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Java Season

T
he JavaOne Conference brochure’s tag line is “The Power 
of Java,” and it certainly seems fitting given the healthy 
state of everything that is Java. The agenda for this annual, 
Spring season conference exemplifies how much innova-
tion is out there and how much there is to learn to lever-

age Java technologies and build even more impressive enterprise-scale 
applications. 
 Consider the breadth of topics for the platform tracks alone. 
Presentations for Java SE highlight the platform’s version 6 (“Mus-
tang”); Web 2.0, NetBeans, robust Java technology-based applica-
tions, and of course the ballyhooed Eclipse Rich Client Platform; 
and other noteworthy technologies like JMX, Swing, Struts, and 
REST. As noted in the brochure, some Java SE topics overlap top-
ics geared for the Java EE platform track, and there is some instruc-
tive fare tied to this platform too. Not only will you find presen-
tations for the de rigueur technologies like SOA, EJB, BPEL, and 
Java-.Net interoperability, but you’ll find a variety of perspectives 
on ease of development, AJAX, and JSF. Of course, there is plenty 
of content on Java Specification Request (JSR) updates across all 
platforms, and in this issue’s Public Static column Onno Kluyt, 
chair of the Java Community Process (JCP), provides a compre-
hensive summary of what’s current with specific JSRs and maps 
them to their corresponding JavaOne sessions. 
 Arguably some of the most exciting Java-related innovation 
is occurring in mobile applications development, and this vital-
ity is reflected in some noteworthy JavaOne session offerings 
around new Web 2.0 services, Blu-ray, the NetBeans Mobility 
Pack, and UI design for Nokia’s Series 40, S60, and Series 80 
platforms. In fact, innovation for the mobility market is heat-
ing up appreciably in the North America region, and for some 
good insight into this trend I urge you to visit the FTPOnline 
site to see our special report on mobile Java development (www.
ftponline.com/special/mobilejava/), which includes articles and 
resources that reflect the dynamic state of the mobile space.
 To give you some report highlights, we gathered industry insid-
ers from organizations that are members of the Forum Nokia Pro 
program for a roundtable discussion of enterprise application 
development for mobile devices. For an update on Java ME spe-
cifically, Michael Yuan, a recognized expert on end-to-end mobile 
and enterprise solutions, provides a detailed discussion of the plat-
form and its latest advancements (that article also appears in this 
issue). Periodic Java Pro contributor Rick Grehan offers a clever 
technique for reverse engineering a typical mobile application to 

leverage an object database library for UIQ-based devices. Also, 
the report includes technical articles on applications development 
for the MIDP stack for Symbian-based mobile devices and Nokia’s 
Series 40 3rd Edition and S60 3rd Edition platforms. For some 
additional insight you’ll find an exclusive interview with Lee Ept-
ing, vice president, Forum Nokia, who discusses the rapid progress 
Forum Nokia and Forum Nokia Pro are making to support inno-
vation for developers of mobile applications. 
 Tools constitute another JavaOne track, and Java-based tools 
continue to be an area exhibiting a lot of creativity to make the 
development process easier for developers and developer teams 
who find themselves constricted by tight budgets and more com-
pressed time-to-market milestones in their production environ-
ments. Since productivity is a key criterion for tools evaluation, 
our cover story by frequent contributor and columnist Peter Var-
hol analyzes the value and productivity proposition available from 
a select group of IDEs, which are freely available for evaluation.
 JavaOne’s importance to the industry cannot be overstated, and 
the publisher of this magazine intends to participate with two key 
events. Our Java Technology Roundtable returns—after last year’s 
hiatus—to bring together industry luminaries who will share their 
perspectives on current technology trends for Java in the enter-
prise, what has transpired in the Java development space over the 
last year, and where the industry is going in the year ahead. Look 
for expansive coverage of the roundtable both online at FTPOn-
line and in an upcoming issue of Java Pro.
 We also host our annual Java Technology Achievement Awards 
during JavaOne, where we present awards for outstanding Java-
based products selected by your votes. Readers responded to an 
online ballot to vote for their favorite tools and technologies 
among 20 categories, and we are pleased to recognize the win-
ners, including two additional community awards selected by 
Java Pro editors. Like the Java Technology Roundtable, look for 
exclusive coverage of the award winners both online and in an 
upcoming issue of this magazine. 
 A lot of exciting opportunities for enterprise- and Java-based devel-
opment are now available to the community. Look for an upcoming 
special report on FTPOnline that will spotlight the current state of 
Java, Eclipse tools, and JavaOne highlights. As always, if you have 
suggestions for our coverage, send me an e-mail. 

Terrence o’Donnell, editor 
todonnell@fawcette.com 
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Mission-Critical Optimization
Borland VisiBroker 7.0 enhances SOA support and adds capabilities  

for more control over CORBA-based applications

Borland Software Corporation an-
nounced recently a significant new 
release of its VisiBroker product. Vis-

ibroker 7.0 is an enterprise middleware lay-
er that is optimized for mission-critical ap-
plications and provides the ability to expose 
as services CORBA application functions in 
service-oriented architectures (SOAs). Con-
currently, Borland also announced the release 
of the 6.6 version of its Borland AppServer, a 
high-level, J2EE application server that sup-
ports the J2EE 1.4 standard and can be em-
bedded into applications and environments 
that employ tight integration among COR-
BA-J2EE applications.
 VisiBroker has a long history at Borland 
that began with a ten-year-old acquisition of 
Visigenics, which at that time was a supplier 
of a middleware product that was based on the 
CORBA standard. Though CORBA’s prom-
inence as a standard for building enterprise-
class, distributed applications that required the 
reliability and scalability necessary for mission-
critical applications gave way in the late nineties 
to Java and the J2EE platform, significant de-
ployment of CORBA between the late 1980s 
to the mid 1990s means that many substantial 
“pockets in the world where CORBA is still a 
very viable and heavily deployed technology” 
remain, according to Raj Sehgal, senior direc-
tor of product marketing at Borland.
 “At a fundamental level CORBA is just a 
standard definition of how you build appli-

cations to talk to each other in a very tightly 
coupled way,” Sehgal said. Because today’s ap-
plications have a lot of complex, transaction-
al data going back and forth, requiring a high 
degree of reliability, scalability, and synchroni-
zation, the integrity and the synchronization 
of the data needs to be guaranteed. CORBA, 
Sehgal said, is still very well suited for this role, 
even in today’s enterprise environments. 
 Borland’s middleware products parallel the 
company’s application development tools and 
application life-cycle management (ALM) 
lines of business. However, the middleware 
product line, of which the lead product is Vis-
iBroker, is deployed in a run-time production 
environment; the middleware is embedded in 
applications and invoked when those applica-
tions are run. In addition to VisiBroker, Bor-
land’s J2EE-based AppServer builds on the 
VisiBroker technology along with other an-
cillary products that support interoperabili-
ty across multiple, different applications. 
 “For the middleware market, even though 
at a macro level CORBA is flat to maybe 
slightly declining, it’s still, we believe, an over 
$200–250 million business worldwide,” Seh-
gal said. “Borland has a market-leading share 
of that [space] in terms of licensing revenue. 
The J2EE application server is a well-tracked 
market, and obviously there are some big play-
ers like IBM, BEA, Oracle, and others. What 
we have is a smaller, but very healthy business 
with our J2EE application server, mostly on 

the high end, that follows the lead of the Vis-
iBroker product line, and customers come to 
us for the J2EE business because they’ve been 
using the CORBA-based product.” 
 Prior to these announcements, Borland 
was shipping the 6.5 versions of both prod-
ucts. While the 7.0 version is a major new 
release for the VisiBroker line, Borland App- 
Server has undergone a minor upgrade with 
its 6.6 release; however, Sehgal said there 
will be a major release of the J2EE appli-
cation server some time in 2007. 
 Organizations can use VisiBroker 7.0 to 
integrate distributed applications that may 
be built using various languages, platforms, 
and standards. Enterprise data “locked” in 
older CORBA applications can be leveraged 
into newer applications that are built on other 
technology stacks such as Web services, Mi-
crosoft .Net, or Java EE. Applications native 
to the .Net platform can participate equally 
in a set of tightly coupled cooperating appli-
cations with CORBA applications written 
in C++ and Java. VisiBroker also supports 
MontaVista Software’s carrier-grade Linux 
operating system platform for telecommu-
nications and data communications.
 For more information about both middle-
ware offerings and pricing, visit Borland’s 
Web site.
Borland Software Corporation
800-�32-28�4; 408-8�3-2800
www.borland.com
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In an era of open source and free tools, cost and developer 
productivity weigh heavily on making an IDE choice 

Finding the Best 
Value in Java IDEs
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by Peter VarhOl

J ava developers and developer teams have many alternatives when 

choosing among commercial development environments. In the 

past, most made this decision by a combination of familiarity, 

cost, and technical applicability to the project at hand. Because many 

IDEs in the past had similar feature sets and costs, often the prefer-

ence was based on familiarity.
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However, these decision factors don’t fully 
define the value that is delivered by the 
selection. Value in this case doesn’t mean 
the number of features or ease of using 
those features, but rather by productivity 
in performing specific common tasks that 
developers do daily, and the cost of that 
productivity in terms of the product and 
support cost. As the cost of tools contin-
ues to drop, and there is less differentiation 
between core features, value and productiv-
ity are coming to the forefront as key dif-
ferentiators in tool selection and use.
 The equation has been complicated 
by the availability of free and open source 
integrated development environments 
(IDEs) such as Eclipse and NetBeans. At 
first glance, the best value might seem to 
be delivered by the free solutions. How-
ever, free doesn’t necessarily translate into 
productive. It is likely that the most expen-
sive part of the development process is the 
developer’s salary, so optimizing the use of 
time is a key consideration.
 The question of productivity is a big 
one, and few have attempted to even con-
sider productivity when evaluating develop-
ment tools. It is difficult to measure in an 
absolute sense because of both the nature 
of developer skills and the nature of the 
projects to which those skills are applied.
 The requirements for productivity are 
real and demonstrable. Productivity means 
being able to do a specific set of activities 
faster or more efficiently in one way over 
another. The goal is to save development 
time and effort, which is typically the most 
expensive part of the development process. 
The investment in tools must significantly 
raise productivity, yet not cost so much as 
to diminish the value of that increased pro-
ductivity. 
 This review looks at the features pro-
vided by the IDE, what they add to the 
ability to build common applications, and 
what a developer would have to do with-
out them. As such, the products examined 
here represent different models of value and 
developer productivity: Eclipse-based ver-
sus proprietary, one-time license versus sub-
scription, and so on. The intent is to look 
at a combination of cost over time and fea-
tures to derive the maximum value.
 With these criteria in mind, we’ll look 
at Borland JBuilder, IBM Rational Software 

Architect, BEA WebLogic Workshop, Ora-
cle JDeveloper, and Genuitec’s MyEclipse 
Enterprise Workbench. The products we’re 
focusing on here can be downloaded for eval-
uation and purchase, rather than requiring 
retail purchase, shipment in a box, or inter-
action with a sales representative (in most 
cases downloading requires registration or 
membership, but in all cases evaluation was 
free). While this method of procurement 
was convenient for purposes of review and 
analysis, it also represents the way a lot of 
developers prefer to obtain new tools.
 The test machine for this analysis was a 
Dell notebook with a 1.6 MHz Centrino 
processor and 512 MB of memory. While 
this machine isn’t an especially powerful 
computer, it is probably representative of 
the average of development computers in 
many enterprises. All of these products 
were applied to build a specific applica-
tion: a simple Web-based time and atten-
dance system. It enables workers to log on 
and time-stamp their start and end dates, 
times, and calculate wages based on hours 
worked. The application includes several 
user interface pages, a simple calculation 
engine, and a back-end MySQL database. 
While the architecture and coding of this 
sample are relatively simple, it is likely rep-

resentative of many applications that are 
developed for custom enterprise use.

