
2006 Vol. 10 No. 2

Borland Enhances Middleware for SOA, Java EE

Clean Up ComplexClean Up Complex
Java Code BasesJava Code Bases

When Lazy Programming When Lazy Programming
Is a Good ApproachIs a Good Approach

Java ME: The “Write Once,Java ME: The “Write Once,
Run Anywhere” PlatformRun Anywhere” Platform

Apply RCP to EnrichApply RCP to Enrich
Enterprise ApplicationsEnterprise Applications

Find Innovations Galore Find Innovations Galore
in Java Standardization in Java Standardization

The PowerThe Power
Behind IDEsBehind IDEs
Take a Fresh Look at Today’s ToolsTake a Fresh Look at Today’s Tools

The Power
Behind IDEs
Take a Fresh Look at Today’s Tools

Clean Up Complex
Java Code Bases

When Lazy Programming
Is a Good Approach

Java ME: The “Write Once,
Run Anywhere” Platform

Apply RCP to Enrich
Enterprise Applications

Find Innovations Galore
in Java Standardization

jpv10n2cvr_p2.indd 1jpv10n2cvr_p2.indd 1 4/26/06 10:08:37 AM4/26/06 10:08:37 AM

http://www.javapro.com

http://www.ibm.com/takebackcontrol/flexible

� www.javapro.com | Java Pro Volume 10, number 2

cover story

8	 Finding	the	Best	Value		
in	Java	IDEs

	 by	Peter	Varhol
Productivity is critical in today’s enterprise develop-
ment environments, and it should be among your
primary criteria when evaluating development tools.
However, productivity is difficult to measure abso-
lutely because of the nature of developer skills and
the projects to which those skills are applied. Free
and open source IDEs further complicate the picture.
Free solutions might seem to deliver the best value,
but does free translate into productive development?
Get acquainted with several IDE offerings and decide
for yourself.

Java Pro (ISSN: 1096-4495) is published quarterly by Fawcette Technical Publications Inc., 2600 South El Camino Real, Suite 300 San Mateo, CA USA, 94403. Tel. (650) 378-7100; fax (650) 570-6307. POSTMASTER: Send address changes to Java Pro, P.O. Box 3485,
Northbrook, IL 60065-9819. Periodicals Postage Paid at San Mateo, CA and at additional mailing offices. 2006 Fawcette Technical Publications Inc., all rights reserved. Java Pro is an independent publication not affiliated with Sun Microsystems. Sun Microsys-
tems is not responsible in any way for the editorial policy or other contents of the publication. All contents of Java Pro are copyright 2006 by Fawcette Technical Publications Inc., unless otherwise noted. “VBITS” and “Interactive Developer” are trademarks of
Fawcette Technical Publications Inc., a California Corporation, James E. Fawcette, President. Java is a trademark of Sun Microsystems. Rather that put a trademark symbol in every occurrence of other trademarked names, we state that we are using the names
only in an editorial fashion with no intention of infringement of the trademark. Although all reasonable attempts are more to ensure accuracy, the publisher does not assume any liability for errors or omissions anywhere in the publication. Canadian CPM: 40013204;
Customer: 2418150; Return Address: 4960-2 Walker Road, Windsor, ON 49A 6J3, Canada. ISSN: 1096-4495.

26 object enterprise
	 Java’s	Desktop	Comeback
	 by	Peter	Varhol
 Would you use the Rich Client Platform to build a vertical

application or a custom enterprise application? Discover what
you get with the Eclipse and NetBeans platforms and if using
those platforms means we’re going to see rich Java applications
again after convincing ourselves that Java is good for only the
Web and middleware.

28 Pro sHoP
	 The	Two	Schools	of	Lazy	

Programming
	 by	Daniel	F.	Savarese
 Software development firms often fall victim to bad laziness

when programming without a revision control system. Find
out how to apply “good laziness” to save time and achieve a
desired result.

dePartments

 4 editor’s note
	 	 by	Terrence	O’Donnell

16	 Cleaning	a	Complex		
Java	Code	Base

	 by	Matt	Love
 It would be nice to be able to analyze and unit test every

line of code, but obviously such an approach would
be cost prohibitive and impractical in today’s business
environment. Take a look at an approach to code standard
checking and unit testing for large, complex Java code bases
that helps ensure faster delivery of more reliable code.

20	 Get	Creative	on	the		
Java	ME	Platform

	 by	Michael	Yuan
 The Java ME platform (formerly, J2ME) is six years old.

Is it the right platform for your next mobile development
project? More importantly, does it live up to its “write
once, run anywhere” notoriety? Look in on the state of
Java ME and its CLDC/MIDP stack and APIs.

features columns

 6 in brief
	 	 Borland’s	middleware		
	 	 boost	for	SOA	and	Java	EE

 30 JAVA PRO
 ArticLe index

 38 Ad index

 40 pubLic stAtic
 Guest	Opinion		

by	Onno	Kluyt

https://ftponline.com/members/locator_plus.aspx?locator_code=JF_060407

contentsonline

Java Pro Volume 10, number 2 | www.javapro.com 3

Vol. 10, No. 2

H-1B	Programs	and	Doctoral	Imports	Misguided
Locator+ code: JF_060407
http://www.ftponline.com/weblogger/forum.aspx?id=1&dAte=04/07/�006#586

by	Jim	Fawcette
Unemployment in IT remains higher than the national average,
and escalating pay for top-tier experts distorts average pay for
programmers, Jim Fawcette noted in a recent blog. Find out more

about his thoughts on this perspective of H-1B visa programs and the undermining
of America’s competitive position because of educational policy.

onlineonline

www.javapro.com
Every week, the Java	Insight e-mail newsletter brings you up-to-date news, technical infor-
mation, opinions, interviews, and analysis on topics and technologies such as Java EE,
middleware, and application servers; Java ME, devices, and embedded development; data
access; servlets and JSP; Web services; and/or XML. Sign up for free	at www.javapro.com.

java insight newsletter sign-uP

publisher, Jeff Hadfield

editorial

editor, Terrence O’Donnell
technical editor, Daniel F. Savarese

contributors

Daniel F. Savarese, and Peter Varhol

art & Production

vice president, art & production, Michael Hollister
senior art director, Bruce Gardner
production manager,
Kathleen Sweeney Cygnarowicz
senior interactive art director/web producer,
Lyndon Lloyd
associate web producer, Shane Lee

advertising sales

ad director, vsm and java pro, Kevin White
executive assistant to the vice president, publishing,
susan lacroix

circulation

senior circulation director, Karen Koenen
conferences associate, Gerry Guzman

marketing

marketing manager, Susan Ogren
senior designer, Margaret Horoszko

conferences

vice president, Tim Smith
sales operations manager, David Seymour
conference operations planner, Will Hansen
marketing editorial planner, Katie McGillivray
exhibit sales manager, Tina Fontenot

customer service

customer service representative, Jose Porcell

oPerations

executive vice president/chief financial officer,
John Sutton
system administrator, Tin Cao
director of finance, Darlyn Phillips
accounts payable accountant, Elena Ostrovsky
staff accountant, Betty Tsang-Hwah Wu
accounts receivable, Iain Niellands
human resources manager, Pam Davis

ftPonline

managing editor/business unit manager,
Nina Goldschlager
advertising director, Roy Kops
project manager, Fred Perry
senior editor, Terrence O’Donnell
associate editor, Lauren Dresnick
eastern regional sales manager, Dennis Leavey
western regional sales manager, Lisa Sidlow

fawcette tecHnical Publications

president, James E. Fawcette
vice president, chief information officer, Aaron Weule
vice president, publishing, Jeff Hadfield
vice president, conferences, Tim Smith
corporate counsel, Wilson, Sonsini, Goodrich & Rosati

the onLY place on the
Web for Java Pro content,
code, and community is

www.javapro.com

What Are Locator+ codes?
Locator+ codes give you instant access to a feature on Java Pro
Online. Simply type the Locator+ code into the field in the upper-
right corner of the page, and click on the "go" button.

jf_040510

FTPOnline Blogs
Check out the FTPOnline blog page to get insights from Jeff Hadfield, vice presi-
dent, publishing, Terrence O’Donnell, Java	Pro editor, and other FTP editors sound-
ing off on IT and development issues.
www.ftponline.com/weblogger/

More Online Exclusives
Special	Report:	Mobile	Java	Development
Locator+ code: MOBLJAVA
The mobile industry is evolving rapidly, with certain platforms, tools, and languages
beginning to establish footholds that are giving developers more standardized alter-
natives to realize full wireless functionality in their applications. Take a look at the
state of mobile Java development from a variety of angles, including the Java ME
platform APIs, a roundtable discussion of industry experts, and the latest versions of
the Symbian 9 OS and Nokia’s Series 40 3rd Edition and S60 3rd Edition platforms.

Combat	Increasing	IT	Complexity
Locator+ Code: EA0601FB_T
by	Firdaus	Bhathena
Given the challenges of complexity, how can you get an accurate picture of the
systems, applications, and other infrastructure components in your environment?
Consider some suggestions for exploring how companies can conquer issues
associated with IT complexity and achieve success in their architecture initiatives.

