences.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

Figure 3. State diagram
showing roles, states, and
events of fault tolerant broker
pair

15

A primary broker is in the STANDALONE state if it is actively servicing client and cluster

operations but no secondary broker is running. While in this state, if a replication connection is

established, and the other broker is in the WAITING state, the primary broker will transition to the

ACTIVE SYNC state.

In the ACTIVE SYNC state the broker is synchronizing state with the standby broker while at the

same time serving client applications. Completion of the runtime synchronization protocol causes a

transition to the ACTIVE state.

Once the primary broker has completed synchronization, it transitions to an ACTIVE state and

begins actively streaming messaging state and messaging data to its corresponding secondary

broker which is currently in the STANDBY state. At this point if there is a failure of the primary

broker, the secondary broker will immediately transition to the STANDALONE state.

When a secondary broker enters the STANDBY SYNC state it dynamically synchronizes its state

with the active broker that is in the ACTIVE SYNC state while absorbing the live replication

stream. Completion of the runtime synchronization protocol causes a transition to the STANDBY

state

Once the secondary broker is in the STANDBY state it absorbs the live messaging state and data

from the primary broker that enables it to immediately assume a STANDALONE role if a failure of

the primary is detected. The transition from STANDBY to STANDALONE transition is referred to

as broker failover.

5.2 Replication Connections

Sonic CAA has been implemented using a unique replication protocol that supports dynamic

synchronization and live state streaming between a fault-tolerant broker pair. Sonic CAA supports

and encourages the use of multiple replication connections in order to provide redundant network

support between the primary and secondary brokers. Only one connection is used to handle

replication traffic at any time, but in the event of a connection failure the broker pair will

automatically switch to the next replication connection without interrupting the replication

process.

Multiple replication connections (Figure 4) increase the resiliency of the fault-tolerant broker pair.

If all replication connections fail, it is assumed that the primary broker has failed and the

secondary broker will transition to an active role. This redundancy is important because under no

circumstances should the primary and secondary broker go into active state concurrently—a

condition referred to as a dual active partition.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

16

Each replication connection is assigned a weight that is used to determine its precedence in

handling replication traffic. Replication connections with a weight of 0 will not handle replication

traffic and will only used for heartbeating to avoid false partitions. Typically a 0 weight

connection would be created on the public network to protect against a failure of the private

network causing a partition.

If a replication connection fails and there is a lower weight replication connection available,

replication will continue, uninterrupted, on that connection. If the higher weight connection is re-

established, replication traffic will be resumed on that connection, giving administrators flexibility

on choosing the highest bandwidth network path for replication traffic.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

Private Network

Public Network

SonicMQ
Client

SonicMQ
Client

SonicMQ
Client

SonicMQ
Client

Primary
Broker

Secondary
Broker

Figure 4. Multiple replication
connections provide continuous
availability of network communications

17

5.3 Continuously Available Client Connections

Sonic Continuous Availability Architecture provides resilient connections for enterprise client

applications. A standard JMS connection is immediately dropped when the broker or network

fails. The dropped connection forces the client application to explicitly deal with this external

event.

Under the covers, a fault-tolerant connection will attempt to immediately reconnect when it

encounters a broker or network failure. The client reconnection protocol responds in several

different ways depending on how the broker is configured and the nature of the failure.

> If the network experiences a transient failure, the fault-tolerant connection will repeatedly try
to recover the connection until the network returns to a normal state.

> If the client application has redundant network pathways to the broker and one pathway should
fail, the fault-tolerant connection will use the other pathways to resume the connection.

> If the client application is connected to a secondary broker that fails, the fault tolerant
connection will repeatedly try to reconnect to the broker, until it is recovered and restarted.

> If the client application is connected to a fault-tolerant broker pair and the primary broker fails,
the fault-tolerant connection will immediately connect to the secondary broker.