Borland JBuilder
Borland JBuilder 2005 is the last version of 
this signature product that remains on the 
proprietary platform; future versions will be 
built on Eclipse. However, today the cur-
rent JBuilder comes in three versions:

• Personal Edition – This version is freely 
downloadable and provides the funda-
mental IDE tools plus a few additional 
extras such as a GUI designer, JUnit 
framework, and some other utilities. 

• Developer Edition – This version adds 
a host of features, especially XML and 
Web support, and the latter includes 
JavaServer Pages (JSP) and JavaServer 
Faces (JSF). 

• Enterprise Edition – This version adds 
Web services, Java EE and CORBA sup-
port, and UML diagramming.

 The Developer Edition was used for 
testing purposes in this review. Although 
this edition is reasonably priced at $499 
and provides a good feature set, it lacks 
the ability to build many common Java 
EE applications. You can use it to build 

Figure 1 | Feature rich  Borland JBuilder’s integrated features incorporate refactoring, 
a slick editing environment, Javadoc support, code profiling, JSF, Struts, and Web 
services designers.
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such distributed applications, but only by 
adding open source tools such as JBoss. In 
addition to the package as it stands, Tom-
cat was downloaded for a servlet engine to 
build the application as it was designed.
 Despite this limitation, JBuilder is an 
enjoyable product to use. Its maturity (it 
is the only product reviewed here that has 
remained fundamentally the same for the 
last eight years) means that Borland has had 
the time to fine-tune the user interface to 
ensure a smooth developer experience. 
 JBuilder is a highly refined product with 
a number of integrated features. It incorpo-
rates refactoring, nice editing features, Java-
doc support, code profiling (from the Bor-
land OptimizeIt product), JSF, Struts, and 
Web services designers that speed the devel-
opment process and improve developer pro-
ductivity in those areas (see Figure 1). How-
ever, UML modeling is offered only in the 
Enterprise Edition, and only with two types 
of diagrams (other diagrams are available 
with Borland’s high-end Together model-
ing product).
 One other advantage with JBuilder is that 
as a fully Java-compliant development envi-
ronment, it offers versions that run on Win-
dows, Linux, or Solaris. Performance has been 
tuned over the years, but it still feels slow in 
launching and selecting features.

 Where JBuilder might have a disad-
vantage is in its very plethora of features. 
Because it is a mature IDE, it has had a 
number of versions with incremental new 
features and capabilities. For example, this 
version includes enhancements to edit-
ing and a global gutter for tracking errors 
and opening the files associated with those 
errors. It also has good support for XML 
and support for the Java ME platform and 
WAP. However, while JBuilder offers mod-
eling in the next version up (the Enter-
prise Edition), the company that bought 
one-time leader Togethersoft has not at all 
expanded that product offering, with only 
two UML diagrams available.
 Because JBuilder’s future road map 
is uncertain, it is difficult to extrapolate 
the advantages of the current platform 
into the future. It is likely that a future 
Eclipse version will, out of necessity, be 
less functional and less well integrated 
than today’s product, and the $499 price 
means that it has to have a clear advan-
tage over free and low-cost solutions to 
enjoy significant productivity advantages. 
The Enterprise Edition, at a full $3,500, 
adds the ability to create Java EE appli-
cations and testing tools, but the pro-
ductivity payback may well be harder at 
that much higher price point.

IBM rational Software architect
IBM Rational Software Architect 6.0 is one 
of the products examined here that is based 
on the Eclipse framework. In addition to 
the Eclipse Foundation software, the IBM 
product includes UML modeling, the full 
WebSphere Web server, other IBM tools for 
developing portals, and tools for identifying 
and refining patterns. It has a lot of software 
tools for a single user IDE; some users will 
appreciate the wide range of included tools, 
but others will find that they make the envi-
ronment unnecessarily complex.
 The modeling tools support nine UML 
diagrams, a remarkably complete solution.  
Since IBM can leverage the traditional 
Rational modeling tools, it is no surprise 
that Rational Software Architect has the 
best modeling solution. It is possible to 
create complex software models and gen-
erate at least some of the code required by 
the modeled application.
 When combined with IBM’s rule-based 
code analysis, these tools help an architect 
see how well projects are being implemented 
and how they fit within design guidelines 
and site requirements. In addition to struc-
tural and object-oriented patterns, Ratio-
nal Software Architect can recognize and 
analyze seven of the Gang of Four design 
patterns. While that is a small subset of 
the full set of design patterns, it represents 
the only attempt among the tools here to 
support formal design patterns. This sup-
port offers the unique capability of ensur-
ing that authorized patterns are followed 
during development.
 Rational Software Architect has some 
support for C/C++ development, in addi-
tion to full support for Java. The model-
ing tools can perform transformations to 
C++, and various source code tools can 
analyze C++. However, the C++ IDE lacks 
a compiler and debugger, which must be 
obtained and installed separately. You can 
install your own if you already have one of 
these tools as an Eclipse plug-in, or you can 
download the GNU C++ compilers to do 
this. These features seem like an odd and 
incomplete addition.
 The problem with Rational Software 
Architect is that it has the feel of a prod-
uct that is really an amalgamation of sev-
eral distinctly different tools. While the 
feature set is pretty complete, the major 

Figure 2 | Single Environment  Oracle JDeveloper’s unique development environment 
makes it possible to do design, development, and fine-tuning in a single location. 
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pieces of the environment were all separate 
products at one time, and the differences 
show. Another limitation is that it tends 
to be slower than Eclipse by itself, prob-
ably because the memory on the test sys-
tem was insufficient to contain a reason-
able working set when using a number of 
the tools.
 At $5,500, there is a lot of capability in 
Rational Software Architect, almost cer-
tainly more than most developers can use. 
The biggest issue is likely to be that devel-
opers will believe they are paying a premium 
for tools they don’t need. While the prod-
uct may have many tools that individually 
can improve productivity, the aggregate cost 
may be too high for many developers.

BEa Weblogic Workshop
BEA is better known as a Web services ven-
dor, but the company also provides a fine 
development environment with its Web-
Logic Workshop. BEA WebLogic Work-
shop 8.1 is a Java development environment 
that enables IT to visually build and assem-
ble enterprise-scale Web applications, Web 
services, JSPs, portals, and Enterprise Java-
Beans (EJB) for a service-oriented archi-
tecture (SOA).
 WebLogic Workshop is a highly mature 
product with many features and a fine feel.  
Most longtime developers will feel very com-
fortable working in this environment. In par-
ticular, building EJBs or even Web services 
seems like a straightforward process, although 
neither were a direct part of this testing.
 In the test application, code was written 
quickly, although it was less adept at allowing 
communication with the back-end database. 
And because EJBs or Web services weren’t 
being used, many of the enterprise features 
weren’t used. BEA has a small community 
of partners developing extensions to Web-
Logic Workshop; however, all of the part-
ners are commercial entities that require 
separate purchase and maintenance agree-
ments. These partner offerings also tend to 
be entire products, rather than simple sin-
gle-purpose tools. 
 BEA also has a newer, Eclipse-based 
development solution. BEA Workshop Stu-
dio includes sophisticated WYSIWYG edi-
tors and BEA’s AppXRay technology, which 
provides a view of the Web application as a 
whole. XRay helps provide depth and capa-

bilities in code completion, consistency check-
ing with generated classes, configuration files 
or annotations, prebuild error checking, and 
validation. The latest release includes annota-
tion-driven EJB tools and bundles the Spring 
IDE Project for Spring Bean development.
 The packaging and utility of this alterna-
tive makes the future of the original Web-
Logic Workshop somewhat doubtful, even 
though there is a beta of the next major 
release available. Nevertheless, WebLogic 
Workshop is an excellent supplement to 
the WebLogic application server. It is still 
capable outside of that deployment archi-
tecture, just not as well.
 For development, WebLogic Work-
shop’s price is certainly right, as it is freely 
available for use in development. If you are 
doing enterprise development with EJBs, 
and especially if you are deploying on the 
WebLogic application server or portal, 
Workshop is a natural choice and proba-
bly your most productive alternative. For 
other deployment platforms and for smaller 
projects its enterprise features can be con-
fusing and unnecessary. 

Oracle JDeveloper
The JDeveloper IDE integrates all of the fea-
tures needed by a developer building a Java 

application. Unlike some other Java devel-
opment environments, with JDeveloper it’s 
possible to move from design through devel-
opment and tuning without leaving the envi-
ronment. When you initiate a project, you 
can begin with a UML model. You build 
the model in two parts: build the activity 
diagram to define the behavior of an appli-
cation, while laying out the structure of the 
application using class diagrams. Although 
this isn’t a complete UML model by any 
means, it’s enough to generate both class 
definitions and a state transition in code, 
which makes it useful for initial design (see 
Figure 2). However, it’s not as seamless as it 
could be when moving into code.
 The JDeveloper integrated code profiler 
is a useful debugging tool for most appli-
cations. It profiles application execution, 
memory utilization, and event sequence. 
In addition, the debugger works locally, 
remotely, or across multiple processes. You 
can also use the integrated CodeCoach to 
provide hints to improve performance or 
the use of Java technologies in your code. 
The principal limitation of JDeveloper lies 
in its UML modeling, where the product 
supports only four diagram types: activity, 
class, sequence, and use case. That number 
is usually enough to get you started, but 

Figure 3 | Tool Bonanza  Utilizing the Eclipse platform, MyEclipse provides an 
environment that integrates selected open source development tools and adds features 
based on them. 
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many UML practitioners also like using 
component and deployment diagrams for 
packaging and distribution.
 However, JDeveloper also had some sig-
nificant limitations. It consistently got the 
poorest marks in several categories, includ-
ing compiler/interpreter performance, edi-
tor, libraries and frameworks, and the ability 
to integrate third-party tools. For develop-
ers working on a variety of projects, it lacks 
a number of tools, and Oracle has declined 
to form the third-party community that 
Eclipse, and to a lesser extent Borland, have 
fostered; there are few add-ins and limited 
ability to add additional tools.
 An important feature in JDeveloper is 
the ability to use a set of libraries called 

the Business Components for Java (BC4J). 
BC4J uses Java database connectivity 
(JDBC) to provide an object-relational 
mapping of information stored in the Ora-
cle9i database. It allows business logic to be 
centralized at the middle tier, as you would 
do when using a servlet, while leaving pre-
sentation-related activities to the JSP. 
 JDeveloper has integrated source control 
through the Oracle Software Configuration 
Manager. It supports an API for third-party 
source control packages, such as ClearCase 
and the open source CVS. It also incorpo-
rates support for working with hosted files 
on any WebDAV-enabled server.
 Clearly, even though some of the fea-
tures, such as UIX and BC4J, are used only 

with other Oracle products, there is still 
value here for the average Java EE devel-
oper. However, the question is whether the 
remaining features can make a developer 
more productive. For those developing Java 
EE, JSP, XML, or servlets in conjunction 
with Oracle database tools, JDeveloper is 
undoubtedly the toolset of choice.
 Outside of the Oracle world most of 
these features did little good. With the 
MySQL database, or any third-party data-
base for that matter, you have to regress 
to using standard techniques for database 
access and partitioning into layers, rather 
than BC4J. Some features of the UML 
models also assume that the target is an 
Oracle database.