Visit Java Pro online for this extended content and more.

https://ftponline.com/members/locator_plus.aspx?locator_code=JF_060407
https://ftponline.com/members/locator_plus.aspx?locator_code=JF_060407
https://ftponline.com/members/locator_plus.aspx?locator_code=JF_060407
http://www.javapro.com
http://www.ftponline.com/weblogger/
https://ftponline.com/members/locator_plus.aspx?locator_code=MOBLJAVA
https://ftponline.com/members/locator_plus.aspx?locator_code=EA0601FB_T

by Terrence O’DOnnell

editor’s note

� www.javapro.com | Java Pro Volume 10, number 2

Java Season

T
he JavaOne Conference brochure’s tag line is “The Power
of Java,” and it certainly seems fitting given the healthy
state of everything that is Java. The agenda for this annual,
Spring season conference exemplifies how much innova-
tion is out there and how much there is to learn to lever-

age Java technologies and build even more impressive enterprise-scale
applications.
 Consider the breadth of topics for the platform tracks alone.
Presentations for Java SE highlight the platform’s version 6 (“Mus-
tang”); Web 2.0, NetBeans, robust Java technology-based applica-
tions, and of course the ballyhooed Eclipse Rich Client Platform;
and other noteworthy technologies like JMX, Swing, Struts, and
REST. As noted in the brochure, some Java SE topics overlap top-
ics geared for the Java EE platform track, and there is some instruc-
tive fare tied to this platform too. Not only will you find presen-
tations for the de rigueur technologies like SOA, EJB, BPEL, and
Java-.Net interoperability, but you’ll find a variety of perspectives
on ease of development, AJAX, and JSF. Of course, there is plenty
of content on Java Specification Request (JSR) updates across all
platforms, and in this issue’s Public Static column Onno Kluyt,
chair of the Java Community Process (JCP), provides a compre-
hensive summary of what’s current with specific JSRs and maps
them to their corresponding JavaOne sessions.
 Arguably some of the most exciting Java-related innovation
is occurring in mobile applications development, and this vital-
ity is reflected in some noteworthy JavaOne session offerings
around new Web 2.0 services, Blu-ray, the NetBeans Mobility
Pack, and UI design for Nokia’s Series 40, S60, and Series 80
platforms. In fact, innovation for the mobility market is heat-
ing up appreciably in the North America region, and for some
good insight into this trend I urge you to visit the FTPOnline
site to see our special report on mobile Java development (www.
ftponline.com/special/mobilejava/), which includes articles and
resources that reflect the dynamic state of the mobile space.
 To give you some report highlights, we gathered industry insid-
ers from organizations that are members of the Forum Nokia Pro
program for a roundtable discussion of enterprise application
development for mobile devices. For an update on Java ME spe-
cifically, Michael Yuan, a recognized expert on end-to-end mobile
and enterprise solutions, provides a detailed discussion of the plat-
form and its latest advancements (that article also appears in this
issue). Periodic Java Pro contributor Rick Grehan offers a clever
technique for reverse engineering a typical mobile application to

leverage an object database library for UIQ-based devices. Also,
the report includes technical articles on applications development
for the MIDP stack for Symbian-based mobile devices and Nokia’s
Series 40 3rd Edition and S60 3rd Edition platforms. For some
additional insight you’ll find an exclusive interview with Lee Ept-
ing, vice president, Forum Nokia, who discusses the rapid progress
Forum Nokia and Forum Nokia Pro are making to support inno-
vation for developers of mobile applications.
 Tools constitute another JavaOne track, and Java-based tools
continue to be an area exhibiting a lot of creativity to make the
development process easier for developers and developer teams
who find themselves constricted by tight budgets and more com-
pressed time-to-market milestones in their production environ-
ments. Since productivity is a key criterion for tools evaluation,
our cover story by frequent contributor and columnist Peter Var-
hol analyzes the value and productivity proposition available from
a select group of IDEs, which are freely available for evaluation.
 JavaOne’s importance to the industry cannot be overstated, and
the publisher of this magazine intends to participate with two key
events. Our Java Technology Roundtable returns—after last year’s
hiatus—to bring together industry luminaries who will share their
perspectives on current technology trends for Java in the enter-
prise, what has transpired in the Java development space over the
last year, and where the industry is going in the year ahead. Look
for expansive coverage of the roundtable both online at FTPOn-
line and in an upcoming issue of Java Pro.
 We also host our annual Java Technology Achievement Awards
during JavaOne, where we present awards for outstanding Java-
based products selected by your votes. Readers responded to an
online ballot to vote for their favorite tools and technologies
among 20 categories, and we are pleased to recognize the win-
ners, including two additional community awards selected by
Java Pro editors. Like the Java Technology Roundtable, look for
exclusive coverage of the award winners both online and in an
upcoming issue of this magazine.
 A lot of exciting opportunities for enterprise- and Java-based devel-
opment are now available to the community. Look for an upcoming
special report on FTPOnline that will spotlight the current state of
Java, Eclipse tools, and JavaOne highlights. As always, if you have
suggestions for our coverage, send me an e-mail.

Terrence o’Donnell, editor
todonnell@fawcette.com

http://www.javapro.com
mailto:todonnell@fawcette.com

Using Ajax?
Log in and Learn from the Experts

August 15 & 16, 2006
www.ftponline.com/ajax

Visit www.ftponline.com/ajax to register for FTPOnline’s premiere Virtual Tradeshow.

Access the Free in-depth tutorial on Asynchronous JavaScript and XML (Ajax) from your desktop.

Benefi ts:
• Two full days of virtual sessions and keynotes led by Ajax experts
• Examples of real-time form data validation and server-side notifi cations
• Best practices for creating interactive Web applications
• Chat with virtual exhibitors about your Ajax concerns

For sponsorship opportunities, contact Roy Kops at 650-378-7144 or rkops@fawcette.com.

NEW!

ftpon06_ajax_v2.indd 1ftpon06_ajax_v2.indd 1 4/25/06 12:51:23 PM4/25/06 12:51:23 PM

http://www.ftponline.com/ajax
http://www.ftponline.com/ajax

in brief

� www.javapro.com | Java Pro Volume 10, number 2

Mission-Critical Optimization
Borland VisiBroker 7.0 enhances SOA support and adds capabilities

for more control over CORBA-based applications

Borland Software Corporation an-
nounced recently a significant new
release of its VisiBroker product. Vis-

ibroker 7.0 is an enterprise middleware lay-
er that is optimized for mission-critical ap-
plications and provides the ability to expose
as services CORBA application functions in
service-oriented architectures (SOAs). Con-
currently, Borland also announced the release
of the 6.6 version of its Borland AppServer, a
high-level, J2EE application server that sup-
ports the J2EE 1.4 standard and can be em-
bedded into applications and environments
that employ tight integration among COR-
BA-J2EE applications.
 VisiBroker has a long history at Borland
that began with a ten-year-old acquisition of
Visigenics, which at that time was a supplier
of a middleware product that was based on the
CORBA standard. Though CORBA’s prom-
inence as a standard for building enterprise-
class, distributed applications that required the
reliability and scalability necessary for mission-
critical applications gave way in the late nineties
to Java and the J2EE platform, significant de-
ployment of CORBA between the late 1980s
to the mid 1990s means that many substantial
“pockets in the world where CORBA is still a
very viable and heavily deployed technology”
remain, according to Raj Sehgal, senior direc-
tor of product marketing at Borland.
 “At a fundamental level CORBA is just a
standard definition of how you build appli-

cations to talk to each other in a very tightly
coupled way,” Sehgal said. Because today’s ap-
plications have a lot of complex, transaction-
al data going back and forth, requiring a high
degree of reliability, scalability, and synchroni-
zation, the integrity and the synchronization
of the data needs to be guaranteed. CORBA,
Sehgal said, is still very well suited for this role,
even in today’s enterprise environments.
 Borland’s middleware products parallel the
company’s application development tools and
application life-cycle management (ALM)
lines of business. However, the middleware
product line, of which the lead product is Vis-
iBroker, is deployed in a run-time production
environment; the middleware is embedded in
applications and invoked when those applica-
tions are run. In addition to VisiBroker, Bor-
land’s J2EE-based AppServer builds on the
VisiBroker technology along with other an-
cillary products that support interoperabili-
ty across multiple, different applications.
 “For the middleware market, even though
at a macro level CORBA is flat to maybe
slightly declining, it’s still, we believe, an over
$200–250 million business worldwide,” Seh-
gal said. “Borland has a market-leading share
of that [space] in terms of licensing revenue.
The J2EE application server is a well-tracked
market, and obviously there are some big play-
ers like IBM, BEA, Oracle, and others. What
we have is a smaller, but very healthy business
with our J2EE application server, mostly on

the high end, that follows the lead of the Vis-
iBroker product line, and customers come to
us for the J2EE business because they’ve been
using the CORBA-based product.”
 Prior to these announcements, Borland
was shipping the 6.5 versions of both prod-
ucts. While the 7.0 version is a major new
release for the VisiBroker line, Borland App-
Server has undergone a minor upgrade with
its 6.6 release; however, Sehgal said there
will be a major release of the J2EE appli-
cation server some time in 2007.
 Organizations can use VisiBroker 7.0 to
integrate distributed applications that may
be built using various languages, platforms,
and standards. Enterprise data “locked” in
older CORBA applications can be leveraged
into newer applications that are built on other
technology stacks such as Web services, Mi-
crosoft .Net, or Java EE. Applications native
to the .Net platform can participate equally
in a set of tightly coupled cooperating appli-
cations with CORBA applications written
in C++ and Java. VisiBroker also supports
MontaVista Software’s carrier-grade Linux
operating system platform for telecommu-
nications and data communications.
 For more information about both middle-
ware offerings and pricing, visit Borland’s
Web site.
Borland Software Corporation
800-�32-28�4; 408-8�3-2800
www.borland.com

HOW TO REACH US

Editorial Offices: Fawcette Technical
Publications, 2600 South El Camino Real, Suite
300, San Mateo, CA 94403; Phone: (650) 378-
7100; Fax: (650) 570-6307; Web: www.javapro.
com; e-mail: java-pro@fawcette.com.

Article Submission: To submit articles for
publication please contact Terrence O’Donnell,
Editor, todonnell@fawcette.com. Download
the Author Guidelines at www.ftponline.com/
javapro/code/12dec01/author_guide.zip.

Product Announcements: To submit announcements
for new products or updates to existing products,
please e-mail press releases to Terrence O’Donnell,
Editor, todonnell@fawcette.com.

Reprints and Permissions: For all Java Pro
editorial and advertising reprints contact Serv U
Reprints, 101 Rhoades Way, Folsom, CA 95630;
Phone: (916) 983-6562; Fax: (916) 983-6762.

To Quote from an Article: Please contact Susan
LaCroix, 2600 South El Camino Real, Suite 300,
San Mateo, CA 94403; Phone: (650) 833-7118; or
e-mail: slacroix@fawcette.com. Specify the issue
date and title of the article, the portion you
would like to quote, and the purpose.

Photocopy Rights: Permission to photocopy
for internal or personal use may be granted by
Fawcette Technical Publications. Please contact
Susan LaCroix at slacroix@fawcette.com for
more information.

Customer Service and Subscription Information:
For subscription orders, inquiries, or address
changes please contact Customer Service, Java
Pro, P.O. Box 3485, Northbrook, IL 60065-9819;
Phone: (866) 387-5776; Fax: (847) 291-4816; for
international inquiries call (847) 559-7309; or
e-mail jva@omeda.com. Foreign and Canadian
orders must be payable in U.S. dollars, plus
postage. The surface rate to Canada and Mexico
is $52.97 per year. For all other countries the air
mail rate is $78.97 per year.