When the client application successfully reconnects, it immediately executes several state and

synchronization protocol exchanges, allowing it to resynchronize client and broker state and

resolve in-doubt messages. While the connection successfully resynchronizes client and broker

state the client applications continue operations.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

Client
Application

Subscribe
Figure 5. Fault tolerant client connections

18

5.4 Message Reliability

Sonic CAA provides different levels of message reliability for client applications connected to a

message broker. These qualities of service describe the number of messages a client application

will receive in the event of a system failure. These three service levels include: “at most once”

(AMO), “at least once” (ALO) and “exactly once” (EO). These service levels are controlled by the

client applications. The table below provides a mapping of these message service levels.

> Applications may choose to use publish-subscribe or point-to-point messaging.

> Client applications producing messages may be persistent or non-persistent.

> Client applications consuming messages may select durable or non-durable subscriptions.

> Client applications may connect to a fault-tolerant broker pair.

> Client applications may select standard or fault-tolerant connections.

This table shows that when both the producer and consumer client applications use standard

connections, the messages will be received at most once, except for persistent/durable

messages. In the case of persistent/durable messages, the message will be received at least

once, but with possible duplication. Therefore, a message can not be guaranteed to be received

exactly once when using standard connection.

In the case of producer and consumer client applications which use a combination of standard

and fault tolerant connections, the quality of message reliability only slightly improves. Three

special cases exist:

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

Message Reliability

Message Producer Message Consumer
Connection Delivery
Type Mode Standard Connection Fault Tolerant Connection

Topic Topic (Durable Topic Topic (Durable
Subscription) Subscription)
or Queue or Queue

At most once1 At most once1 At most once1 At most once1

At most once2 At least once1, 2 At most once1 Exactly once1

At most once1 At most once1 At most once1 At most once1

At most once At most once At most once At most once

At most once3 At least once2 At most once Exactly once

At most once At most once At most once At most once

DISCARDABLE

PERSISTENT

NON_PERSISTENT

DISCARDABLE

PERSISTENT

NON_PERSISTENT

Standard
Connection

Fault-Tolerant
Connection

19

> 1. In the case of a standard connection failure, if the last message sent was in doubt, the
producer client application may attempt to resend the message. This causes the generation
of a duplicate message if the broker had received the original message. According to JMS
Specification, this is not a redelivery since the message was delivered from a new session.
This ambiguity is resolved with a fault-tolerant condition: PERSISTENT messages are exactly-
once; DISCARDABLE and NON_PERSISTENT messages are dropped in a failure.

> 2. In the case of a standard connection failure, the acknowledgement for the last message may
be lost. In this case the broker will redeliver the message in accordance with the JMS
Specification.

> 3. If a consumer client application reconnects using a standard connection at the same time a
fault-tolerant producer is reconnecting, it is possible that the producer will resend a message
that had been delivered to the previously connected client. According to the JMS
Specification, this is not a redelivery since the message was delivered to a new session.

Exactly once message delivery can only be guaranteed when both the producer and consumer are

using fault-tolerant connections and messages are sent as persistent/durable.

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

20

5.5 Transaction Reliability

Sonic CAA also adds an additional layer of reliability to transactional messaging. In the absence

of fault tolerance, a client application must be able to handle the ambiguity associated with a

failure during a transaction commit. If the broker or connection fails, the result of the commit

operation is in doubt; it is unclear to the application if the transaction was committed or not.

This ambiguity is lifted for a client that is using a fault-tolerant connection. During reconnect this

ambiguity is transparently resolved and the commit succeeds. Sonic CAA also presents a great

advantage to clients that experience a failure part way through a transaction since the transaction

can continue uninterrupted after a failure. For a non-fault tolerant client all work that had been

done up to the point of failure would have been rolled back, and the transaction would need to be

restarted.