Genuitec MyEclipse
MyEclipse is unique in this review, in that 
it includes few if any features that are devel-
oped using the traditional commercial de-
velopment model. Instead, MyEclipse takes 
the Eclipse platform and integrates a number 
of other open source development tools into 
the environment, as well as adding features 
based on those tools (see Figure 3).
 MyEclipse can be downloaded from the 
MyEclipseIDE.com Web site. It requires the 
previous download and installation of the 
Eclipse platform from Eclipse.org. For those 
used to working with the vagarities open 
source software, the MyEclipseIDE down-
load is a real pleasure to install and use, as it 
installs and configures its features automat-
ically. This feature is only the beginning of 
what MyEclipse has going for it. The first 
thing you notice is that MyEclipse adds to 
Eclipse rather than changes it. Anyone famil-
iar with Eclipse will have no difficulty pick-
ing up and immediately using MyEclipse. 
 MyEclipse includes open source solu-
tions for visual Web design, UML model-
ing, JSF and Struts for Model-View-Con-
troller (MVC) development, AJAX, and 
object-relational mapping. Most recently, 
it has integrated the Matisse Swing client 
UI designer from NetBeans, as well as tem-
plate-based Web development. Perhaps the 
best advantage of MyEclipse is the ability 
to take the integrated platform and con-
tinue to customize it to meet even more 
specific needs. (For more information about 
the NetBeans IDE, see the sidebar, “What 
About NetBeans?”)

What about NetBeans?

A s you download, install, and use NetBeans (currently at version 5.0), you can’t 

help but think that in an alternative universe, NetBeans would hold the exalted 

role of open source flash point for the developer community currently occupied by 

Eclipse. NetBeans has many of the same features as Eclipse, yet arguably in a more 

productive package. And while Eclipse has broadened from its roots as an IDE to that 

of an all-encompassing, life-cycle platform and even application framework, NetBeans 

has remained focused as a tool for the developer.

 Certainly there is nothing about NetBeans that might have prevented it from achieving 

such a role. Its significant features include a useful list of code refactorings, extensive 

code completion algorithms, and integrated CVS support for team development. It 

incorporates Ant as its build utility and project metadata repository, which makes it 

possible to export projects to other IDEs, which can then load a project developed in 

NetBeans and make edits and builds.

 Probably the best feature of NetBeans is the Matisse forms designer (see Figure 4). 

Matisse lets you build a Swing-based form in a drag-and-drop manner, similar to other 

form builders in any language. However, Matisse lets you line up controls on a form 

far more easily than comparable tools, and the designed form also looks much more 

like the real thing. Matisse is so good that Genuitec recently announced a port to the 

Eclipse platform for its MyEclipse IDE.

 NetBeans includes three optional downloads: a code profiler, a mobility pack, and 

a platform. For this discussion, only the profiler was looked at. It is surprising that 

more developers don’t write a code profiler, something the Java Virtual Machine 

makes possible through profiling hooks. The NetBeans profiler is fun to use, and it is 

instructive to see how much you can sometimes change performance by changing a 

few lines of code. The mobility pack lets you build applications for embedded devices, 

while the NetBeans platform is a framework for building targeted applications.

 As an IDE, NetBeans is at least comparable to Eclipse or any of the other alternatives, yet 

it barely gets a mention in the same breath. You can argue that Sun Microsystems handled 

the product poorly, or that it didn’t have the exposure or marketing resources of the IBM-

backed Eclipse, but you cannot easily argue that it is technically inferior. While it lacks the 

community and developer enthusiasm of Eclipse (it does have plug-in developers, but the 

number looks to be easily an order of magnitude smaller than that of Eclipse), technically 

it is a fine product that any development team can easily adopt and put to productive use. 

And if the Eclipse community ever looks toward the next new thing in Java development, 

NetBeans might just get to experience that alternative universe.

http://www.javapro.com
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 Eclipse itself isn’t a part of the MyEclipse 
install, so you have to download and 
install the Eclipse platform prior to adding 
MyEclipse. MyEclipse incorporates an auto-
mated installation routine that takes care of 
updating the menus and adding options in 
the Preferences for the new components, 
and it simply works. (I’ve attempted to add 
a variety of plug-ins to Eclipse on my own 
in the past; the mechanics certainly couldn’t 
be easier, but in reality there are often con-
flicting versions of prerequisite plug-ins 
that can make it tricky or just impossible to 
get certain components to work together.) 
Within the scope of its added functional-
ity, MyEclipse enhancements cause no prob-
lems to the Eclipse platform as a whole.
 While working with open source has 
often been difficult because of limited 
user interface facilities, MyEclipse and of 
course Eclipse itself make it easy to use 
in the development process. The sam-
ple application was built within the same 
amount of time it took with the best of the 
other products. The combination of open 
source tools, added features, and support 
for emerging standards make MyEclipse a 
productive alternative, no matter what the 
underlying platform. 
 Price is a consideration in looking at pro-
ductivity, and Genuitec prices MyEclipse 

on a subscription model at $30 per year. 
What that buys you, in addition to the ele-
gant installation routine, is support and 
updates during that period, along with 
the integration testing and documenta-
tion that is often lacking in open source 
distributions. You also get the integration 
that makes these open source components 
work together seamlessly.
 You could try to put a package such 
as MyEclipse together yourself, but you 
almost certainly wouldn’t succeed. First, it 
would be difficult to match the enhance-
ments to installation and documentation 
provided by MyEclipse, and monitoring 
various open source sites for updates and 
patches can be a time-consuming exercise 
in and of itself. Doing it yourself might 
cost a few dollars less in product, but you 
wouldn’t get nearly as much out of the 
end result.

Productivity Is Key
Firm conclusions are always difficult to 
arrive at in product testing and compari-
son. Strict feature comparisons put empha-
sis on quantity rather than quality, espe-
cially when the total number of features 
may hinder, rather than help, productivity. 
Likewise, productivity can be lost when spe-
cific features are added because those fea-

tures may only be useful to a small num-
ber of developers.
 Nevertheless, it is still possible to make 
some generalizations surrounding produc-
tivity. Productivity encompasses low costs 
(both purchase price and cost of owner-
ship), along with a feature set that is use-
ful for the majority of developer tasks and 
accelerates the accomplishment of those 
tasks. Both JBuilder (in the most useful 
Enterprise Edition) and Rational Software 
Architect can carry a significant price tag—
in the thousands of dollars per developer. 
While they use good modeling and quality 
tools to accelerate the building and testing 
of applications, the cost of doing so reduces 
their overall value. Both are popular prod-
ucts with known value, but the cost is dif-
ficult to justify today.
 At the other end of the spectrum, 
MyEclipse, WebLogic Workshop, and 
JDeveloper are freely available, or nom-
inally priced. If you’re working with an 
Oracle database, JDeveloper clearly deliv-
ers the highest level of productivity, and 
its freely available nature clearly demon-
strates substantial value on this platform. 
The JDeveloper features that tie the IDE 
explicitly to the Oracle database provide 
shortcuts and proprietary enhancements 
that make several complex activities simple 
and fast. Beyond Oracle, however, JDe-
veloper lacks the flexibility and openness 
to add significant value to most develop-
ment efforts.
 MyEclipse has a unique model that 
requires careful consideration in devel-
oper productivity. It might be argued 
that any cost to MyEclipse reduces value 
because its components are primarily 
open source. However, that is a simplis-
tic view; Genuitec adapts the open source 
code that it uses to work well together, 
wraps it so that installation is seamless, 
and provides capabilities not available in 
the original open source code. The cost of 
any individual development team to per-
form even a part of this work would be 
prohibitive. By spreading that cost among 
thousands of developers, it becomes eco-
nomically feasible to provide significant 
additional value.  

Peter Varhol is a senior member of the technical staff for 

Progress Software, and has a consultancy relationship with 

Genuitec. Contact Peter at peterv@mv.mv.com.

Figure 4 | Forms Design  The NetBeans Matisse forms designer provides a realistic view of 
the form and the tools needed to get the design right the first time.
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Standard checks and unit tests for every line of code might be 
impractical, but here’s a strategy for delivery expediency

Cleaning a Complex 

Java Code Base

C hecking coding standards and unit test-
ing would be performed ideally on every 
piece of code before it was added to a 
team’s code base. However, doing so is 

not always practical. Many organizations do not 
provide developers the time and resources required 
for testing at this level. Moreover, most organiza-
tions do not develop applications from scratch by 
writing new code for all required functionality. 
Rather, they typically make incremental enhance-
ments to a large amount of functioning legacy 
code or add their own code to extend third-party 
or open source packages. The resulting code bases 
could include legacy code written within the orga-
nization, code obtained through a merger or acqui-
sition, code obtained from an outsourcer, or code 
that was developed by the open source community 
and downloaded from the Internet.
 Consequently, most teams accumulate large 
and complex code bases with at least some code 
that has not been subject to coding standard anal-
ysis and unit testing. This accumulation involves 
several critical risks. When the application is used 
in a way that development and QA didn’t antici-
pate (and didn’t test), the code might throw unex-
pected run-time exceptions that cause the appli-
cation to become unstable, produce unexpected 
results, or even crash. The code also might open 
the only door that an attacker needs to manipu-
late the system and/or access privileged informa-
tion. Small coding mistakes could lead to signifi-
cant performance or functionality problems. The 
code’s functionality might be broken as the appli-
cation evolves over the course of its life cycle.
 If your team already has a large and complex 
code base (hundreds of thousands, or even mil-

lions, of lines), it’s not too late to benefit from cod-
ing standard analysis and unit testing. As long as 
these practices are automated and applied properly, 
they can still be used to identify functionality, reli-
ability, security, and performance problems before 
release and deployment—as well as to satisfy any 
contractual obligations for performing unit testing 
or complying with a designated set of standards. 
 Let’s look at a simple two-step strategy that has been 
proven to deliver fast and significant improvements 
to large and complex Java code bases. The first step is 
using coding standard analysis to identify bugs and 
bug-prone code. The second is using unit-level regres-
sion testing to ensure that the functionality is intact 
and using unit-level reliability testing to ensure that all 
code base changes are reliable and secure. Both steps 
can be automated to promote a consistent implemen-
tation and allow your team to reap the potential ben-
efits without disrupting your development efforts or 
adding overhead to your already hectic schedule. 