Back Issues: To order Java Pro back issues,
call (650) 378-7100 or (800) 848-5523 and ask
for Customer Service. Back issues cost $10.
Additional postage will be charged to deliveries
outside the USA.

http://www.javapro.com
http://www.borland.com
http://www.javapro.com
http://www.javapro.com
mailto:java-pro@fawcette.com
mailto:todonnell@fawcette.com
http://www.ftponline.com/javapro/code/12dec01/author_guide.zip
http://www.ftponline.com/javapro/code/12dec01/author_guide.zip
mailto:todonnell@fawcette.com
mailto:slacroix@fawcette.com
mailto:slacroix@fawcette.com

http://www.openmake.com

cover story

� www.javapro.com | Java Pro Volume 10, number 2

In an era of open source and free tools, cost and developer
productivity weigh heavily on making an IDE choice

Finding the Best
Value in Java IDEs

Go Online
Visit www.javapro.com for
related resources. Simply type
the Locator+ code into the field
in the upper-right corner of the
page.

Download
JP0602 Download all the code
for this issue.

Read More
JP0602PV_T Read this article
online.

JP0509CS_T Read the
related article “Adversaries and
Partners” by Chris Schalk.

JP0506MM_T Read
the related article “Eclipse
Unleashed” by Mike Milinkovich.

JP0311PR_T Read the related
article “WebLogic Platform 8.1”
by Daniel F. Savarese.

by Peter VarhOl

J ava developers and developer teams have many alternatives when

choosing among commercial development environments. In the

past, most made this decision by a combination of familiarity,

cost, and technical applicability to the project at hand. Because many

IDEs in the past had similar feature sets and costs, often the prefer-

ence was based on familiarity.

http://www.javapro.com
http://www.javapro.com
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602PV_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0509CS_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0506MM_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0311PR_T

cover storyJava IDEs

Java Pro Volume 10, number 2 | www.javapro.com �

However, these decision factors don’t fully
define the value that is delivered by the
selection. Value in this case doesn’t mean
the number of features or ease of using
those features, but rather by productivity
in performing specific common tasks that
developers do daily, and the cost of that
productivity in terms of the product and
support cost. As the cost of tools contin-
ues to drop, and there is less differentiation
between core features, value and productiv-
ity are coming to the forefront as key dif-
ferentiators in tool selection and use.
 The equation has been complicated
by the availability of free and open source
integrated development environments
(IDEs) such as Eclipse and NetBeans. At
first glance, the best value might seem to
be delivered by the free solutions. How-
ever, free doesn’t necessarily translate into
productive. It is likely that the most expen-
sive part of the development process is the
developer’s salary, so optimizing the use of
time is a key consideration.
 The question of productivity is a big
one, and few have attempted to even con-
sider productivity when evaluating develop-
ment tools. It is difficult to measure in an
absolute sense because of both the nature
of developer skills and the nature of the
projects to which those skills are applied.
 The requirements for productivity are
real and demonstrable. Productivity means
being able to do a specific set of activities
faster or more efficiently in one way over
another. The goal is to save development
time and effort, which is typically the most
expensive part of the development process.
The investment in tools must significantly
raise productivity, yet not cost so much as
to diminish the value of that increased pro-
ductivity.
 This review looks at the features pro-
vided by the IDE, what they add to the
ability to build common applications, and
what a developer would have to do with-
out them. As such, the products examined
here represent different models of value and
developer productivity: Eclipse-based ver-
sus proprietary, one-time license versus sub-
scription, and so on. The intent is to look
at a combination of cost over time and fea-
tures to derive the maximum value.
 With these criteria in mind, we’ll look
at Borland JBuilder, IBM Rational Software

Architect, BEA WebLogic Workshop, Ora-
cle JDeveloper, and Genuitec’s MyEclipse
Enterprise Workbench. The products we’re
focusing on here can be downloaded for eval-
uation and purchase, rather than requiring
retail purchase, shipment in a box, or inter-
action with a sales representative (in most
cases downloading requires registration or
membership, but in all cases evaluation was
free). While this method of procurement
was convenient for purposes of review and
analysis, it also represents the way a lot of
developers prefer to obtain new tools.
 The test machine for this analysis was a
Dell notebook with a 1.6 MHz Centrino
processor and 512 MB of memory. While
this machine isn’t an especially powerful
computer, it is probably representative of
the average of development computers in
many enterprises. All of these products
were applied to build a specific applica-
tion: a simple Web-based time and atten-
dance system. It enables workers to log on
and time-stamp their start and end dates,
times, and calculate wages based on hours
worked. The application includes several
user interface pages, a simple calculation
engine, and a back-end MySQL database.
While the architecture and coding of this
sample are relatively simple, it is likely rep-

resentative of many applications that are
developed for custom enterprise use.

Borland JBuilder
Borland JBuilder 2005 is the last version of
this signature product that remains on the
proprietary platform; future versions will be
built on Eclipse. However, today the cur-
rent JBuilder comes in three versions:

• Personal Edition – This version is freely
downloadable and provides the funda-
mental IDE tools plus a few additional
extras such as a GUI designer, JUnit
framework, and some other utilities.

• Developer Edition – This version adds
a host of features, especially XML and
Web support, and the latter includes
JavaServer Pages (JSP) and JavaServer
Faces (JSF).

• Enterprise Edition – This version adds
Web services, Java EE and CORBA sup-
port, and UML diagramming.

 The Developer Edition was used for
testing purposes in this review. Although
this edition is reasonably priced at $499
and provides a good feature set, it lacks
the ability to build many common Java
EE applications. You can use it to build

Figure 1 | Feature rich Borland JBuilder’s integrated features incorporate refactoring,
a slick editing environment, Javadoc support, code profiling, JSF, Struts, and Web
services designers.

http://www.javapro.com

Java IDEscover story

10 www.javapro.com | Java Pro Volume 10, number 2

such distributed applications, but only by
adding open source tools such as JBoss. In
addition to the package as it stands, Tom-
cat was downloaded for a servlet engine to
build the application as it was designed.
 Despite this limitation, JBuilder is an
enjoyable product to use. Its maturity (it
is the only product reviewed here that has
remained fundamentally the same for the
last eight years) means that Borland has had
the time to fine-tune the user interface to
ensure a smooth developer experience.
 JBuilder is a highly refined product with
a number of integrated features. It incorpo-
rates refactoring, nice editing features, Java-
doc support, code profiling (from the Bor-
land OptimizeIt product), JSF, Struts, and
Web services designers that speed the devel-
opment process and improve developer pro-
ductivity in those areas (see Figure 1). How-
ever, UML modeling is offered only in the
Enterprise Edition, and only with two types
of diagrams (other diagrams are available
with Borland’s high-end Together model-
ing product).
 One other advantage with JBuilder is that
as a fully Java-compliant development envi-
ronment, it offers versions that run on Win-
dows, Linux, or Solaris. Performance has been
tuned over the years, but it still feels slow in
launching and selecting features.

 Where JBuilder might have a disad-
vantage is in its very plethora of features.
Because it is a mature IDE, it has had a
number of versions with incremental new
features and capabilities. For example, this
version includes enhancements to edit-
ing and a global gutter for tracking errors
and opening the files associated with those
errors. It also has good support for XML
and support for the Java ME platform and
WAP. However, while JBuilder offers mod-
eling in the next version up (the Enter-
prise Edition), the company that bought
one-time leader Togethersoft has not at all
expanded that product offering, with only
two UML diagrams available.
 Because JBuilder’s future road map
is uncertain, it is difficult to extrapolate
the advantages of the current platform
into the future. It is likely that a future
Eclipse version will, out of necessity, be
less functional and less well integrated
than today’s product, and the $499 price
means that it has to have a clear advan-
tage over free and low-cost solutions to
enjoy significant productivity advantages.
The Enterprise Edition, at a full $3,500,
adds the ability to create Java EE appli-
cations and testing tools, but the pro-
ductivity payback may well be harder at
that much higher price point.

IBM rational Software architect
IBM Rational Software Architect 6.0 is one
of the products examined here that is based
on the Eclipse framework. In addition to
the Eclipse Foundation software, the IBM
product includes UML modeling, the full
WebSphere Web server, other IBM tools for
developing portals, and tools for identifying
and refining patterns. It has a lot of software
tools for a single user IDE; some users will
appreciate the wide range of included tools,
but others will find that they make the envi-
ronment unnecessarily complex.
 The modeling tools support nine UML
diagrams, a remarkably complete solution.
Since IBM can leverage the traditional
Rational modeling tools, it is no surprise
that Rational Software Architect has the
best modeling solution. It is possible to
create complex software models and gen-
erate at least some of the code required by
the modeled application.
 When combined with IBM’s rule-based
code analysis, these tools help an architect
see how well projects are being implemented
and how they fit within design guidelines
and site requirements. In addition to struc-
tural and object-oriented patterns, Ratio-
nal Software Architect can recognize and
analyze seven of the Gang of Four design
patterns. While that is a small subset of
the full set of design patterns, it represents
the only attempt among the tools here to
support formal design patterns. This sup-
port offers the unique capability of ensur-
ing that authorized patterns are followed
during development.
 Rational Software Architect has some
support for C/C++ development, in addi-
tion to full support for Java. The model-
ing tools can perform transformations to
C++, and various source code tools can
analyze C++. However, the C++ IDE lacks
a compiler and debugger, which must be
obtained and installed separately. You can
install your own if you already have one of
these tools as an Eclipse plug-in, or you can
download the GNU C++ compilers to do
this. These features seem like an odd and
incomplete addition.
 The problem with Rational Software
Architect is that it has the feel of a prod-
uct that is really an amalgamation of sev-
eral distinctly different tools. While the
feature set is pretty complete, the major

Figure 2 | Single Environment Oracle JDeveloper’s unique development environment
makes it possible to do design, development, and fine-tuning in a single location.

http://www.javapro.com

One Source for All Your Technical Information

5

Newly Expanded,
Easily Accessible

CHANNELS
To better serve your
needs, FTPOnline has
been restructured
around eight channels:
Architecture, Business,
Java, .NET Develop-
ment, Windows IT,
ASP.NET, Database and
Security. More channels
to come!

SPECIAL
REPORTS
Get comprehensive
information on sub-
jects critical to all IT
professionals, such as
Mobile Java Develop-
ment, SQL Server, and
Application Lifecycle
Management.