5.6 Flexible Deployment Solutions

Sonic Continuous Availability Architecture adds high availability and resilience to the messaging

infrastructure. To provide continuous availability in large scale and diverse deployments, fault-

tolerant broker pairs can be configured across heterogeneous hardware platforms. It is not a

requirement to have identical hardware for primary and secondary servers. In addition, no special

clustering or high-availability software management software is required. This flexibility enables

fault-tolerant broker pairs to be configured to increase the utilization of computer resources. The

three machine configuration shown in Figure 6, hosts three fault-tolerant broker pairs providing a

robust and powerful enterprise messaging system.

In addition, with Sonic’s advanced clustering and Dynamic Routing Architecture® capabilities, high

availability can be extended across the enterprise providing continuous availability to remote

locations and business partners. (Figure 7)

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

CLIENT

Figure 6. More efficient
resource utilization and higher
cluster performance is achieved
by distributing fault-tolerant
broker pairs across machines

21

5.7 Benefits for ISVs

For the ISV, this means that high availability messaging becomes an embedded component of your

application. You and your customers no longer need to build a complex set of add-on fault tolerant

solutions. With improved levels of availability, not only do you have a significant product

differentiator, but your customer satisfaction will increase.

REGIONAL OFFICE

PARTNER

Business
Application

Business
Application

Business
Application

Business
Application

Business
Application

Business
Application

Business
Application

REGIONAL OFFICE

HEAD OFFICE

Business
Application

Business
Application

Business
Application

P S

Broker Cluster

P S P S

P S

P S Cluster

Figure 7. This diagram illustrates the highly
available, secure and reliable extension of the
messaging backbone to remote offices and
business partners

Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

22

6 SUMMARY

Increasingly, your customers are demanding continuous availability with no time for outages,

whether planned or unexpected. To differentiate your offering, maximize revenue, and increase

customer satisfaction, ISVs need to architect high availability into their applications.

Sonic raises the bar for high availability and fault-tolerant messaging, reducing operational risk as

well as the development time and administration complexity of high availability solutions. The

patent-pending Sonic Continuous Availability Architecture (CAA) addresses the problems caused

by messaging system failure, so packaged applications and hardware devices continue to operate.

Sonic CAA provides high availability for Sonic message brokers, Sonic clients and the

communications among clients, brokers, and destinations, thereby eliminating the requirement for

expensive RAID, OS clustering software or third-party HA frameworks in the messaging layer. No

matter how complex, in-process transactions continue to their destinations without any costly roll

back or recovery time.

“The potential impact of system downtime in our messaging infrastructure is simply enormous,

with almost all of our trades valued in millions of dollars. The high availability solutions that are

out there fall short because even when the brokers come back online, in-flight trades may be lost.

Sonic solves this problem,” said John Brann, chief architect at FXall, the leading foreign exchange

trading portal. “Configuration was exceptionally easy with Sonic. We literally had our first

successful tests completed in less than a day.”

For more information on how you can improve the availability of your messaging architecture, or

to download an evaluation copy of Sonic products visit http://www.progress.com/sonic .

About Sonic and Progress Software

Sonic™ products from Progress Software help IT organizations achieve broad-scale interoperability

of IT systems and the flexibility to adapt these systems to rapidly changing business needs. The

Sonic products include SonicMQ®, the industry's only continuously available JMS enterprise

messaging system, and Sonic ESB®, the world's first and market-share leading ESB. Sonic

products simplify the integration and flexible reuse of diverse and often proprietary business

systems by manipulating them as modular, standards-based services which can be rapidly

combined to serve the business in new ways.

Progress Software Corporation (Nasdaq: PRGS) provides application infrastructure software for

the development, deployment, integration and management of business applications. Our goal is

to maximize the benefits of information technology while minimizing its complexity and total cost

of ownership. Progress can be reached at www.progress.com or +1-781-280-4000.

Copyright ©2006. Progress Software Corporation. All rights reserved.HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

23Copyright ©2006. Progress Software Corporation. All rights reserved. HIGH AVAILABILITY EMBEDDED MESSAGING FOR ISVs