Bugs and Bug-Prone Code
Why is it important to identify bugs and bug-prone 
code? Complying with coding standard rules is a 
proven way to achieve key benefits that we can put 
into four groups: 1) detect bugs or potential bugs 
that impact reliability, security, and performance; 2) 
enforce organizational design guidelines and specifica-
tions (application-specific, use-specific, or platform-
specific) and error-prevention guidelines abstracted 
from known specific bugs; 3) improve code main-
tainability by improving class design and code orga-
nization; and 4) enhance code readability by apply-
ing common formatting, naming, and other stylistic 
conventions. Rules that provide the first benefit will 
be referred to as group 1 rules; rules that provide the 
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second benefit will be referred to as group 2 
rules, and so on.
 As an example of why it’s important to 
check coding standards even after the code 
is already written, assume that the analy-
sis revealed that code for a Web applica-
tion’s servlet violates the “Specify an ini-
tial StringBuffer capacity” rule (see Listing 
1). StringBuffer allocates only a 16-char-
acter buffer by default; if that capacity is 
exceeded, the StringBuffer class allocates a 
longer array and copies the contents to the 
new array. By identifying and correcting 
this violation, all those allocations, copies, 
and garbage collections are avoided, and 
the code is optimized. Because this servlet 
is used repeatedly in the application, this 
optimization will have a significant effect 
on overall application performance.
 Symptoms of this problem probably 
could have been uncovered if the team per-
formed an extensive amount of profiling or 
load testing, but tracking it to the responsi-
ble line of code would have required even 
more time and effort. Using an automated 
code analysis tool, the problem’s exact source 
can be detected automatically in seconds, 
without writing team members to write a 
single test or manually track down the root 
cause of the slow performance.
 To determine what’s required decide which 
coding standard rules to check. First, review 
industry-standard Java coding standard rules, 
and decide which ones are most applicable to 
your project and will prevent the most com-
mon or serious defects. For instance, if your 
project is using technologies such as JDBC, 
Enterprise JavaBeans (EJB), or JavaServer 

Pages (JSP), review and select rules designed 
specifically for these technologies and general 
Java coding standard rules. The rules imple-
mented by automated Java code analysis tools 
offer a convenient place to start for general 
rules that can improve reliability, security, and 
performance. For example, some rules many 
teams choose to enforce include:

• Reliability rules: Avoid dangling else 
statements; avoid try, catch, and finally 
blocks with empty bodies; and do not 
assign loop control variables in the body 
of a for loop.

• Security rules: Do not compare Class 
objects by name, do not pass byte arrays 
to DataOutputStream in the writeOb-
ject() method, and make your clone() 
method final for security.

• Performance rules: Close input and 
output resources in finally blocks, 
prevent potential memory leaks 
in ObjectOutputStreams by call-
ing reset(), use String instead of 
StringBuffer for constant strings, and 
use StringBuffer.append() instead of + 
to concatenate strings.

 Also, consider rules that are unique to your 
organization, team, and project (for instance, 
an informal list of lessons learned from past 
experiences). If needed, you can supplement 
these rules with the coding standard rules 
listed in books and articles by Java experts. 
 Consider these questions as well: Do 
your most experienced team developers 
have an informal list of lessons learned from 
past experiences? Have you encountered a 

specific bug that can be abstracted into a 
rule so that the bug never occurs in your 
code stream again? Are there explicit rules 
for formatting or naming conventions that 
your team is required to comply with?

Looking Back
Because legacy code bases are typically very 
large, checking a legacy code base requires 
a special strategy. It’s important to recog-
nize that legacy code’s design and devel-
opment rule compliance will not be con-
sistent because different parts of the code 
base probably originated from different 
sources. Applying rules from groups 3 and 
4 to the entire code base is likely to result in 
an impractically large number of rule vio-
lations that might be more overwhelming 
than helpful at this stage of the project. An 
initial focus on rules from groups 1 and 2 
for legacy code checking is strongly recom-
mended. This focus will identify significant 
problems that should be corrected before 
the release and deployment. 
 Let’s look at automatically checking 
the code base and responding to findings. 
Manually checking whether a large and 
complex code base follows coding standard 
rules would be incredibly slow, resource 
intensive, and error prone. Even if you 
had the vast resources required to manu-
ally review the code base, some rule viola-
tions would be overlooked inevitably, and 
just one overlooked rule violation could 
cause serious problems. 
 A more practical, thorough, and accu-
rate way to check whether a large code base 
complies with coding standard rules is to 

Listing 1      Follow the Rule

public class LoginServlet extends javax.servlet.
 http.HttpServlet {
 public void doPost(
  javax.servlet.http.HttpServletRequest request, 
  javax.servlet.http.HttpServletResponse response) 
  throws javax.servlet.ServletException, 
  java.io.IOException {
  if (validate(request.getParameter("name"),
   request.getParameter("password"))) {
   StringBuffer message = new StringBuffer(); 
   // rule violation
   message.append("Welcome "); // 8 chars
   message.append(request.getParameter("name")); 
   // up to 20 chars
   message.append(" to the ACME online bank."); 
   // 25 chars
   request.setAttribute(
    "welcome_message", message.toString());

   this.doForward(
    request, response, "/mbWelcome.jsp" );
  } else {
   request.setAttribute(
    "login_error", "invalid login name"); 
   this.doForward(
    request, response, "/mbLogin.jsp" ); 
  }
 }// doPost

 private boolean validate (
  String name, String password) {
  if (name.length () > 20)
   return false;
  return checkPassword (name, password);
 }// validate
}

Note the “specify an initial StringBuffer capacity” rule. StringBuffer allocates only a 16-character buffer by default, and if that 
capacity is exceeded, the StringBuffer class allocates a longer array and copies the contents to the new array. 
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use an automated coding standard analysis 
tool to check the entire code base at a sched-
uled time each night. There are two com-
plementary strategies that are well suited to 
the nature and size of legacy code: smoke 
alarm mode and gradual “fix it” mode. 
 In smoke alarm mode run a smaller rule 
set (including only groups 1 and 2 rules) on 
the entire code base to check if the code has 
critical problems. If violations are found, 
treat them as bugs (fix them immediately). 
In gradual “fix it” mode select a code mod-
ule, run a full rule set on it, and then fix and/
or refactor the code as needed. This mode 
is used to improve general compliance. Be 
sure to use it to check all new and modified 
code. If possible, check that code is compli-
ant immediately after it is written and before 
it is committed into source control.
 It’s also possible that different modules in 
the legacy code base call for different rules, 
especially from group 2. For instance, some 
code analysis tools allow users to apply a fil-
ter to enable or disable a specific rule or a 
group of rules for a given set of files, which 
allows such custom-tailoring of the rules to 
the nature and origin of the code. This fil-
tering can be thought of as file-based or direc-
tory-based application of specific rules.
 Let’s turn to the second part of the strategy, 
using unit-level regression testing to ensure 
that the functionality is intact and using unit-
level reliability testing to ensure that all code 
changes are reliable and secure. The next step 
toward reliable and secure code is to perform 
unit-level regression testing on all existing 
code, and then perform unit-level reliability 
testing (also known as white-box testing or 
construction testing) on any code that is added 
or modified. Regression tests capture existing 
functionality and don’t report any errors until 
a code modification changes that functional-
ity. Reliability tests use an unexpected stim-
ulus and report any errors immediately. In 
Java, this test involves exercising each method 
as thoroughly as possible for both categories 
of tests and checking for uncaught run-time 
exceptions in reliability tests. 

Functionality Protection
The second part of this strategy is impor-
tant because a large base of legacy code is 
a huge investment of time and resources. 
Its functionality needs to be protected from 
undesired changes if some of that code is 
modified. After obtaining a certain level of 

acceptance, it is critical to not go backward 
by introducing bugs in functionality dur-
ing maintenance of legacy code.
 However, if your testing only checks 
expected functionality, you can’t predict 
what could happen when untested paths 
are taken by well-meaning users exercising 
the application in unanticipated ways—or 
taken by attackers trying to gain control of 
your application or access to privileged data. 
It’s hardly practical to try to identify and 
verify every possible user path and input 
or analyze every possible exception from 
legacy code. It is important to identify the 
possible paths and inputs that could cause 
uncaught run-time exceptions in new and 
security-sensitive code for two reasons:

• Uncaught run-time exceptions can cause 
application crashes and other serious 
run-time problems. Uncaught run-time 
exceptions—exceptions that are thrown 
automatically by the Java run-time sys-
tem when a program violates the syn-
tax/semantics of Java—usually indicate 
software bugs. They typically stem from 
problems related to arithmetic, point-
ers, and indexing and can occur at any 
point in a program. If these exceptions 
surface in the field, the resulting unex-
pected flow transfer and potential thread 
termination could lead to instability, 
unexpected results, or crashes. Many 
Java development teams have had trou-
ble with Java-based applications crash-
ing for unknown reasons. Once these 
teams started identifying and correct-
ing the uncaught run-time exceptions 
that they previously overlooked, their 
applications stopped crashing.

• Uncaught run-time exceptions can open 
the door to security attacks. Many devel-
opers don’t realize that uncaught run-
time exceptions can also create signifi-
cant security vulnerabilities. For instance, 
a NullPointerException in login code 
could allow an attacker to completely 
bypass the login procedure. 

 
 Now let’s look at what’s required to do 
unit-level regression and reliability testing. 
First you have to design, implement, and 
execute regression test cases for the entire 
code base. Create an automated regression 
test suite that verifies whether each unit 
continues to function as expected when the 

code base grows and evolves. With com-
plex software, even a seemingly innocuous 
change in one part of the application can 
impact other functionality.
 Create a functional snapshot; run a suite 
of unit tests that capture the methods’ cur-
rent behavior, which is assumed to be cor-
rect. Ideally, the test suite will capture how 
the units behave as the application is exer-
cised in realistic ways (for instance, when 
the use cases are executed). This test suite 
is essentially an executable specification. By 
creating this test suite, you establish a base-
line against which you can compare code 
and identify changes.
 It is impractical to manually develop the 
required number, scope, and variety of unit 
test cases to execute each branch of code 
when you test each class as it’s completed, 
and it’s impossible when you need to find 
the exceptions lurking in a large existing 
code base. Achieving the scope of cover-
age required for an effective test suite man-
dates that a significant number of paths are 
executed. For example, in a typical 10,000-
line program, there are approximately 100 
million possible paths; manually generating 
input that would exercise all of those paths 
is infeasible and practically impossible.
 When trying to create a baseline of 
regression tests for a large code base, a 
tool that automatically generates test code 
is essential. Team resources can then be 
focused on reviewing and addressing the 
reported test case failures and exceptions.