NEWSLETTERS
Free e-mail
newsletters in your
area of interest,
delivered right to
your inbox.

WHITE
PAPERS
Download white
papers that
examine evolving
technologies.

WEBCASTS
Watch and listen
to industry experts
discuss hot IT topics.

4

3

2

1
RSS FEED
Get quick updates
on the latest blogs
and articles
published at
FTPOnline.

MAGAZINES
Filled with down-
loadable code, inter-
views with industry
visionaries, in-depth
tutorials, overviews
of implementation
and management
strategies, article
archives, and more!

Go there today:

www.ftponline.com

6

7

2006 Fawcette Technical publications, Inc.
All product names herein are the properties of their respective owners.

ftpon06_1p_v3.indd 1ftpon06_1p_v3.indd 1 4/20/06 6:07:16 PM4/20/06 6:07:16 PM

http://www.ftponline.com

Java IDEscover story

12 www.javapro.com | Java Pro Volume 10, number 2

pieces of the environment were all separate
products at one time, and the differences
show. Another limitation is that it tends
to be slower than Eclipse by itself, prob-
ably because the memory on the test sys-
tem was insufficient to contain a reason-
able working set when using a number of
the tools.
 At $5,500, there is a lot of capability in
Rational Software Architect, almost cer-
tainly more than most developers can use.
The biggest issue is likely to be that devel-
opers will believe they are paying a premium
for tools they don’t need. While the prod-
uct may have many tools that individually
can improve productivity, the aggregate cost
may be too high for many developers.

BEa Weblogic Workshop
BEA is better known as a Web services ven-
dor, but the company also provides a fine
development environment with its Web-
Logic Workshop. BEA WebLogic Work-
shop 8.1 is a Java development environment
that enables IT to visually build and assem-
ble enterprise-scale Web applications, Web
services, JSPs, portals, and Enterprise Java-
Beans (EJB) for a service-oriented archi-
tecture (SOA).
 WebLogic Workshop is a highly mature
product with many features and a fine feel.
Most longtime developers will feel very com-
fortable working in this environment. In par-
ticular, building EJBs or even Web services
seems like a straightforward process, although
neither were a direct part of this testing.
 In the test application, code was written
quickly, although it was less adept at allowing
communication with the back-end database.
And because EJBs or Web services weren’t
being used, many of the enterprise features
weren’t used. BEA has a small community
of partners developing extensions to Web-
Logic Workshop; however, all of the part-
ners are commercial entities that require
separate purchase and maintenance agree-
ments. These partner offerings also tend to
be entire products, rather than simple sin-
gle-purpose tools.
 BEA also has a newer, Eclipse-based
development solution. BEA Workshop Stu-
dio includes sophisticated WYSIWYG edi-
tors and BEA’s AppXRay technology, which
provides a view of the Web application as a
whole. XRay helps provide depth and capa-

bilities in code completion, consistency check-
ing with generated classes, configuration files
or annotations, prebuild error checking, and
validation. The latest release includes annota-
tion-driven EJB tools and bundles the Spring
IDE Project for Spring Bean development.
 The packaging and utility of this alterna-
tive makes the future of the original Web-
Logic Workshop somewhat doubtful, even
though there is a beta of the next major
release available. Nevertheless, WebLogic
Workshop is an excellent supplement to
the WebLogic application server. It is still
capable outside of that deployment archi-
tecture, just not as well.
 For development, WebLogic Work-
shop’s price is certainly right, as it is freely
available for use in development. If you are
doing enterprise development with EJBs,
and especially if you are deploying on the
WebLogic application server or portal,
Workshop is a natural choice and proba-
bly your most productive alternative. For
other deployment platforms and for smaller
projects its enterprise features can be con-
fusing and unnecessary.

Oracle JDeveloper
The JDeveloper IDE integrates all of the fea-
tures needed by a developer building a Java

application. Unlike some other Java devel-
opment environments, with JDeveloper it’s
possible to move from design through devel-
opment and tuning without leaving the envi-
ronment. When you initiate a project, you
can begin with a UML model. You build
the model in two parts: build the activity
diagram to define the behavior of an appli-
cation, while laying out the structure of the
application using class diagrams. Although
this isn’t a complete UML model by any
means, it’s enough to generate both class
definitions and a state transition in code,
which makes it useful for initial design (see
Figure 2). However, it’s not as seamless as it
could be when moving into code.
 The JDeveloper integrated code profiler
is a useful debugging tool for most appli-
cations. It profiles application execution,
memory utilization, and event sequence.
In addition, the debugger works locally,
remotely, or across multiple processes. You
can also use the integrated CodeCoach to
provide hints to improve performance or
the use of Java technologies in your code.
The principal limitation of JDeveloper lies
in its UML modeling, where the product
supports only four diagram types: activity,
class, sequence, and use case. That number
is usually enough to get you started, but

Figure 3 | Tool Bonanza Utilizing the Eclipse platform, MyEclipse provides an
environment that integrates selected open source development tools and adds features
based on them.

http://www.javapro.com

cover storyJava IDEs

Java Pro Volume 10, number 2 | www.javapro.com 13

many UML practitioners also like using
component and deployment diagrams for
packaging and distribution.
 However, JDeveloper also had some sig-
nificant limitations. It consistently got the
poorest marks in several categories, includ-
ing compiler/interpreter performance, edi-
tor, libraries and frameworks, and the ability
to integrate third-party tools. For develop-
ers working on a variety of projects, it lacks
a number of tools, and Oracle has declined
to form the third-party community that
Eclipse, and to a lesser extent Borland, have
fostered; there are few add-ins and limited
ability to add additional tools.
 An important feature in JDeveloper is
the ability to use a set of libraries called

the Business Components for Java (BC4J).
BC4J uses Java database connectivity
(JDBC) to provide an object-relational
mapping of information stored in the Ora-
cle9i database. It allows business logic to be
centralized at the middle tier, as you would
do when using a servlet, while leaving pre-
sentation-related activities to the JSP.
 JDeveloper has integrated source control
through the Oracle Software Configuration
Manager. It supports an API for third-party
source control packages, such as ClearCase
and the open source CVS. It also incorpo-
rates support for working with hosted files
on any WebDAV-enabled server.
 Clearly, even though some of the fea-
tures, such as UIX and BC4J, are used only

with other Oracle products, there is still
value here for the average Java EE devel-
oper. However, the question is whether the
remaining features can make a developer
more productive. For those developing Java
EE, JSP, XML, or servlets in conjunction
with Oracle database tools, JDeveloper is
undoubtedly the toolset of choice.
 Outside of the Oracle world most of
these features did little good. With the
MySQL database, or any third-party data-
base for that matter, you have to regress
to using standard techniques for database
access and partitioning into layers, rather
than BC4J. Some features of the UML
models also assume that the target is an
Oracle database.

Genuitec MyEclipse
MyEclipse is unique in this review, in that
it includes few if any features that are devel-
oped using the traditional commercial de-
velopment model. Instead, MyEclipse takes
the Eclipse platform and integrates a number
of other open source development tools into
the environment, as well as adding features
based on those tools (see Figure 3).
 MyEclipse can be downloaded from the
MyEclipseIDE.com Web site. It requires the
previous download and installation of the
Eclipse platform from Eclipse.org. For those
used to working with the vagarities open
source software, the MyEclipseIDE down-
load is a real pleasure to install and use, as it
installs and configures its features automat-
ically. This feature is only the beginning of
what MyEclipse has going for it. The first
thing you notice is that MyEclipse adds to
Eclipse rather than changes it. Anyone famil-
iar with Eclipse will have no difficulty pick-
ing up and immediately using MyEclipse.
 MyEclipse includes open source solu-
tions for visual Web design, UML model-
ing, JSF and Struts for Model-View-Con-
troller (MVC) development, AJAX, and
object-relational mapping. Most recently,
it has integrated the Matisse Swing client
UI designer from NetBeans, as well as tem-
plate-based Web development. Perhaps the
best advantage of MyEclipse is the ability
to take the integrated platform and con-
tinue to customize it to meet even more
specific needs. (For more information about
the NetBeans IDE, see the sidebar, “What
About NetBeans?”)

What about NetBeans?

A s you download, install, and use NetBeans (currently at version 5.0), you can’t

help but think that in an alternative universe, NetBeans would hold the exalted

role of open source flash point for the developer community currently occupied by

Eclipse. NetBeans has many of the same features as Eclipse, yet arguably in a more

productive package. And while Eclipse has broadened from its roots as an IDE to that

of an all-encompassing, life-cycle platform and even application framework, NetBeans

has remained focused as a tool for the developer.

 Certainly there is nothing about NetBeans that might have prevented it from achieving

such a role. Its significant features include a useful list of code refactorings, extensive

code completion algorithms, and integrated CVS support for team development. It

incorporates Ant as its build utility and project metadata repository, which makes it

possible to export projects to other IDEs, which can then load a project developed in

NetBeans and make edits and builds.

 Probably the best feature of NetBeans is the Matisse forms designer (see Figure 4).

Matisse lets you build a Swing-based form in a drag-and-drop manner, similar to other

form builders in any language. However, Matisse lets you line up controls on a form

far more easily than comparable tools, and the designed form also looks much more

like the real thing. Matisse is so good that Genuitec recently announced a port to the

Eclipse platform for its MyEclipse IDE.

 NetBeans includes three optional downloads: a code profiler, a mobility pack, and

a platform. For this discussion, only the profiler was looked at. It is surprising that

more developers don’t write a code profiler, something the Java Virtual Machine

makes possible through profiling hooks. The NetBeans profiler is fun to use, and it is

instructive to see how much you can sometimes change performance by changing a

few lines of code. The mobility pack lets you build applications for embedded devices,

while the NetBeans platform is a framework for building targeted applications.

 As an IDE, NetBeans is at least comparable to Eclipse or any of the other alternatives, yet

it barely gets a mention in the same breath. You can argue that Sun Microsystems handled

the product poorly, or that it didn’t have the exposure or marketing resources of the IBM-

backed Eclipse, but you cannot easily argue that it is technically inferior. While it lacks the

community and developer enthusiasm of Eclipse (it does have plug-in developers, but the

number looks to be easily an order of magnitude smaller than that of Eclipse), technically

it is a fine product that any development team can easily adopt and put to productive use.

