
CompuwareCorporation

.NET interop and performance analysisW H I T E P A P E R

Calling native code from your .NET application has performance

implications. Use the right method to call your native code and

be ready to measure its performance when you do.

With Microsoft’s introduction of the .NET platform and languages, including

its bias toward distributed application components, performance analysis

and performance tuning have become substantially more important for

today’s development efforts. Individual assemblies and web services that

seem to offer adequate performance when unit tested perform unacceptably

when integrated as a single application.

One of the biggest, yet largely unexplored, areas of .NET performance

concerns the so-called interop—the interoperation of managed and

unmanaged code in the same application. In most cases, this involves new

.NET code calling native code components. However, it’s also possible for

native applications to call .NET components, although by its nature this is

likely to be much less popular.

At this point, many developers don’t understand the performance implications
of interop. Moreover, developers aren’t necessarily even cognizant of when
their applications perform interop, and what they can do to resolve problems
with it. In some cases, interop is performed by the .NET Framework and most
developers think it can’t be helped. For example, Figure 1 shows the negative
performance implications of a line of code that calls into native code
indirectly through its children.

In general, there are three reasons why you might want to call unmanaged
code from a .NET application. The first is that you have no choice in the
matter. You have a third-party control or component, and a .NET equivalent
isn’t available. So, you don’t have source code and you still have to use the
component even though the rest of your application is now running as
managed code.

Second, you might call unmanaged components because you have working
code that you haven’t yet ported into a managed language. In fact, you may
not even have any plans to port some code. For instance, you may have
invested a large amount of effort in COM components or legacy code that
encapsulate unchanging business logic, and it adds no value to rewrite the
code at this time. So you continue to use the same unmanaged code even
though the rest of the application is new.

The third reason for calling unmanaged components is that no way can
be found within the .NET Framework to do what the application needs.
In this case, you might have to make a call directly to the Windows platform
or to other third-party libraries, to get the type of event or resource you’re
looking for.
2

Figure 1. One of the most
computationally expensive

lines of code is one that calls
native code components.

The problem with mixing managed and unmanaged code in a single
application is that the unmanaged or native code isn’t recognized in the
.NET environment. Managed code components not only depend on the
classes available in the .NET Framework, but they also expect the other
components with which they interact to depend on that framework as well.

Nonetheless, you’ve made the decision to call a native component or code
from your .NET application. Before you do so, you have to be cognizant of
what it involves and what the performance implications can be. All but the
most trivial calls into native code must undergo a mode transition. This is the
physical process of moving data between the managed and unmanaged modes
of operation, typically requiring about two dozen instructions. The second cost
is marshalling the data to move across the boundary. Marshalling is necessary
because the internal representation of data structures is different between
managed and unmanaged code. To pass data across the boundary, you have
to change the data from the .NET representation to the native one, and then
back again.

Now here’s the rub. Marshalling is computationally expensive, and the more
data you move back and forth, the more expensive it becomes. Marshalling
data structures one way can add as much as 3,000 instructions to your
processing time for complex data.

There are five ways to transition code from managed to unmanaged. These
ways can be grouped into two categories: COM-based and traditional DLLs.
Traditional DLLs have three ways to be hooked into a managed program. One,
an internal call, is a mechanism that is limited to small bits of unmanaged code,
typically under 100 instructions. With this method no mode transition occurs
and no marshalling is allowed, and only the default data structure translators
will be used. This is similar to inline assembly code in a C program. In effect,
this code is linked into the managed executable and executed as managed
code.

Second, is the IJW (It Just Works) method. This method statically links the
called library into the managed executable. A mode transition occurs but no
marshalling is allowed. The Visual C++ compiler does all the work, so there’s
nothing that needs to be done on your part. Note that you can’t pass more
than the simplest data across the boundary.

Third, is the Platform Invoke (P/Invoke) method, which is by far the
most popular way of mixing managed and unmanaged code into a .NET
application. This method consists of a mode transition and data marshalling,
so you have a lot more flexibility in what you call and what data you pass.

3

The advantages and perils of COM interop

The latter category of transitions focuses on COM access. These transitions
make a lot of sense from a practical standpoint. Microsoft is encouraging
Windows developers to start building new applications in Visual Studio .NET,
yet you’re not going to throw away perfectly good code in your existing
applications to do so. In some cases, you may be able to migrate your code
to one or more .NET languages along with the rest of the application. In
many cases, however, what you’re going to do is take the existing logic, often
encapsulated in COM/COM+ components, and use it “as is” with the new
Microsoft .NET code.

Microsoft makes this possible, but with the risk of introducing an entirely new
class of potential performance issues into your applications. Finding and fixing
these errors is crucial because errors in your native code can have a subtle, yet
significant, impact on the managed code in your application. These errors are
entirely unlike those you are likely to encounter working within the .NET
Framework, and they are largely undetectable with the new and emerging
.NET development tools from Microsoft and others.