Nightly Testing
Next you must review and respond to 
regression test findings, and test new code 
for reliability. Configure the automated 
testing tool to unobtrusively execute the 
complete regression test suite—all of the 
baseline unit tests—each night. Each test 
case failure (a test case that doesn’t pro-
duce the baseline outcome expected for a 
set of baseline input[s]) indicates a change 
in the code’s behavior. This change may be 
intentional or unintentional. When code 
functionality changes intentionally—as 
a result of a feature request, specification 
change, and so forth—test cases related to 
that behavior are expected to fail because 
the new expected outcomes will be dif-
ferent than those recorded in the base-
line. However, very often, other test cases 
will also fail unexpectedly. If so, this fail-
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ure reveals a complex functional prob-
lem caused by the code modifications. If 
no unexpected failures are identified, you 
know that the modifications didn’t break 
the existing functionality.
 The appropriate response to a test case 
failure depends on whether the change was 
expected. If the new outcome is now the 
correct outcome, the expected test case out-
come is updated, and it becomes a part of 
the baseline. If not, the code is corrected.
 After you rerun the test, review all 
uncaught run-time exceptions exposed by 
the tests, and then address them before 
proceeding. Each method should be able 
to handle any valid input without throw-
ing an undocumented uncaught run-time 
exception. If code should not throw an 
uncaught run-time exception for a given 
input, the code should be corrected. If the 
exception is expected or if the test inputs 
are not expected or permissible, document 
those requirements in the code, and indi-
cate in the tool that they are expected. This 
procedure prevents most unit testing tools 
from reporting these problems again in future 
test runs. Moreover, when other develop-
ers extending or reusing the code see docu-

mentation that explains that the exception 
is expected behavior, they will be less likely 
to make mistakes that introduce bugs. 
 Now let’s look at what is necessary to 
make your application even better without 
breaking it. Suppose you are safeguarding 
against introducing critical problems and 
have a complete regression suite for the 
software to maintain the state it needs to 
be for the impending release and deploy-
ment milestone. What now? 
 If resources permit, you have a good 
opportunity to continue improving the 
code quality. Extend your unit test suite to 
improve coverage, make tests more realistic, 
and verify the functionality specified in the 
requirements. Also, phase in more coding 
standards to identify and prevent additional 
coding problems. For instance, start imple-
menting rules that improve code maintain-
ability by improving class design and code 
organization, and rules that enhance code 
readability by applying common formatting, 
naming, and other stylistic conventions. 
 Review the coverage after running the 
entire test suite. If any classes received less 
than 75 percent coverage, customize the 
automated test case generation settings 
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(for instance, by modifying automatically 
generated stubs, adding realistic objects 
or stubs, or modifying test-generation set-
tings) so that the automated test case gen-
eration can cover a larger portion of that 
class during the next test run.
 Identify critical modules of code that 
should undergo more thorough rule compli-
ance and reliability testing. Utility code that 
is used from many parts of the application is 
the most sensitive to performance problems 
and unexpected inputs because that code is 
invoked so often in so many ways. Front-
end code for user interfaces, resource load-
ing, or other communication is the most 
vulnerable to security attacks, and it is an 
entry point into the system for unexpected 
input. The highest priority is establishing 
the baseline for protection of legacy code 
and putting in place a system to safeguard 
against new defects entering the code base. 
Incremental improvements on existing code 
should not be done until after the baseline 
and safeguards are in place. 
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Java ME continues to mature. Assess the platform, the standard 
APIs, the CLDC/MIDP stack, and device support for your needs

Get Creative on the 
Java ME Platform

W hen Sun Microsystems introduced 
Java 2 Platform, Micro Edition 
(J2ME, which was renamed recently 
to Java ME) to the world in 2000, the 

promise was to bring Java’s “write once, run any-
where” capability to the highly fragmented hand-
held-device market. Java ME is supposed to be the 
“one platform that rules all mobile phone manufac-
turers and carriers.” It allows developers to focus their 
energy on creative work instead of tedious applica-
tion porting across multiple devices, and it aims to 
create a mobile application marketplace where all 
applications compete on a level playing field. 
 After six years, Java ME has met with great success. 
It is now supported by all major mobile phone vendors 
and carriers. Today, more than one billion devices sup-
port Java ME out of the box. However, has Java ME 
fulfilled its “write once, run anywhere” promise? 
 Let’s examine the current state of Java ME and the 
entire mobile application market. The aim here is to help 
you decide whether Java ME will fit your next project, 
and if it does, to focus on how to develop portable Java 
ME applications. Primarily we’ll concentrate on mobile 
phone development on the Java ME platform, that is, 
the Common Limited Device Configuration (CLDC)/
Mobile Information Device Profile (MIDP) stack 
including smartphones and PDA phones. Java ME has 
another stack, known as the Connected Device Profile 
(CDC) and Personal Profile (PP), to support larger per-
sonal digital assistants (PDAs) and set-top box devices. 
The CDC/PP stack has not been widely adopted and 
is not within the scope of this discussion.
 The Java programming language is designed for 
cross-device portability. Java source code are compiled 

to a bytecode format that can be executed by the Java 
Virtual Machine (JVM). The JVM translates the byte-
code to the native machine code for the target device 
at runtime. To run Java applications, a Java ME com-
patible mobile phone must have the JVM preinstalled. 
Device manufacturers develop and preinstall JVMs 
for their devices, and, hence, insulate the application 
developer from the underlying device hardware and 
operation system, which are typically proprietary. In 
fact, many mobile phones on the market have com-
pletely closed operating systems, and Java ME is the 
only programming interface for those devices (see the 
sidebar, “More on the JVM”).

Crucial Interfaces
The Java language is only the basis of Java applica-
tions. Java ME is an application development plat-
form built on top of the Java language. The most 
important components of the platform are the 
Java ME application programming interface (API) 
libraries. The APIs determine what kind of applica-
tions you can develop with Java ME. To enable the 
cross-device portability of applications, it is crucial 
to standardize those APIs. 
 In Java ME all standard APIs are developed from 
the ground up as an industry consensus through the 
Java Community Process (JCP). The JCP member-
ship is open to all interested vendors and individu-
als. Almost all mobile phone manufacturers and car-
riers participate in the JCP. Every API is proposed 
by a JCP member as a Java specification request 
(JSR) and then developed by an expert group. The 
membership of the expert group is also open. At the 
time of this writing, there are 68 JSRs for the Java 
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ME platform. Some of the most important 
JSRs are: 

•	 JSR	30 for version 1.0 and JSR	139 for 
version 1.1 – The CLDC specifies the core 
language APIs for Java ME. For instance, 
it defines classes such as String and List, 
and it also specifies how the bytecode 
should be loaded into the JVM. 

•	 JSR	37 for version 1.0, JSR	118 for 
version 2.0, and JSR	271 for version 
3.0 – The MIDP specifies basic appli-
cation-level APIs. It contains a UI wid-
get library for small screens, a set of low-
level APIs to draw directly on the screen 
and capture-user input, a network API 
to send and receive data over the HTTP 
protocol, and a persistence API to store 
application data on the device memory. 
The MIDP also specifies the application 
life cycle (that is, the MIDlet model for 
starting, pausing, and exiting the appli-
cation); security model (that is, how to 
determine whether an application is 
trusted to access the network, and so 
on); and how the application should be 
deployed over the wireless network. 

•	 JSR	120 for version 1.0 and JSR	205 for 
version 2.0 – The Wireless Messaging API 
(WMA) provides access to the device’s 
Simple Message Service (SMS) messag-
ing functionalities. Using the WMA, the 
application can send an SMS message 
to any other device with a phone num-
ber. It can also receive incoming SMS 
messages. However, the WMA doesn’t 
have access to the phone’s native SMS 
inbox, and therefore cannot receive reg-
ular phone-to-phone SMS messages. It 
can only receive messages addressed to 
a special SMS port on the device. Most 
computer-based SMS tools and Internet-
based SMS gateways allow you to send 
such messages with port numbers. In 
WMA version 2.0, you can also send and 
receive Multimedia Messaging Service 
(MMS) messages from the application. 

•	 JSR	135 for version 1.0 – The Mobile 
Media API (MMAPI) provides access 
to the device’s audio and video periph-
erals. You can use the API to play back 
audio or video clips. On some devices, 
you can also use the API to record voice 
and capture picture/video from the on-
device camera. 

To the Higher End
All Java ME-compatible mobile phones sup-
port at least CLDC and MIDP. Most devices 
on the market today support WMA and 
MMAPI as well. A mobile phone with CLDC, 
MIDP, WMA, and MMAPI support can 
be labeled as a Java Technology for Wireless 
Industry (JTWI)-compatible device. In addi-
tion, many high-end Java devices also support 
one or several of these optional APIs: 

•	 JSR	75 – The personal information man-
ager (PIM) and file connection optional 
package provides access to the device’s 
native PIM databases—for example, 
todo list, calendar items, and address 
book. This API also allows the applica-
tion to save files to the device’s native file 
system, as opposed to the simulated per-
sistence store defined in MIDP. 

•	 JSR	172 – The Web services API provides 
a lightweight XML and SOAP parser 
library. You can develop mobile clients 
for SOAP Web services using this API. 

•	 JSR	184 – The Mobile 3D API is a 
lightweight 3D graphics library. It 
allows the application to create a vir-
tual world and manipulate objects in 
that world. It is an important API for 
mobile game developers. 

•	 JSR	 179 – The Location API allows 
the application to figure out the device’s 
current location through an on-device, 
GPS receiver or through a query to the 
carrier’s location server. When com-
bined with mapping data—for exam-
ple, Google Maps and Yahoo Maps—
the location API allows us to develop 
powerful, location-based applications. 

•	 JSR	82 – The Bluetooth API provides 
access to the Bluetooth radio on the 
device. You can use the Bluetooth API 
to exchange data objects and/or simulate 
serial data links between nearby devices. 

•	 JSR	 180 – The Session Initiation 
Protocol (SIP) API supports the SIP for 
network applications. SIP is important 
for push-based applications. It could 
also potentially open the possibility for 
Voice over Internet Protocol (VoIP) cli-
ents on mobile phones. 

•	 JSR	177 – The Security and Trust API 
provides access to the mobile phone’s 
SIM card. The SIM card uniquely iden-
tifies the mobile subscriber account on 

the network. Through this API you 
can gain access to data and applications 
stored on the SIM card. 

The optional APIs allow Java ME to scale 
from very low-end devices to high-end 
smartphones without falling into the trap 
of the lowest common denominator. Basic 
MIDP applications run on all Java ME 
devices. Applications designed for high-
end devices can take advantage of the more 
capable hardware (for example, camera, 
GPS, and Bluetooth radio) through those 
optional APIs. Those applications proba-
bly wouldn’t run on low-end devices (nor 
should you expect them to), but the point 
is that they are portable across similarly 
equipped devices from different vendors. 
With so many available APIs, Java ME is a 
comprehensive platform for developing all 
types of mobile phone applications, and yet 
it preserves the cross-device application por-
tability as we can reasonably expect.

API Support by Device
For the APIs to be useful, the device man-
ufacturers must implement and support 
them on the devices. One of the great 
successes of Java ME is its wide adoption 
among device vendors. Now, let’s check out 
what Java ME APIs are supported on sev-
eral popular mobile phones.
 Sony Ericsson has a great line of Java 
phones. They have large heap memory space, 
large flash storage space, and no limits on the 

More on the JVM

The JVM is much more than just a 

cross-platform layer for interpreting 

Java bytecode. It provides automatic 

memory management, run-time opti-

mization, and a security sandbox for 

applications. When a Java application 

crashes, it crashes inside the JVM and 

won’t affect other applications on the 

same device. A Java application cannot 

access any device resource without the 

JVM permission. All of these aspects are 

crucial productivity features that make 

Java a popular programming language. 