And if the Eclipse community ever looks toward the next new thing in Java development,

NetBeans might just get to experience that alternative universe.

http://www.javapro.com
http://www.MyEclipseIDE.com/

Java IDEscover story

14 www.javapro.com | Java Pro Volume 10, number 2

 Eclipse itself isn’t a part of the MyEclipse
install, so you have to download and
install the Eclipse platform prior to adding
MyEclipse. MyEclipse incorporates an auto-
mated installation routine that takes care of
updating the menus and adding options in
the Preferences for the new components,
and it simply works. (I’ve attempted to add
a variety of plug-ins to Eclipse on my own
in the past; the mechanics certainly couldn’t
be easier, but in reality there are often con-
flicting versions of prerequisite plug-ins
that can make it tricky or just impossible to
get certain components to work together.)
Within the scope of its added functional-
ity, MyEclipse enhancements cause no prob-
lems to the Eclipse platform as a whole.
 While working with open source has
often been difficult because of limited
user interface facilities, MyEclipse and of
course Eclipse itself make it easy to use
in the development process. The sam-
ple application was built within the same
amount of time it took with the best of the
other products. The combination of open
source tools, added features, and support
for emerging standards make MyEclipse a
productive alternative, no matter what the
underlying platform.
 Price is a consideration in looking at pro-
ductivity, and Genuitec prices MyEclipse

on a subscription model at $30 per year.
What that buys you, in addition to the ele-
gant installation routine, is support and
updates during that period, along with
the integration testing and documenta-
tion that is often lacking in open source
distributions. You also get the integration
that makes these open source components
work together seamlessly.
 You could try to put a package such
as MyEclipse together yourself, but you
almost certainly wouldn’t succeed. First, it
would be difficult to match the enhance-
ments to installation and documentation
provided by MyEclipse, and monitoring
various open source sites for updates and
patches can be a time-consuming exercise
in and of itself. Doing it yourself might
cost a few dollars less in product, but you
wouldn’t get nearly as much out of the
end result.

Productivity Is Key
Firm conclusions are always difficult to
arrive at in product testing and compari-
son. Strict feature comparisons put empha-
sis on quantity rather than quality, espe-
cially when the total number of features
may hinder, rather than help, productivity.
Likewise, productivity can be lost when spe-
cific features are added because those fea-

tures may only be useful to a small num-
ber of developers.
 Nevertheless, it is still possible to make
some generalizations surrounding produc-
tivity. Productivity encompasses low costs
(both purchase price and cost of owner-
ship), along with a feature set that is use-
ful for the majority of developer tasks and
accelerates the accomplishment of those
tasks. Both JBuilder (in the most useful
Enterprise Edition) and Rational Software
Architect can carry a significant price tag—
in the thousands of dollars per developer.
While they use good modeling and quality
tools to accelerate the building and testing
of applications, the cost of doing so reduces
their overall value. Both are popular prod-
ucts with known value, but the cost is dif-
ficult to justify today.
 At the other end of the spectrum,
MyEclipse, WebLogic Workshop, and
JDeveloper are freely available, or nom-
inally priced. If you’re working with an
Oracle database, JDeveloper clearly deliv-
ers the highest level of productivity, and
its freely available nature clearly demon-
strates substantial value on this platform.
The JDeveloper features that tie the IDE
explicitly to the Oracle database provide
shortcuts and proprietary enhancements
that make several complex activities simple
and fast. Beyond Oracle, however, JDe-
veloper lacks the flexibility and openness
to add significant value to most develop-
ment efforts.
 MyEclipse has a unique model that
requires careful consideration in devel-
oper productivity. It might be argued
that any cost to MyEclipse reduces value
because its components are primarily
open source. However, that is a simplis-
tic view; Genuitec adapts the open source
code that it uses to work well together,
wraps it so that installation is seamless,
and provides capabilities not available in
the original open source code. The cost of
any individual development team to per-
form even a part of this work would be
prohibitive. By spreading that cost among
thousands of developers, it becomes eco-
nomically feasible to provide significant
additional value.

Peter Varhol is a senior member of the technical staff for

Progress Software, and has a consultancy relationship with

Genuitec. Contact Peter at peterv@mv.mv.com.

Figure 4 | Forms Design The NetBeans Matisse forms designer provides a realistic view of
the form and the tools needed to get the design right the first time.

http://www.javapro.com
mailto:peterv@mv.mv.com

Sybase WorkSpace:
Do Something More Interesting

Copyright © 2006 Sybase, Inc. All Rights Reserved. All product and company names are trademarks of their respective owners.

A SINGLE ENVIRONMENT OFFERS WHAT YOU NEED
Sybase WorkSpace is a Java™ toolkit offering the five most important
design and development tools in an integrated easy-to-use, open
source framework:

• database development • mobile development
• web application development • enterprise modeling
• services-oriented development

MAKES DEVELOPMENT AND DESIGN EASY TO LEARN AND USE
Using industry-leading integrated model-driven design, visual develop-
ment and task-based wizards, Sybase WorkSpace automates mundane
tasks and cuts the typical development tool learning curve, freeing
developers to concentrate on what’s important—business logic.

FREEDOM TO CUSTOMIZE BASED ON YOUR BUSINESS NEEDS
WorkSpace’s modular packaging allows enterprises the flexibility to
decide how to assign business critical tasks to developers, rather than
requiring them to fit into ill-fitting “roles” predetermined by a vendor.
You buy only the pieces you need, enabling you to customize your
environment as you see fit.

With Sybase WorkSpace, you’re finally free to do the design and
development that’s interesting to you. For more information and
to download White Papers and an evaluation copy, visit
www.sybase.com/workspace

jp0506_Sybase.qxp 4/25/06 4:28 PM Page 1

http://www.sybase.com/workspace

development

16 www.javapro.com | Java Pro Volume 10, number 2

Standard checks and unit tests for every line of code might be
impractical, but here’s a strategy for delivery expediency

Cleaning a Complex

Java Code Base

C hecking coding standards and unit test-
ing would be performed ideally on every
piece of code before it was added to a
team’s code base. However, doing so is

not always practical. Many organizations do not
provide developers the time and resources required
for testing at this level. Moreover, most organiza-
tions do not develop applications from scratch by
writing new code for all required functionality.
Rather, they typically make incremental enhance-
ments to a large amount of functioning legacy
code or add their own code to extend third-party
or open source packages. The resulting code bases
could include legacy code written within the orga-
nization, code obtained through a merger or acqui-
sition, code obtained from an outsourcer, or code
that was developed by the open source community
and downloaded from the Internet.
 Consequently, most teams accumulate large
and complex code bases with at least some code
that has not been subject to coding standard anal-
ysis and unit testing. This accumulation involves
several critical risks. When the application is used
in a way that development and QA didn’t antici-
pate (and didn’t test), the code might throw unex-
pected run-time exceptions that cause the appli-
cation to become unstable, produce unexpected
results, or even crash. The code also might open
the only door that an attacker needs to manipu-
late the system and/or access privileged informa-
tion. Small coding mistakes could lead to signifi-
cant performance or functionality problems. The
code’s functionality might be broken as the appli-
cation evolves over the course of its life cycle.
 If your team already has a large and complex
code base (hundreds of thousands, or even mil-

lions, of lines), it’s not too late to benefit from cod-
ing standard analysis and unit testing. As long as
these practices are automated and applied properly,
they can still be used to identify functionality, reli-
ability, security, and performance problems before
release and deployment—as well as to satisfy any
contractual obligations for performing unit testing
or complying with a designated set of standards.
 Let’s look at a simple two-step strategy that has been
proven to deliver fast and significant improvements
to large and complex Java code bases. The first step is
using coding standard analysis to identify bugs and
bug-prone code. The second is using unit-level regres-
sion testing to ensure that the functionality is intact
and using unit-level reliability testing to ensure that all
code base changes are reliable and secure. Both steps
can be automated to promote a consistent implemen-
tation and allow your team to reap the potential ben-
efits without disrupting your development efforts or
adding overhead to your already hectic schedule.

Bugs and Bug-Prone Code
Why is it important to identify bugs and bug-prone
code? Complying with coding standard rules is a
proven way to achieve key benefits that we can put
into four groups: 1) detect bugs or potential bugs
that impact reliability, security, and performance; 2)
enforce organizational design guidelines and specifica-
tions (application-specific, use-specific, or platform-
specific) and error-prevention guidelines abstracted
from known specific bugs; 3) improve code main-
tainability by improving class design and code orga-
nization; and 4) enhance code readability by apply-
ing common formatting, naming, and other stylistic
conventions. Rules that provide the first benefit will
be referred to as group 1 rules; rules that provide the

Go Online
Visit www.javapro.com for related
resources. Simply type the
Locator+ code into the field in the
upper-right corner of the page.

Download
JP0602 Download all the code
for this issue.

Read More
JP0602ML_T Read this article
online.

JP0501NC_T Read the related
article “Why Coding Standards?”
by Nigel Cheshire.

JP040818AK_T Read the
related article “Verify Java App
Development on Linux” by Adam
Kolawa and Jeehong Min.

SR_TEST_CP Read
the related article “Tips for
Integrating Optimization into the
Development Cycle” by Chris
Preimesberger.

by matt LOve

http://www.javapro.com
http://www.javapro.com
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602ML_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0501NC_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP040818AK_T
https://ftponline.com/members/locator_plus.aspx?locator_code=SR_TEST_CP

developmentCode Analysis and Unit-Level Testing

Java Pro Volume 10, number 2 | www.javapro.com 17

second benefit will be referred to as group 2
rules, and so on.
 As an example of why it’s important to
check coding standards even after the code
is already written, assume that the analy-
sis revealed that code for a Web applica-
tion’s servlet violates the “Specify an ini-
tial StringBuffer capacity” rule (see Listing
1). StringBuffer allocates only a 16-char-
acter buffer by default; if that capacity is
exceeded, the StringBuffer class allocates a
longer array and copies the contents to the
new array. By identifying and correcting
this violation, all those allocations, copies,
and garbage collections are avoided, and
the code is optimized. Because this servlet
is used repeatedly in the application, this
optimization will have a significant effect
on overall application performance.
 Symptoms of this problem probably
could have been uncovered if the team per-
formed an extensive amount of profiling or
load testing, but tracking it to the responsi-
ble line of code would have required even
more time and effort. Using an automated
code analysis tool, the problem’s exact source
can be detected automatically in seconds,
without writing team members to write a
single test or manually track down the root
cause of the slow performance.
 To determine what’s required decide which
coding standard rules to check. First, review
industry-standard Java coding standard rules,
and decide which ones are most applicable to
your project and will prevent the most com-
mon or serious defects. For instance, if your
project is using technologies such as JDBC,
Enterprise JavaBeans (EJB), or JavaServer

Pages (JSP), review and select rules designed
specifically for these technologies and general
Java coding standard rules. The rules imple-
mented by automated Java code analysis tools
offer a convenient place to start for general
rules that can improve reliability, security, and
performance. For example, some rules many
teams choose to enforce include:

• Reliability rules: Avoid dangling else
statements; avoid try, catch, and finally
blocks with empty bodies; and do not
assign loop control variables in the body
of a for loop.