There are two mechanisms that you can potentially use to call COM
objects from .NET code. Both of these mechanisms work in the same way,
so depending on which one you use, you can determine what .NET language
you’re working in and whether or not the COM component is being shared
among multiple applications.

The way out of this dilemma is to use a piece of code that acts as a proxy to
the unmanaged COM component. The type of proxy used in calling
unmanaged code from managed code is known as a Runtime Callable
Wrapper (RCW). This wrapper is needed to work with COM-type libraries,
which contain metadata describing the public interface to COM components.
The job of an RCW is to convert the existing COM metadata to .NET
metadata, which is readable by managed application components.

There are two ways to convert COM component metadata into a form usable
by .NET. One tool for performing this conversion is called tlbimp, which is
part of the .NET Framework Software Developer Kit (SDK). Tlbimp reads the
metadata from a COM type library and creates a CLR assembly incorporating
the metadata for calling the COM component.

The second approach is to call the COM component directly. This option is
available only when calling from Visual Basic .NET code. For a Visual Basic
.NET project, all you have to do is add the COM component from the Add
Reference menu selection, which will automatically create the RCWs for the
selected type libraries in your project. This operation results in the creation
of a DLL with a name derived from the original COM component name.

4

The major drawback to this second alternative is that there’s no opportunity
to sign the resulting code in order to place it in the Global Assembly Cache.
As a result, the component can’t be shared among multiple .NET applications.
It’s considered to be a private component, usable only from within your Visual
Basic .NET application. You must also use the first approach if you require
certain details of the component, such as its version number.

Either approach can be a computationally expensive proposition. Both still
require the mode transition as well as marshalling of data. Don’t count on
being able to automatically generate the RCW to get better performance.
The alternative development techniques are for convenience rather
than advantage.

Preparing to use interop

The first step in addressing the performance issues surrounding interop is
understanding what it is costing you. You can do this with a performance
analysis tool such as Compuware DevPartner Studio, which measures the
amount of time taken to perform a mode transition and marshalling as well as
the number of P/Invoke and Runtime Callable Wrapper calls made. Your first
focus should be on these types of calls, as they require marshalling and can be
a significant performance drag on the overall application.

Once you have this information, you can determine if the performance of
your application is acceptable or if you need to make changes to speed up
the mode transitions. If those calls appear to take an excessive amount of
time in comparison to the rest of the application, you can focus on improving
their performance.

5

Figure 2. Compuware
DevPartner Studio shows the

number and type of COM
Interop calls from managed

to unmanaged code.

www.compuware.com

04/03

All Compuware products and services listed within are
trademarks or registered trademarks of Compuware
Corporation. Java and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems Inc. in the United
States and other countries. All other company or product
names are trademarks of their respective owners.
© 2003 Compuware Corporation

One type of change you can consider is whether your managed/unmanaged
interface should be “chatty” or “chunky.” As the names imply, chatty calls
are those that occur often and pass little data, while chunky calls occur less
frequently, but do more work when they do occur. While at first glance, it
might appear that chunky calls are more efficient, because you are doing the
mode transition less frequently, that’s not necessarily the case. A chatty
interface passing less complex data more often may turn out to be less
computationally expensive because its marshalling isn’t as complex.

How do you determine whether or not you should be using chatty or chunky
mode transitions? There’s no easy way that applies to all circumstances; it
depends on the amount of data and frequency of calls. The best thing to do is
to prototype each type of interface and profile its performance. By investing a
little time early in the development phase, you can ensure that you made
the right performance choice and not have to go back and make substantial
changes after you have a working application.

That’s not to say you might not have to go back and make adjustments to your
calls once the application is done. For example, you may find that in certain
parts of the application, chunky calls are more efficient because of the overall
volume of calls. But prototyping your data and calls ahead of time gives you
the ability to make better decisions.

Chances are you will be doing interop with native code from your .NET
applications on a number of occasions over the next several years.
Understanding the alternatives that are available, when to use them and
how to evaluate their performance will make it possible for you to call native
code with confidence.

Compuware products
and professional services—
delivering quality
applications

Compuware is a leading global

provider of software products and

professional services which IT

organizations use to develop,

integrate, test and manage the

performance of the applications that

drive their businesses. Our software

products help optimize every step in

the application life cycle—from

defining requirements to supporting

production service levels—for web,

distributed and mainframe platforms.

Our services professionals work at

customer sites around the world,

sharing their real-world perspective

and experience to deliver an

integrated, reliable solution.

Please contact us to learn more

about how our comprehensive

products and services can help your

organization improve productivity,

create higher quality applications and

ensure performance in production.