The stability and security features pro-

vided by the JVM are especially impor-

tant for mobile phone applications.
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size of the Java application (JAR file). On a 
Sony Ericsson phone, the Java ME applica-
tion can make outward HTTP connections 
through the WAP channel. Therefore, you 
need only a cheap WAP data plan (for exam-
ple, the $5/month unlimited t-zones plan 
from T-mobile) to use networked Java ME 
applications. That is a huge plus for many 
because phones from other vendors often 
require purchasing the full “Internet data 
plan” ($20/month for T-mobile) to use the 
network (TCP/IP) in Java applications.
 A midrange smartphone device like the 
K700 supports these Java ME APIs: CLDC 
1.1, MIDP 2.0, Mobile 3D API, WMA, 
and MMAPI. The support for Java 3D on 
midrange devices (and even mass-market 
devices like the K300) is great for game 
developers too. However, it’s also note-
worthy that this device doesn’t support the 
PIM and file connection API. It also lacks 
support for the Bluetooth API, although it 
does have Bluetooth radio.
 A high-end Sony Ericsson phone like the 
W900 walkman phone is a truly powerful 
Java ME device. It supports all the APIs sup-
ported in the K700, plus Bluetooth API, 
PIM and file connection API, and Web 
services API. The Mobile 3D API support 
in W900 is backed by hardware accelera-
tion. You can develop very nice and fast 
3D applications for the W900.
 Nokia is the biggest mobile phone man-
ufacturer in the world. It also sets the stan-
dard for mobile phone features and UIs. If 
you are developing a Java ME application, 
you will probably target a Nokia phone for 
prototype development at first. Nokia is a 
key member in the JCP, and it drives the 
development of many Java ME APIs.
 A low to midrange Nokia Series 40 
phone like the Nokia 6230 typically sup-
ports these APIs: CLDC 1.1, MIDP 2.0, 
WMA, MMAPI, and the Bluetooth API. 
A popular Nokia S60 smartphone like a 
Nokia 6680 supports CLDC 1.1, MIDP 
2.0, WMA, MMAPI, Mobile 3D API, 
Bluetooth API, and the PIM and file con-
nection API. A high-end Nokia S60 device 
like the E70 supports all of the aforemen-
tioned APIs plus the Web services API, 
Security and Trust API, Location API, and 
the SIP API.
 Like Nokia, Motorola is an early sup-
porter of Java ME and is a key JCP mem-

ber. However, Motorola phones’ Java sup-
port has left a lot to be desired. For instance, 
Motorola’s best selling RAZR V3 phone 
supports only CLDC 1.1, MIDP 2.0, 
WMA, MMAPI, and proprietary APIs to 
access the address book, file system, and 
the fancy LED lights on the phone. It’s a 
pity that such a slick and popular phone 
doesn’t support some of the more advanced 
and standard APIs.

Pros and Cons
Research In Motion’s BlackBerry is a wildly 
popular e-mail device among enterprise 
users. The entire suite of software on the 
BlackBerry handset is built using Java. 
BlackBerry supports CLDC 1.1, MIDP 2.0, 
and an array of proprietary APIs to access 
the device’s native e-mail client and other 
PIM databases. Those APIs are highly useful 
in constructing enterprise applications over 
BlackBerry’s push messaging platform.
 Palm Tungsten/Treo and Windows 
Mobile devices typically do not come with 
the JVM preinstalled. You can download 
and install third-party JVMs yourself to run 
Java applications on those devices. However, 
the third-party JVMs are typically limited 
to CLDC 1.1 and MIDP 2.0 support with-
out any optional API package support.
 While Java ME is a highly successful 
platform for mobile applications, several 
shortcomings that hinder its adoption over 
the past six years have been observed. For 
developers it is very important to under-
stand those shortcomings and how they 
might affect your development projects. 
Let’s take a look at some potential solu-
tions to those problems.
 Device fragmentation refers to the real-
ity that different devices support a differ-
ent set of Java ME APIs and have differ-
ent behaviors even under the same API. 
Fragmentation breaks application porta-
bility, and it is one of the biggest com-
plaints from Java ME developers. However, 
it is important to understand that there is 
nothing wrong with fragmentation per se. 
Mobile devices are personal and specialized 
devices; different customers require differ-
ent devices. It’s a good thing that device 
manufacturers make a variety of devices to 
address the diverse market needs and dif-
ferentiate themselves from competitors. In 
fact, this type of fragmentation is a sign 

of innovation. What’s missing is a univer-
sal and standard best practice to help you 
work with fragmentation. Typical sources 
of fragmentation include different devices 
having different: 

•	 Hardware add-ons and, hence, sup-
port different Java ME optional APIs – 
For instance, a low-end device without 
Bluetooth radio would not support the 
Bluetooth API. 

•	 Priorities for their storage place and other 
computing resources – For instance, a 
device for the youth market probably sup-
ports the Mobile 3D API, but it is unlikely 
to support the Web services API. 

•	 Form factors and different screen resolu-
tions – They also support different data 
input methods (that is, keyboard, key-
pad, touch screen, voice recognition). 

•	 Application sizes – Some devices can 
only install applications smaller than 
100 KB, while others permit up to sev-
eral MBs. They also support different 
amounts of heap memory space, persis-
tent storage space, and maximum num-
ber of concurrent threads. 

•	 Implementations of the same API – For 
instance, two devices might both imple-
ment the MMAPI, but one device sup-
ports capturing video clips and MP3 
playback while the other only supports 
simple MIDI playback. 

•	 JVM implementation bugs or behav-
ior when the specification is vague – A 
major source of confusion comes from 
the multithread behavior of different 
devices. This behavior could be an issue 
when you have several threads updating 
the screen for animation and retrieving 
data from the back-end server. Different 
devices also have different behaviors 
when you try to free memory space by 
running a garbage collection.

Provider Assistance
Mobile application developers typically 
develop one application that runs well on 
a popular device, and then try to port the 
application to other devices in the same 
class. Device manufacturers can help by 
grouping similar devices together. For 
instance, Nokia groups all of its devices 
into three developer platforms (Series 40, 
S60, and Series 80). Devices on the same 

http://www.javapro.com


Come visit the Journal’s new home 

at www.ArchitectureJournal.net. 

The new site contains a full library of 

articles from previous Journal issues 

in addition to upcoming highlights 

of our next issue. Browse the content 

today and  post comments and let-

ters directly to the editor!

Now live at www.ArchitectureJournal.net!

ARCjournalAD.indd   1ARCjournalAD.indd   1 3/30/06   10:14:06 AM3/30/06   10:14:06 AM

http://www.architecturejournal.net
http://www.architecturejournal.net


development Java ME Update

24  www.javapro.com  |  Java Pro   Volume 10, number 2

platform have similar screen sizes, hard-
ware capabilities, and support similar Java 
ME APIs. You need to develop your appli-
cation for a representative device in each 
platform, and then only minor changes are 
required to port them to every device on 
the platform. 
 In the porting process, you typically need 
to optimize resource files (for example, images 
and sound clips) for the target device’s screen, 
speaker, and memory space; add or remove 
functionalities based on the API availability 
on the target device; and provide source code-
level workarounds for JVM bugs or other low-
level JVM differences. 
 Several third-party solutions have been 
developed to address the device fragmentation 
problem. For instance, the NetBeans Mobility 
Pack (see Resources), which is a premier, free 
IDE for Java ME, supports precompile con-
ditions embedded in Java code as comments. 
You can choose to include and/or exclude cer-
tain code blocks for each build target. It is a 
very powerful way to introduce minor code 
changes between target devices. 
 By tweaking the build script, you can 
also choose what resource files to include 
for each build target. If you do not want 
to deal with the application porting issues 
by hand, Tira Wireless develops an auto-
matic tool for porting and optimizing Java 
ME applications. The Tira Wireless Jump 
suite has a very comprehensive database 
that documents differences among devices 
(see Resources). You can simply feed your 
“reference implementation” for a popu-
lar device into the Jump suite, and it will 
make changes automatically to the code 
and resource files to generate applications 
for the target device.
 The second major shortcoming of Java 
ME is that it’s originally designed with-
out much thought about mobility. In fact, 
the CLDC/MIDP stack looks very much 
like a miniature desktop environment with 
UI widgets tweaked to fit the small screen. 
Furthermore, because of the Java security 
model Java ME applications do not have any 
access to device functionalities not exposed 
as Java APIs. As a result, most Java applica-
tions are limited in the CLDC/MIDP sand-
box, and they are distinctly different from 
native applications on the device because 
of the lack of integration with the under-
lying system. 

 There is no integration with the device’s 
native applications (for example, the mes-
saging client, the video recorder, the music 
player, and the screen saver), and there is lit-
tle integration with low-level hardware fea-
tures (for example, access to the device serial 
number, cell ID, and so on). The CLDC/
MIDP sandbox is probably okay for sim-
ple, form-based business applications or 
simple games ported from the PC world. 
However, the problem is that there is only 
limited need for “desktop replacement” 
mobile applications. Many users already 
use laptop PCs or tablet PCs for this type 
of application. Plus, those Java ME applica-
tions only represent incremental improve-
ments over WAP browser and Flash-based 
applications. They aren’t all that exciting, 
and therefore the adoption rate is low.

Wish List
What mobile application users and develop-
ers really want are applications that can truly 
take advantage of mobility features that are 
available only on mobile phones. We want 
applications that integrate tightly with the 
underlying phone platform and behave like 
native applications. For instance, here are 
several feature examples that would be great 
to have in Java ME applications or games: 
the ability to make, receive, and manage 
voice calls; the ability to make use of and 
manage users’ personal data on the phone 
(for example, address book, calendar, pho-
tos, and ringtones); an idle screen or screen 
saver to run in the background while pro-
cessing user input and SMS or Bluetooth 
for responding to incoming messages; the 
ability to uniquely identify the user through 
IMEI number, subscriber number, or even 
digital certificate; location sensitivity; and 
camera-based applications. 
 Of course, the Java ME optional API 
packages are designed to provide Java appli-
cations more access to the underlying plat-
form. For instance, the PIM API allows access 
to the PIM database (for example, address 
book) maintained by native applications, 
the file connection API provides access to 
the photo and music folders on the device, 
and the Location API enables location-based 
applications. However, some important fea-
tures are simply not supported in current 
APIs. For instance, there is no Java ME 
API to support voice calls, which is by far 

the biggest application for mobile phones. 
Even for features that are supported in cur-
rent APIs, the JVM implementation often 
leaves a lot to be desired. For instance, the 
photos captured from the MMAPI typically 
have much lower quality than photos cap-
tured from the native camera application.
 To make Java ME a better mobile applica-
tion development platform, we need to push 
out more optional API packages and get them 
implemented by phone manufacturers, which 
leads to the next weakness in Java ME.
 As mentioned previously, all of the Java 
ME APIs are collaboratively designed by the 
JCP. Many JCP members compete among 
one another. The JCP process certainly 
helps those vendors to reach a consensus 
that they can all support. However, this 
design-by-committee approach is also very 
slow, especially when some vendors have 
political agendas. For instance, it took the 
JCP more than three years to develop the 
PIM and File Connection optional pack-
ages in Java ME, which is a very long time 
in the world of mobile applications. That 
delay has resulted in the situation today in 
which the Java environment on the majority 
of Java ME devices has no integration with 
the most popular native applications.
 A potential solution for this problem is to 
encourage mobile phone vendors to develop 
and support proprietary Java APIs on their 
devices if no standard APIs for the same func-
tionalities are available. Nokia and Motorola 
have used this proprietary API approach in 
the early days of Java ME out of necessity. 
BlackBerry is still doing using this approach 
today with very good results. Applications 
developed against those proprietary APIs 
would not be portable. However, that would 
give Java developers a way to write advanced 
applications for this particular device (or 
family of devices) if they choose to. In fact, 
the proprietary API can also act as a test-
ing ground for JCP APIs. If those APIs are 
proven successful, the vendors can then work 
together to make it a standard. 
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Java’s Desktop 
Comeback
New vertical market applications require customization, 
and the RCP may provide the best tools for the job 

Eclipse has one. NetBeans has one. 
Eclipse claims to have made signif-
icant strides in getting developers 
excited about the technology and 

using it in development efforts. I’m not 
referring to a freely available open source 
IDE, of course, but rather the Rich Client 
Platform (RCP).
 You can think of the RCP as an appli-
cation framework. How does it work, you 
might ask? Both Eclipse and NetBeans are 
fundamentally IDEs, looking and behav-
ing the way developers expect them to per-
form. While Eclipse has shifted its image 
over the last couple of years to that of a 
more generic application development 
platform, the concept of the RCP doesn’t 
even seem to fit under that umbrella.
 Further, the recent promotion of the 
Java rich client seems odd, coming as it 
does after the development community 
seems to have determined that Java is best 
suited for Web applications and middle-
ware. Once upon a time, in the dawn 
of the Internet era, Java was in fact seen 
as primarily a platform for visual expe-

riences. This notion was supported by a 
rich set of layout managers that in theory 
enabled developers to deploy the same UI 
on different display types such as desktop 
computers and cell phones.
 However, Java on the desktop or in 
applet form suffered from poor user 
interface (UI) controls, inconsistent lay-
out managers, and above all, poor perfor-
mance. Within two years, Java largely dis-
appeared from the desktop, and still later 
Java 2 provided the features needed for 
true enterprise back-end solutions. Except 
for Web applications, Java almost disap-
peared from the desktop.