• Security rules: Do not compare Class
objects by name, do not pass byte arrays
to DataOutputStream in the writeOb-
ject() method, and make your clone()
method final for security.

• Performance rules: Close input and
output resources in finally blocks,
prevent potential memory leaks
in ObjectOutputStreams by call-
ing reset(), use String instead of
StringBuffer for constant strings, and
use StringBuffer.append() instead of +
to concatenate strings.

 Also, consider rules that are unique to your
organization, team, and project (for instance,
an informal list of lessons learned from past
experiences). If needed, you can supplement
these rules with the coding standard rules
listed in books and articles by Java experts.
 Consider these questions as well: Do
your most experienced team developers
have an informal list of lessons learned from
past experiences? Have you encountered a

specific bug that can be abstracted into a
rule so that the bug never occurs in your
code stream again? Are there explicit rules
for formatting or naming conventions that
your team is required to comply with?

Looking Back
Because legacy code bases are typically very
large, checking a legacy code base requires
a special strategy. It’s important to recog-
nize that legacy code’s design and devel-
opment rule compliance will not be con-
sistent because different parts of the code
base probably originated from different
sources. Applying rules from groups 3 and
4 to the entire code base is likely to result in
an impractically large number of rule vio-
lations that might be more overwhelming
than helpful at this stage of the project. An
initial focus on rules from groups 1 and 2
for legacy code checking is strongly recom-
mended. This focus will identify significant
problems that should be corrected before
the release and deployment.
 Let’s look at automatically checking
the code base and responding to findings.
Manually checking whether a large and
complex code base follows coding standard
rules would be incredibly slow, resource
intensive, and error prone. Even if you
had the vast resources required to manu-
ally review the code base, some rule viola-
tions would be overlooked inevitably, and
just one overlooked rule violation could
cause serious problems.
 A more practical, thorough, and accu-
rate way to check whether a large code base
complies with coding standard rules is to

Listing 1 Follow the Rule

public class LoginServlet extends javax.servlet.
 http.HttpServlet {
 public void doPost(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException {
 if (validate(request.getParameter("name"),
 request.getParameter("password"))) {
 StringBuffer message = new StringBuffer();
 // rule violation
 message.append("Welcome "); // 8 chars
 message.append(request.getParameter("name"));
 // up to 20 chars
 message.append(" to the ACME online bank.");
 // 25 chars
 request.setAttribute(
 "welcome_message", message.toString());

 this.doForward(
 request, response, "/mbWelcome.jsp");
 } else {
 request.setAttribute(
 "login_error", "invalid login name");
 this.doForward(
 request, response, "/mbLogin.jsp");
 }
 }// doPost

 private boolean validate (
 String name, String password) {
 if (name.length () > 20)
 return false;
 return checkPassword (name, password);
 }// validate
}

Note the “specify an initial StringBuffer capacity” rule. StringBuffer allocates only a 16-character buffer by default, and if that
capacity is exceeded, the StringBuffer class allocates a longer array and copies the contents to the new array.

http://www.javapro.com

development Code Analysis and Unit-Level Testing

18 www.javapro.com | Java Pro Volume 10, number 2

use an automated coding standard analysis
tool to check the entire code base at a sched-
uled time each night. There are two com-
plementary strategies that are well suited to
the nature and size of legacy code: smoke
alarm mode and gradual “fix it” mode.
 In smoke alarm mode run a smaller rule
set (including only groups 1 and 2 rules) on
the entire code base to check if the code has
critical problems. If violations are found,
treat them as bugs (fix them immediately).
In gradual “fix it” mode select a code mod-
ule, run a full rule set on it, and then fix and/
or refactor the code as needed. This mode
is used to improve general compliance. Be
sure to use it to check all new and modified
code. If possible, check that code is compli-
ant immediately after it is written and before
it is committed into source control.
 It’s also possible that different modules in
the legacy code base call for different rules,
especially from group 2. For instance, some
code analysis tools allow users to apply a fil-
ter to enable or disable a specific rule or a
group of rules for a given set of files, which
allows such custom-tailoring of the rules to
the nature and origin of the code. This fil-
tering can be thought of as file-based or direc-
tory-based application of specific rules.
 Let’s turn to the second part of the strategy,
using unit-level regression testing to ensure
that the functionality is intact and using unit-
level reliability testing to ensure that all code
changes are reliable and secure. The next step
toward reliable and secure code is to perform
unit-level regression testing on all existing
code, and then perform unit-level reliability
testing (also known as white-box testing or
construction testing) on any code that is added
or modified. Regression tests capture existing
functionality and don’t report any errors until
a code modification changes that functional-
ity. Reliability tests use an unexpected stim-
ulus and report any errors immediately. In
Java, this test involves exercising each method
as thoroughly as possible for both categories
of tests and checking for uncaught run-time
exceptions in reliability tests.

Functionality Protection
The second part of this strategy is impor-
tant because a large base of legacy code is
a huge investment of time and resources.
Its functionality needs to be protected from
undesired changes if some of that code is
modified. After obtaining a certain level of

acceptance, it is critical to not go backward
by introducing bugs in functionality dur-
ing maintenance of legacy code.
 However, if your testing only checks
expected functionality, you can’t predict
what could happen when untested paths
are taken by well-meaning users exercising
the application in unanticipated ways—or
taken by attackers trying to gain control of
your application or access to privileged data.
It’s hardly practical to try to identify and
verify every possible user path and input
or analyze every possible exception from
legacy code. It is important to identify the
possible paths and inputs that could cause
uncaught run-time exceptions in new and
security-sensitive code for two reasons:

• Uncaught run-time exceptions can cause
application crashes and other serious
run-time problems. Uncaught run-time
exceptions—exceptions that are thrown
automatically by the Java run-time sys-
tem when a program violates the syn-
tax/semantics of Java—usually indicate
software bugs. They typically stem from
problems related to arithmetic, point-
ers, and indexing and can occur at any
point in a program. If these exceptions
surface in the field, the resulting unex-
pected flow transfer and potential thread
termination could lead to instability,
unexpected results, or crashes. Many
Java development teams have had trou-
ble with Java-based applications crash-
ing for unknown reasons. Once these
teams started identifying and correct-
ing the uncaught run-time exceptions
that they previously overlooked, their
applications stopped crashing.

• Uncaught run-time exceptions can open
the door to security attacks. Many devel-
opers don’t realize that uncaught run-
time exceptions can also create signifi-
cant security vulnerabilities. For instance,
a NullPointerException in login code
could allow an attacker to completely
bypass the login procedure.

 Now let’s look at what’s required to do
unit-level regression and reliability testing.
First you have to design, implement, and
execute regression test cases for the entire
code base. Create an automated regression
test suite that verifies whether each unit
continues to function as expected when the

code base grows and evolves. With com-
plex software, even a seemingly innocuous
change in one part of the application can
impact other functionality.
 Create a functional snapshot; run a suite
of unit tests that capture the methods’ cur-
rent behavior, which is assumed to be cor-
rect. Ideally, the test suite will capture how
the units behave as the application is exer-
cised in realistic ways (for instance, when
the use cases are executed). This test suite
is essentially an executable specification. By
creating this test suite, you establish a base-
line against which you can compare code
and identify changes.
 It is impractical to manually develop the
required number, scope, and variety of unit
test cases to execute each branch of code
when you test each class as it’s completed,
and it’s impossible when you need to find
the exceptions lurking in a large existing
code base. Achieving the scope of cover-
age required for an effective test suite man-
dates that a significant number of paths are
executed. For example, in a typical 10,000-
line program, there are approximately 100
million possible paths; manually generating
input that would exercise all of those paths
is infeasible and practically impossible.
 When trying to create a baseline of
regression tests for a large code base, a
tool that automatically generates test code
is essential. Team resources can then be
focused on reviewing and addressing the
reported test case failures and exceptions.

Nightly Testing
Next you must review and respond to
regression test findings, and test new code
for reliability. Configure the automated
testing tool to unobtrusively execute the
complete regression test suite—all of the
baseline unit tests—each night. Each test
case failure (a test case that doesn’t pro-
duce the baseline outcome expected for a
set of baseline input[s]) indicates a change
in the code’s behavior. This change may be
intentional or unintentional. When code
functionality changes intentionally—as
a result of a feature request, specification
change, and so forth—test cases related to
that behavior are expected to fail because
the new expected outcomes will be dif-
ferent than those recorded in the base-
line. However, very often, other test cases
will also fail unexpectedly. If so, this fail-

http://www.javapro.com

developmentCode Analysis and Unit-Level Testing

ure reveals a complex functional prob-
lem caused by the code modifications. If
no unexpected failures are identified, you
know that the modifications didn’t break
the existing functionality.
 The appropriate response to a test case
failure depends on whether the change was
expected. If the new outcome is now the
correct outcome, the expected test case out-
come is updated, and it becomes a part of
the baseline. If not, the code is corrected.
 After you rerun the test, review all
uncaught run-time exceptions exposed by
the tests, and then address them before
proceeding. Each method should be able
to handle any valid input without throw-
ing an undocumented uncaught run-time
exception. If code should not throw an
uncaught run-time exception for a given
input, the code should be corrected. If the
exception is expected or if the test inputs
are not expected or permissible, document
those requirements in the code, and indi-
cate in the tool that they are expected. This
procedure prevents most unit testing tools
from reporting these problems again in future
test runs. Moreover, when other develop-
ers extending or reusing the code see docu-

mentation that explains that the exception
is expected behavior, they will be less likely
to make mistakes that introduce bugs.
 Now let’s look at what is necessary to
make your application even better without
breaking it. Suppose you are safeguarding
against introducing critical problems and
have a complete regression suite for the
software to maintain the state it needs to
be for the impending release and deploy-
ment milestone. What now?
 If resources permit, you have a good
opportunity to continue improving the
code quality. Extend your unit test suite to
improve coverage, make tests more realistic,
and verify the functionality specified in the
requirements. Also, phase in more coding
standards to identify and prevent additional
coding problems. For instance, start imple-
menting rules that improve code maintain-
ability by improving class design and code
organization, and rules that enhance code
readability by applying common formatting,
naming, and other stylistic conventions.
 Review the coverage after running the
entire test suite. If any classes received less
than 75 percent coverage, customize the
automated test case generation settings

Matt Love is a software development manager with

Parasoft Corporation. He’s been involved in the develop-

ment of Jtest, Parasoft’s automated code analysis and unit

testing tool.