Ch-Ch-Changes
What has changed? Fortunately, plenty. 
Here are probably the three most impor-
tant changes we’ve experienced in the 
platform in the last ten years.
 1. Managed languages are mature. Let’s 
face it, Java was painfully slow in the 1.0 
time frame. Bytecode was fully interpreted, 
whereas today just about everyone JITs it. 
Likewise, early versions of the Java Virtual 
Machine (JVM) were not tuned for perfor-
mance. The concept of managed languages 
was new for most, and expectations were 
based on the relative performance of C and 
C++ applications. Java clearly suffered as a 
result. However, today managed languages 
are the mainstream. Microsoft has intro-
duced its own managed platform, and it 
is no longer such a radical idea. Scripting 
languages such as Python and Ruby, which 
are interpreted, are accepted as solutions 
that provide for sufficient performance 
and scalability on many different applica-
tions. Running Java on the desktop is no 
more foolish than running Microsoft on 
the desktop.

 2. Computers and networks are faster. 
The poor performance of Java was exacer-
bated by slow desktop computers. While 
they may have seemed pretty fast at the 
time, the average computer in 1996 ran 
at about 133 MHz and had about 8 MB 
of memory. That amount was insufficient 
memory to contain an adequate working 
set for both a JVM and an application, 
so the result was a lot of disk swapping 
and waiting. Networks had similar limita-
tions, especially with Internet access. Any-
one who tried running Web applets across 
dial-up networks around 1996 knows 
that download speeds were painfully slow. 
In contrast, today the proliferation of T1 
lines, frame-relay networks, DSL, and 
cable modems make Internet access blaz-
ingly fast, and for LANs, gigabit Ethernet 
is fast becoming the standard.
 3. User interface choices are better. 
When Java first launched, its UI controls 
were primitive and without many prop-
erties that developers expected to have 
under their control. On the Eclipse plat-
form, the Simple Widget Toolkit (SWT) 
provides the Windows look and feel that 
is familiar to most computer users, and on 
NetBeans developers are more than happy 
with Swing.
 Thus, it is not only possible, but prob-
ably inevitable, for Java to make a come-
back on the desktop. While rich client 
applications seem to have lost some of the 
enthusiasm of developers and IT admin-
istrators, application end users still prefer 
the feel and interactive nature of the desk-
top client.
 However, those charged with build-
ing, maintaining, and administrating rich 
client applications generally don’t like to 
work on them. From the standpoint of 
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developers, there is too much baggage to 
bring along. They not only have to create 
the required features and flow of work but 
also housekeeping activities such as win-
dow and text manipulation. As the appli-
cation is maintained and enhanced over 
its lifetime, adding new features while 
maintaining the quality of existing ones 
becomes more and more difficult because 
old and new code becomes intertwined.

Simply Plug It In
From the standpoint of system and soft-
ware administrators, rich client applica-
tions are the bane of their existence. Instal-
lation requires either complex scripts or 
visits to every desktop, and solving prob-
lems often requires diagnosis directly on 
the client. Eclipse addresses the baggage 
and upgrade issues through its unique 
plug-in and update strategies. The plug-
in strategy provides for features to be 
incorporated as separate plug-in modules 
to simply be placed in the correct direc-
tory for those features to be recognized 
and integrated into the platform. 
 This strategy accomplishes two pur-
poses. First, it provides a framework of 
windows, menus, graphics, and other UI 
elements for the plug-in. In fact, it goes 
deeper than just the UI; it also provides 
underlying communication and resource 
management foundation for an applica-
tion. Writing the features of the appli-
cation is an easier and more straightfor-
ward proposition. Second, it provides a 
streamlined way to install and support 
that application. Many enterprises keep 
a set of standard images for their desk-
tops, so that a given system configuration 
can more easily be created on demand. If 
those images also include an RCP, then 
installing the right applications for a spe-
cific user can consist of loading the cor-
rect plug-ins.
 Eclipse also goes one step further with its 
Update Manager, a method by which new 
versions of plug-ins can be downloaded from 
a specified location and installed automati-
cally. It is really a straightforward HTTP link 
to a given download site, but Eclipse auto-
mates the process by either looking at fea-
tures already installed or letting you set the 
link to the application you want to install. 
Either way, this feature makes it possible to 
load up that newly imaged computer with 

the correct application by simply entering 
the correct URL into the Update Manager. 
Rich client application deployment and 
maintenance just got significantly easier.
 The RCP concept may make more 
sense in vertical industry applications, 
where customization of features and 
workflow is an important part of the pro-
cess. It is much easier to maintain multi-
ple versions of plug-ins rather than mul-
tiple versions of entire applications. Yet, 
isn’t it still an IDE at heart? Well, yes, but 
at some level an IDE is simply an appli-
cation for building applications. It shares 
more characteristics with its end product 

than we might realize. Virtually all com-
puter users do input, editing, switching 
between files and windows, and running 
tools no matter what application they are 
working with, and those are the capabili-
ties that come with the platform, whether 
it is Eclipse or NetBeans. 
 The greatest strength of the RCP may 
also be its greatest weakness. One of the 
key advantages in getting an application 
accepted by end users is to have a look 
and feel that is familiar to those users. 
Being able to leverage the look and feel 
of the RCP across multiple applications is 
an incredibly powerful incentive to adopt 
such a standard platform. 
 But the weakness is that the RCP look 
is not the look that users are familiar with 
today. That distinction belongs to Micro-
soft Office, which is by far the most widely 
used rich application today. Most appli-
cations try to mimic that look, reasoning 
that their users will have a more positive 
initial impression of the application and 
require less training to use it effectively. 
In effect, to get an application accepted, 
often the best strategy is to look like other 
popular applications.

Past Perceptions
Because Java rich client UIs are only start-
ing to emerge, their look is unfamiliar to 

most users. Here the Eclipse RCP may 
have a slight advantage, since the SWT UI 
controls use the Windows look and feel, 
and thus may be more familiar to more 
computer users. Moreover, more soft-
ware developers use Eclipse, so its look is 
becoming familiar to that important group 
of users. Either way, it’s an uphill battle for 
any look and feel not associated with Win-
dows and Office to gain popularity among 
end users—uphill, but not impossible.
 Despite all of its apparent advantages, 
I confess that I still have my doubts about 
the viability of the RCP concept. Some of 
those doubts are rooted in what are prob-

ably out-of-date biases toward rich Java 
applications. I don’t know if the RCP can 
change that longtime perception that Java 
isn’t a language for rich clients.
 The plug-in strategy, however, is really 
quite unique, and it represents an entirely 
new way of thinking about application 
development. Developers I’ve talked to 
have mixed reactions; they tend to like the 
platform idea in theory, but few see it as 
something they could realistically put to 
use. For the most part, they are not build-
ing entirely new applications, but rather 
are adding features to, or updating, exist-
ing ones. The problems with bringing an 
old code base forward are well known to all 
of them, but none of them can justify start-
ing over with an entirely new code base.
 This outlook may be the biggest 
impediment to RCP, but new vertical 
market applications are being written on 
a regular basis, as markets shift and regu-
lations prompt changes. Because vertical 
market applications often need custom-
ization, the RCP may be more compelling 
in this type of development environment. 
I applaud the trend, and believe that over 
time it will mark a watershed in how we 
build applications. 
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The Two Schools of 
Lazy Programming
Apply a different metric to adopt practices that will save 
you time while achieving a desired result 

D uring my career, I’ve had the 
opportunity to evaluate soft-
ware development practices at 
all types of organizations. From 

small start-ups and large corporations to 
government and academic research labs, 
software projects face many of the same 
problems. Unfortunately, many of those 
problems are self-created and therefore 
avoidable. Strangely, self-created problems 
are caused often by laziness and also can 
be solved by laziness. The lessons taught by 
these two schools of lazy programming—
the bad and the good—can help open the 
doors of productivity. But how do you tell 
the difference between bad laziness and 
good laziness? There’s the rub.
 Recently, I had the opportunity to 
evaluate software development at a very 
early stage start-up. The name of the 
game at start-ups is speed. You’ve got to 
code fast and get product out the door so 
you can start making money and capture 
a piece of the market before your com-

petitors bury you or your money runs 
out. Cutting corners is common prac-
tice, but in the long run does more harm 
than good. Start-ups tend to succeed in 
spite of themselves, not because they are 
models of efficiency.
 The start-up I evaluated fit the pattern 
I’ve encountered all too often at com-
panies big and small. No revision con-
trol. No release management process. No 
requirements documents. No design doc-
uments. No API documentation. No test 
procedures. You get the picture. Worse 
yet, the CTO understood that the com-
pany was cutting corners and offered the 
usual defense of not having enough time 
to do things right. Many compromises can 
be forgiven if they produce good results, 
but eschewing good practices knowingly 
in the interest of saving time in the short 
term will always cost more time in the 
long term.
 The first commandment of software 
development should be “Thou shalt not 
program without a revision control sys-
tem.” Whether it’s a one-programmer proj-
ect or a hundred-programmer project, revi-
sion control is the foundation for creating 
reproducible results in software develop-
ment. Single programmers cannot recover 
from their mistakes and failed experiments 
without revision control. Efficient mul-
tideveloper collaboration is not possible 
without revision control. Reliable release 
management is not possible without revi-
sion control. Yet many companies develop 
software without it.