(for instance, by modifying automatically
generated stubs, adding realistic objects
or stubs, or modifying test-generation set-
tings) so that the automated test case gen-
eration can cover a larger portion of that
class during the next test run.
 Identify critical modules of code that
should undergo more thorough rule compli-
ance and reliability testing. Utility code that
is used from many parts of the application is
the most sensitive to performance problems
and unexpected inputs because that code is
invoked so often in so many ways. Front-
end code for user interfaces, resource load-
ing, or other communication is the most
vulnerable to security attacks, and it is an
entry point into the system for unexpected
input. The highest priority is establishing
the baseline for protection of legacy code
and putting in place a system to safeguard
against new defects entering the code base.
Incremental improvements on existing code
should not be done until after the baseline
and safeguards are in place.

Thousands of articles and code samples are available from

our library of FTP magazines: Windows Server System Magazine/.NET Magazine,

Visual Studio Magazine/Visual Basic Programmer’s Journal, Java Pro, and

XML & Web Services Magazine.

The original just keeps getting better.
Join at: www.ftponline.com/members
Register today!

Visual Studio and Windows Server System are trademarks of Microsoft Corporation. Visual Studio and
Windows Server System are used by Fawcette Technical Publications, Inc. under license from Microsoft.
Java is a trademark of Sun Microsystems. Java Pro is used by Fawcette Technical Publications, Inc. under
license from Sun Microsystems.

www.ftponline.com/archives

Article ArchivesFree

FTParchive_half06.indd 1 3/9/06 10:51:54 AM

Java Pro Volume 10, number 2 | www.javapro.com 19

http://www.javapro.com
http://www.ftponline.com/members
http://www.ftponline.com/archives

development

20 www.javapro.com | Java Pro Volume 10, number 2

Java ME continues to mature. Assess the platform, the standard
APIs, the CLDC/MIDP stack, and device support for your needs

Get Creative on the
Java ME Platform

W hen Sun Microsystems introduced
Java 2 Platform, Micro Edition
(J2ME, which was renamed recently
to Java ME) to the world in 2000, the

promise was to bring Java’s “write once, run any-
where” capability to the highly fragmented hand-
held-device market. Java ME is supposed to be the
“one platform that rules all mobile phone manufac-
turers and carriers.” It allows developers to focus their
energy on creative work instead of tedious applica-
tion porting across multiple devices, and it aims to
create a mobile application marketplace where all
applications compete on a level playing field.
 After six years, Java ME has met with great success.
It is now supported by all major mobile phone vendors
and carriers. Today, more than one billion devices sup-
port Java ME out of the box. However, has Java ME
fulfilled its “write once, run anywhere” promise?
 Let’s examine the current state of Java ME and the
entire mobile application market. The aim here is to help
you decide whether Java ME will fit your next project,
and if it does, to focus on how to develop portable Java
ME applications. Primarily we’ll concentrate on mobile
phone development on the Java ME platform, that is,
the Common Limited Device Configuration (CLDC)/
Mobile Information Device Profile (MIDP) stack
including smartphones and PDA phones. Java ME has
another stack, known as the Connected Device Profile
(CDC) and Personal Profile (PP), to support larger per-
sonal digital assistants (PDAs) and set-top box devices.
The CDC/PP stack has not been widely adopted and
is not within the scope of this discussion.
 The Java programming language is designed for
cross-device portability. Java source code are compiled

to a bytecode format that can be executed by the Java
Virtual Machine (JVM). The JVM translates the byte-
code to the native machine code for the target device
at runtime. To run Java applications, a Java ME com-
patible mobile phone must have the JVM preinstalled.
Device manufacturers develop and preinstall JVMs
for their devices, and, hence, insulate the application
developer from the underlying device hardware and
operation system, which are typically proprietary. In
fact, many mobile phones on the market have com-
pletely closed operating systems, and Java ME is the
only programming interface for those devices (see the
sidebar, “More on the JVM”).

Crucial Interfaces
The Java language is only the basis of Java applica-
tions. Java ME is an application development plat-
form built on top of the Java language. The most
important components of the platform are the
Java ME application programming interface (API)
libraries. The APIs determine what kind of applica-
tions you can develop with Java ME. To enable the
cross-device portability of applications, it is crucial
to standardize those APIs.
 In Java ME all standard APIs are developed from
the ground up as an industry consensus through the
Java Community Process (JCP). The JCP member-
ship is open to all interested vendors and individu-
als. Almost all mobile phone manufacturers and car-
riers participate in the JCP. Every API is proposed
by a JCP member as a Java specification request
(JSR) and then developed by an expert group. The
membership of the expert group is also open. At the
time of this writing, there are 68 JSRs for the Java

Go Online
Visit www.javapro.com for related
resources. Simply type the
Locator+ code into the field in the
upper-right corner of the page.

Download	
JP0602 Download all the code
for this issue.

Read More	
JW041706MY_T Read this
article online.

JW041706PV_T Read the
related article “Migrate Mobile
Client Applications” by Phong Vu.

JP0212RG_T Read the related
article “IDEs for Wireless Java”
by Rick Grehan.

JP0105JW_T Read the related
article “Big Plans for J2ME” by
Jim White.

by michael YuAn

http://www.javapro.com
http://www.javapro.com
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602
https://ftponline.com/members/locator_plus.aspx?locator_code=JW041706MY_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JW041706PV_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0212RG_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0105JW_T

developmentJava ME Update

Java Pro Volume 10, number 2 | www.javapro.com 21

ME platform. Some of the most important
JSRs are:

•	 JSR	30 for version 1.0 and JSR	139 for
version 1.1 – The CLDC specifies the core
language APIs for Java ME. For instance,
it defines classes such as String and List,
and it also specifies how the bytecode
should be loaded into the JVM.

•	 JSR	37 for version 1.0, JSR	118 for
version 2.0, and JSR	271 for version
3.0 – The MIDP specifies basic appli-
cation-level APIs. It contains a UI wid-
get library for small screens, a set of low-
level APIs to draw directly on the screen
and capture-user input, a network API
to send and receive data over the HTTP
protocol, and a persistence API to store
application data on the device memory.
The MIDP also specifies the application
life cycle (that is, the MIDlet model for
starting, pausing, and exiting the appli-
cation); security model (that is, how to
determine whether an application is
trusted to access the network, and so
on); and how the application should be
deployed over the wireless network.

•	 JSR	120 for version 1.0 and JSR	205 for
version 2.0 – The Wireless Messaging API
(WMA) provides access to the device’s
Simple Message Service (SMS) messag-
ing functionalities. Using the WMA, the
application can send an SMS message
to any other device with a phone num-
ber. It can also receive incoming SMS
messages. However, the WMA doesn’t
have access to the phone’s native SMS
inbox, and therefore cannot receive reg-
ular phone-to-phone SMS messages. It
can only receive messages addressed to
a special SMS port on the device. Most
computer-based SMS tools and Internet-
based SMS gateways allow you to send
such messages with port numbers. In
WMA version 2.0, you can also send and
receive Multimedia Messaging Service
(MMS) messages from the application.

•	 JSR	135 for version 1.0 – The Mobile
Media API (MMAPI) provides access
to the device’s audio and video periph-
erals. You can use the API to play back
audio or video clips. On some devices,
you can also use the API to record voice
and capture picture/video from the on-
device camera.

To the Higher End
All Java ME-compatible mobile phones sup-
port at least CLDC and MIDP. Most devices
on the market today support WMA and
MMAPI as well. A mobile phone with CLDC,
MIDP, WMA, and MMAPI support can
be labeled as a Java Technology for Wireless
Industry (JTWI)-compatible device. In addi-
tion, many high-end Java devices also support
one or several of these optional APIs:

•	 JSR	75 – The personal information man-
ager (PIM) and file connection optional
package provides access to the device’s
native PIM databases—for example,
todo list, calendar items, and address
book. This API also allows the applica-
tion to save files to the device’s native file
system, as opposed to the simulated per-
sistence store defined in MIDP.

•	 JSR	172 – The Web services API provides
a lightweight XML and SOAP parser
library. You can develop mobile clients
for SOAP Web services using this API.

•	 JSR	184 – The Mobile 3D API is a
lightweight 3D graphics library. It
allows the application to create a vir-
tual world and manipulate objects in
that world. It is an important API for
mobile game developers.

•	 JSR	 179 – The Location API allows
the application to figure out the device’s
current location through an on-device,
GPS receiver or through a query to the
carrier’s location server. When com-
bined with mapping data—for exam-
ple, Google Maps and Yahoo Maps—
the location API allows us to develop
powerful, location-based applications.

•	 JSR	82 – The Bluetooth API provides
access to the Bluetooth radio on the
device. You can use the Bluetooth API
to exchange data objects and/or simulate
serial data links between nearby devices.

•	 JSR	 180 – The Session Initiation
Protocol (SIP) API supports the SIP for
network applications. SIP is important
for push-based applications. It could
also potentially open the possibility for
Voice over Internet Protocol (VoIP) cli-
ents on mobile phones.

•	 JSR	177 – The Security and Trust API
provides access to the mobile phone’s
SIM card. The SIM card uniquely iden-
tifies the mobile subscriber account on

the network. Through this API you
can gain access to data and applications
stored on the SIM card.

The optional APIs allow Java ME to scale
from very low-end devices to high-end
smartphones without falling into the trap
of the lowest common denominator. Basic
MIDP applications run on all Java ME
devices. Applications designed for high-
end devices can take advantage of the more
capable hardware (for example, camera,
GPS, and Bluetooth radio) through those
optional APIs. Those applications proba-
bly wouldn’t run on low-end devices (nor
should you expect them to), but the point
is that they are portable across similarly
equipped devices from different vendors.
With so many available APIs, Java ME is a
comprehensive platform for developing all
types of mobile phone applications, and yet
it preserves the cross-device application por-
tability as we can reasonably expect.