No Excuses
Projects avoid revision control because 
of the bad kind of laziness. An individ-
ual programmer starts coding on his or 

her own, as happened at the start-up I 
mentioned, and becomes more concerned 
with programming than configuration 
management. In the absence of a preex-
isting configuration management infra-
structure, it seems less time consuming to 
simply code away. But then the program-
mer alters some code and changes his or 
her mind, deciding it’s best to revert the 
changes. Oops! No revision control. Now 
the programmer has to recreate the origi-
nal version from memory and starts mak-
ing back-up files every now and then 
before making major changes. Come 
release time, he or she makes another 
backup and gives it a release number. Sud-
denly, the programmer’s managing an ad 
hoc version control system.
 Truly lazy programmers would start 
off understanding that making man-
ual backups of source files is tedious and 
error-prone. “I don’t want to waste my 
time copying files to numbered directo-
ries,” they think. “I’ll just save some time 
and use a proper version control system.” 
With the many free and feature-rich 
revision control systems available, there’s 
simply no excuse to not take this tack. 
At every organization where I’ve had to 
introduce basic software development 
practices, the practice that has gotten the 
greatest positive response from program-
mers has been the use of revision con-
trol. Every programmer I’ve met who 
has moved from programming with no 
versioning system to programming with 
a versioning system has said the same 
thing: “I’m going to use version con-
trol for everything from now on. I don’t 
know how I managed without it!” That’s 
the good laziness setting in. If you are 
truly a lazy programmer, once you recog-
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nize that a practice will save you effort, 
you embrace it wholeheartedly.
 Source control seems like such a basic 
element of software development that it is 
easy to disbelieve organizations exist that 
don’t use it. Still, it must be applied effec-
tively to provide benefits. For example, 
after the company in question adopted a 
version-controlled source code repository, 
it didn’t have any configuration manage-
ment procedures to guide project organi-
zation and release management. There-
fore, interdependencies between modules 
and shared dependencies were handled 
through duplication. Approximately 100 
third-party libraries were duplicated, a 
separate instance appearing in the repos-
itory for each dependent module. Proj-
ect source files also were duplicated. For 
example, independent service compo-
nents all shared the same configuration 
file format. To read the configuration file, 
the services required the same configura-
tion class. Instead of placing this class in 
a separate library, the source file was cop-
ied into the source tree for each service. 
Which version was the master copy?
 The rampant duplication was borne 
out of bad laziness. You’re in the mid-
dle of coding one separately versioned 
component and need some functionality 
from another separately versioned com-
ponent; therefore, you copy the code or 
the entire source file instead of taking the 
time to organize your code into reusable 
libraries. Now, instead of making changes 
in a single place, you have to apply the 
changes in every place you copied the 
code. A programmer exercising good lazi-
ness will recognize the time and mainte-
nance savings to be derived from organiz-
ing the code up front.
 Again, organizing code into units 
that avoid duplication seems like such a 
basic practice that it’s easy to disbelieve 
any software development project would 
not do so.

Testing Shortcut
Nonetheless, even if you organize your 
source code and build system to avoid 
duplication and rely on versioned snap-
shots of class libraries, there remain many 
ways to create unnecessary work for your-
self. A common shortcut that should not 

be easy to disbelieve is a lack of test pro-
cedures. Testing encompasses more than 
simple unit tests, but unit tests are a good 
place to start. If you implement unit tests 
as you develop your code, you build reli-
ability into your system as you go along. 
Writing unit tests as you go along is not 
overly time-consuming. Neither is writ-
ing API documentation.
 There is a lot of dead time involved 
in software development, where pro-
grammers stare at the computer screen 
and think. It’s not overly time consum-
ing to use that dead time to both think 
and write API docs and unit tests. Track-
ing down and fixing avoidable bugs after a 
release is overly time consuming. Writing 
API documentation for hundreds or thou-

sands of classes after you’ve forgotten all of 
the details also is overly time-consuming. 
Going back and writing unit tests after the 
fact because you finally realize you need 
them is overly time-consuming. 
 The start-up I mentioned earlier had 
written absolutely no API documentation 
and no unit tests. Their production soft-
ware was deployed as a service off of the 
head branch without cutting release snap-
shots. Their idea of testing was to deploy 
the product and wait for the customer 
complaints to arrive. The service was crash-
ing once every couple of weeks. Without 
any performance measurements and anal-
ysis, they decided to make some perfor-
mance enhancements. The law of unin-
tended consequences took hold and the 
service proceeded to crash every few days. 
Different parts of the code base relied on 
different object persistence mechanisms, 
each of which created its own set of soft-
ware maintenance problems.
 To the company’s credit, it had deployed 
an issue-tracking system. However, the list 
of issues slated for the next release was 
so long it could never be completed in a 
reasonable time frame, causing them to 

deploy their service off of the head branch 
on a regular basis. Still, they were making 
money as so many companies do in spite of 
their inefficient practices.
 This company needed to cut its losses 
and invest the time to put its house in 
order instead of offering the excuse that 
“there’s no time to do this.” Small soft-
ware companies often start life with one 
or two programmers. Single program-
mers should conduct software develop-
ment as though they were working with 
other programmers. Write down require-
ments even if they consist of a few bul-
lets in a text file. Sketch out your designs. 
Document your code as you write it. 
Write unit tests. Plan releases from the 
very start as achievable goals that focus 

on a handful of changes. Measure and 
analyze performance before you opti-
mize code. Manage complexity by sim-
plifying wherever possible (for example, 
use one object persistence system instead 
of four). Don’t succumb to the bad lazi-
ness that is hastiness.
 Any practice that appears to save you 
time in the short run but costs you time 
in the long run is an example of bad lazi-
ness. Any practice that saves you time in 
the long run while achieving a desired 
result is an example of good laziness. Use 
that metric to help decide what practices 
to adopt. You don’t have to follow a par-
ticular software development process step 
by step. It takes time to save time. It takes 
work to truly be lazy. 

Daniel F. Savarese is the founder of Savarese Software 

research. He founded oro Inc., was a senior scientist at 

Caltech’s Center for Advanced Computing research, and 

was vice president of software development at WeboS. 

Daniel wrote the original Jakarta oro, Commons net, 

rockSaw, Sava Algorithms, and bareHTTP libraries. He also 

coauthored How to Build a Beowulf (mIT Press, 1999) and 

earned a Ph.D. in computer science from the university of 

maryland College Park. Contact Daniel at www.savarese.

org/contact.html.

The first commandment of software 
development should be, “Thou shalt 

not program without a revision 
control system.”
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The Two Sides  
of Progress

A lot is being said and written about standards and inno-
vation in technology: standards are a roadblock to inno-
vation because the process of standardization is too slow 
to capture innovation in a timely manner, and standards 

are more about politics than technology. In fact, across the industry 
there is plenty of evidence of how standards and innovation work 
together to advance technology. Being closest to the Java Commu-
nity Process (JCP), I know that this community has accomplished 
a marvelous thing: redefining standards and innovation as the sides 
of the same process—progress. Let’s look at a few Java Specification 
Requests (JSRs) that I encourage you to check out for yourself at the 
technical sessions (TS), hands-on labs (LAB), and birds-of-a-feather 
(BOF) sessions at the 2006 JavaOne Conference in San Francisco. 
 Let’s begin with JSR 245, JavaServer Pages (JSP), and JSR 
252, JavaServer Faces (JSF) 1.2 (LAB-4255 and BOF-2311). 
JSR 245 is the next revision of the JSP specification, and it im-
proves alignment with JSF and enhances ease of development. 
Similarly, JSR 252 updates the 1.1 version of the JSF specifica-
tion. These JSRs provide good examples of how standards build 
on standards and prepare and inspire innovation. They also 
demonstrate how innovation is worked into platform standards 
as the so-called umbrella JSRs, including JSR 244, Java EE 5. 
 For another example of advances at the standards-innovation in-
tersection, there’s JSR 224, JAX-WS (TS-1194). The major focus of 
this standard is ease of development to allow the technology to be 
used by a wide circle of developers and simplify their tasks. The spec-
ification extends JAX-RPC in a number of ways including alignment 
with JSR 181, Web Services Metadata for the Java Platform. You’ll 
also find out how the spec strongly aligns with JSR 222, Java Archi-
tecture for XML Binding (JAXB) 2.0 (TS-1607), to which it dele-
gates all data binding-related tasks and how it supports new versions 
of external standards from organizations such as W3C and WS-I. 
 Another JSR-based session for JSR 286, Portlet Specification 2.0 
(TS-3627) and headed by IBM, showcases the functionality that will 
be added to the new portlet specifications. This API advances and 
will be binary compatible with version 1.0 defined in JSR 168. If you 
want to find out how a standard developed today seeds innovation, 
attend the Java Module System (BOF-0684) session that is targeted 
to be delivered as a component of Java SE 7.0 (“Dolphin”). The Sun-
developed specification sets out to define a distribution format and a 
repository for collections of Java code and related resources as well as 
discovery, loading, and integrity mechanisms at runtime. 
 JSR 220, EJB 3.0, is another example of how standards and 
innovation find a way to build on the strengths co-leads Sun and 

Oracle bring to the table and as a result cause progress to hap-
pen. One of the results this JSR has yielded is a simplified persis-
tence architecture. Key features of the Java Persistence API (TS-
3395) will be highlighted, including those introduced since the 
publication of the JSR 220 public draft. 
 Platform JSRs like JSR 270, Java SE 6 Mustang Release Con-
tents, are a special case of close interplay between standards and 
innovation. An umbrella JSR builds on the sum of innovations 
provided by the so-called point JSRs, and scripting features in Java 
SE 6, including the scripting APIs and the JavaScript ScriptEn-
gine, will be presented (TS-1382). 
 IBM and BEA, co-leads of JSR 235, Service Data Objects 
(SDO), will present how developers will be able to simplify data 
access and representation in service-oriented software by replacing 
data access models with a uniform abstraction for creating, retriev-
ing, updating, and deleting business data used by service imple-
mentations (TS-3676). The SDO specification currently under 
development standardizes data objects in terms of change histo-
ry, compound data objects, dynamic and generated APIs, meta-
data, support for XML and Web services, neutral representation 
of business data, import/export from common formats, validation 
and constraints, relationship integrity, and navigation. 
 Java ME is where perhaps the most obvious advances fueled 
by community-driven standardization and innovation is occur-
ring. Two spec leads from Nokia team up to present the recent-
ly finalized JSR 256, Mobile Sensor API (BOF-2810), which 
defines basic sensor functionality for mobile devices and ex-
tends the usability and choice of sensors for Java ME applica-
tions. A perfect example of interplay between standardization 
and innovation is JSR 248, Mobile Service Architecture (TS-
4936), developed by Nokia and Vodafone, that creates a mo-
bile service architecture and platform definition for high-volume 
wireless handsets. JSR 232, Mobile Operational Management 
(TS-3757), led by Motorola and Nokia, is the topic of an intro-
duction to this spec under development and the benefits it sets 
out to pass on to developers. And co-leads Nokia and Motorola 
of JSR 272, Mobile Broadcast Service API for Handheld Termi-
nals (TS-4693), will present the features of this set of APIs. 
 These are just a handful of examples of the symbiotic nature 
of innovation and standards. At the JavaOne conference you’ll 
be able to see this system in action. Also visit the JCP.org (http://
JCP.org) to get the latest on innovating Java technology. 

onno Kluyt is chair of the JCP (http://JCP.org).
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platform.

Ensemble is the first fusion of an integration server,
data server, application server, and portal development
software – in a single, seamless product.  This is the
complete ensemble of technologies needed for rapid
integration, fast development, and easy management.

These innovations mean all of your integration 
projects will be completed on time and on budget, 
with a simplified learning curve for your IT staff. 
We back these claims with this money-back guarantee:
For up to one year after you purchase Ensemble, if you 
are unhappy for any reason, we’ll refund 100% of your
license fee.*

Innovative integration. Guaranteed performance.       

For a free copy of CACHÉ, or to request a free ENSEMBLE proof-of-concept project, visit www.InterSystems.com/Free8Q

*Read about our money-back guarantees at the web page shown above.
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