API Support by Device
For the APIs to be useful, the device man-
ufacturers must implement and support
them on the devices. One of the great
successes of Java ME is its wide adoption
among device vendors. Now, let’s check out
what Java ME APIs are supported on sev-
eral popular mobile phones.
 Sony Ericsson has a great line of Java
phones. They have large heap memory space,
large flash storage space, and no limits on the

More on the JVM

The JVM is much more than just a

cross-platform layer for interpreting

Java bytecode. It provides automatic

memory management, run-time opti-

mization, and a security sandbox for

applications. When a Java application

crashes, it crashes inside the JVM and

won’t affect other applications on the

same device. A Java application cannot

access any device resource without the

JVM permission. All of these aspects are

crucial productivity features that make

Java a popular programming language.

The stability and security features pro-

vided by the JVM are especially impor-

tant for mobile phone applications.

http://www.javapro.com

development Java ME Update

22 www.javapro.com | Java Pro Volume 10, number 2

size of the Java application (JAR file). On a
Sony Ericsson phone, the Java ME applica-
tion can make outward HTTP connections
through the WAP channel. Therefore, you
need only a cheap WAP data plan (for exam-
ple, the $5/month unlimited t-zones plan
from T-mobile) to use networked Java ME
applications. That is a huge plus for many
because phones from other vendors often
require purchasing the full “Internet data
plan” ($20/month for T-mobile) to use the
network (TCP/IP) in Java applications.
 A midrange smartphone device like the
K700 supports these Java ME APIs: CLDC
1.1, MIDP 2.0, Mobile 3D API, WMA,
and MMAPI. The support for Java 3D on
midrange devices (and even mass-market
devices like the K300) is great for game
developers too. However, it’s also note-
worthy that this device doesn’t support the
PIM and file connection API. It also lacks
support for the Bluetooth API, although it
does have Bluetooth radio.
 A high-end Sony Ericsson phone like the
W900 walkman phone is a truly powerful
Java ME device. It supports all the APIs sup-
ported in the K700, plus Bluetooth API,
PIM and file connection API, and Web
services API. The Mobile 3D API support
in W900 is backed by hardware accelera-
tion. You can develop very nice and fast
3D applications for the W900.
 Nokia is the biggest mobile phone man-
ufacturer in the world. It also sets the stan-
dard for mobile phone features and UIs. If
you are developing a Java ME application,
you will probably target a Nokia phone for
prototype development at first. Nokia is a
key member in the JCP, and it drives the
development of many Java ME APIs.
 A low to midrange Nokia Series 40
phone like the Nokia 6230 typically sup-
ports these APIs: CLDC 1.1, MIDP 2.0,
WMA, MMAPI, and the Bluetooth API.
A popular Nokia S60 smartphone like a
Nokia 6680 supports CLDC 1.1, MIDP
2.0, WMA, MMAPI, Mobile 3D API,
Bluetooth API, and the PIM and file con-
nection API. A high-end Nokia S60 device
like the E70 supports all of the aforemen-
tioned APIs plus the Web services API,
Security and Trust API, Location API, and
the SIP API.
 Like Nokia, Motorola is an early sup-
porter of Java ME and is a key JCP mem-

ber. However, Motorola phones’ Java sup-
port has left a lot to be desired. For instance,
Motorola’s best selling RAZR V3 phone
supports only CLDC 1.1, MIDP 2.0,
WMA, MMAPI, and proprietary APIs to
access the address book, file system, and
the fancy LED lights on the phone. It’s a
pity that such a slick and popular phone
doesn’t support some of the more advanced
and standard APIs.

Pros and Cons
Research In Motion’s BlackBerry is a wildly
popular e-mail device among enterprise
users. The entire suite of software on the
BlackBerry handset is built using Java.
BlackBerry supports CLDC 1.1, MIDP 2.0,
and an array of proprietary APIs to access
the device’s native e-mail client and other
PIM databases. Those APIs are highly useful
in constructing enterprise applications over
BlackBerry’s push messaging platform.
 Palm Tungsten/Treo and Windows
Mobile devices typically do not come with
the JVM preinstalled. You can download
and install third-party JVMs yourself to run
Java applications on those devices. However,
the third-party JVMs are typically limited
to CLDC 1.1 and MIDP 2.0 support with-
out any optional API package support.
 While Java ME is a highly successful
platform for mobile applications, several
shortcomings that hinder its adoption over
the past six years have been observed. For
developers it is very important to under-
stand those shortcomings and how they
might affect your development projects.
Let’s take a look at some potential solu-
tions to those problems.
 Device fragmentation refers to the real-
ity that different devices support a differ-
ent set of Java ME APIs and have differ-
ent behaviors even under the same API.
Fragmentation breaks application porta-
bility, and it is one of the biggest com-
plaints from Java ME developers. However,
it is important to understand that there is
nothing wrong with fragmentation per se.
Mobile devices are personal and specialized
devices; different customers require differ-
ent devices. It’s a good thing that device
manufacturers make a variety of devices to
address the diverse market needs and dif-
ferentiate themselves from competitors. In
fact, this type of fragmentation is a sign

of innovation. What’s missing is a univer-
sal and standard best practice to help you
work with fragmentation. Typical sources
of fragmentation include different devices
having different:

•	 Hardware add-ons and, hence, sup-
port different Java ME optional APIs –
For instance, a low-end device without
Bluetooth radio would not support the
Bluetooth API.

•	 Priorities for their storage place and other
computing resources – For instance, a
device for the youth market probably sup-
ports the Mobile 3D API, but it is unlikely
to support the Web services API.

•	 Form factors and different screen resolu-
tions – They also support different data
input methods (that is, keyboard, key-
pad, touch screen, voice recognition).

•	 Application sizes – Some devices can
only install applications smaller than
100 KB, while others permit up to sev-
eral MBs. They also support different
amounts of heap memory space, persis-
tent storage space, and maximum num-
ber of concurrent threads.

•	 Implementations of the same API – For
instance, two devices might both imple-
ment the MMAPI, but one device sup-
ports capturing video clips and MP3
playback while the other only supports
simple MIDI playback.

•	 JVM implementation bugs or behav-
ior when the specification is vague – A
major source of confusion comes from
the multithread behavior of different
devices. This behavior could be an issue
when you have several threads updating
the screen for animation and retrieving
data from the back-end server. Different
devices also have different behaviors
when you try to free memory space by
running a garbage collection.

Provider Assistance
Mobile application developers typically
develop one application that runs well on
a popular device, and then try to port the
application to other devices in the same
class. Device manufacturers can help by
grouping similar devices together. For
instance, Nokia groups all of its devices
into three developer platforms (Series 40,
S60, and Series 80). Devices on the same

http://www.javapro.com

Come visit the Journal’s new home

at www.ArchitectureJournal.net.

The new site contains a full library of

articles from previous Journal issues

in addition to upcoming highlights

of our next issue. Browse the content

today and post comments and let-

ters directly to the editor!

Now live at www.ArchitectureJournal.net!

ARCjournalAD.indd 1ARCjournalAD.indd 1 3/30/06 10:14:06 AM3/30/06 10:14:06 AM

http://www.architecturejournal.net
http://www.architecturejournal.net

development Java ME Update

24 www.javapro.com | Java Pro Volume 10, number 2

platform have similar screen sizes, hard-
ware capabilities, and support similar Java
ME APIs. You need to develop your appli-
cation for a representative device in each
platform, and then only minor changes are
required to port them to every device on
the platform.
 In the porting process, you typically need
to optimize resource files (for example, images
and sound clips) for the target device’s screen,
speaker, and memory space; add or remove
functionalities based on the API availability
on the target device; and provide source code-
level workarounds for JVM bugs or other low-
level JVM differences.
 Several third-party solutions have been
developed to address the device fragmentation
problem. For instance, the NetBeans Mobility
Pack (see Resources), which is a premier, free
IDE for Java ME, supports precompile con-
ditions embedded in Java code as comments.
You can choose to include and/or exclude cer-
tain code blocks for each build target. It is a
very powerful way to introduce minor code
changes between target devices.
 By tweaking the build script, you can
also choose what resource files to include
for each build target. If you do not want
to deal with the application porting issues
by hand, Tira Wireless develops an auto-
matic tool for porting and optimizing Java
ME applications. The Tira Wireless Jump
suite has a very comprehensive database
that documents differences among devices
(see Resources). You can simply feed your
“reference implementation” for a popu-
lar device into the Jump suite, and it will
make changes automatically to the code
and resource files to generate applications
for the target device.
 The second major shortcoming of Java
ME is that it’s originally designed with-
out much thought about mobility. In fact,
the CLDC/MIDP stack looks very much
like a miniature desktop environment with
UI widgets tweaked to fit the small screen.
Furthermore, because of the Java security
model Java ME applications do not have any
access to device functionalities not exposed
as Java APIs. As a result, most Java applica-
tions are limited in the CLDC/MIDP sand-
box, and they are distinctly different from
native applications on the device because
of the lack of integration with the under-
lying system.

 There is no integration with the device’s
native applications (for example, the mes-
saging client, the video recorder, the music
player, and the screen saver), and there is lit-
tle integration with low-level hardware fea-
tures (for example, access to the device serial
number, cell ID, and so on). The CLDC/
MIDP sandbox is probably okay for sim-
ple, form-based business applications or
simple games ported from the PC world.
However, the problem is that there is only
limited need for “desktop replacement”
mobile applications. Many users already
use laptop PCs or tablet PCs for this type
of application. Plus, those Java ME applica-
tions only represent incremental improve-
ments over WAP browser and Flash-based
applications. They aren’t all that exciting,
and therefore the adoption rate is low.

Wish List
What mobile application users and develop-
ers really want are applications that can truly
take advantage of mobility features that are
available only on mobile phones. We want
applications that integrate tightly with the
underlying phone platform and behave like
native applications. For instance, here are
several feature examples that would be great
to have in Java ME applications or games:
the ability to make, receive, and manage
voice calls; the ability to make use of and
manage users’ personal data on the phone
(for example, address book, calendar, pho-
tos, and ringtones); an idle screen or screen
saver to run in the background while pro-
cessing user input and SMS or Bluetooth
for responding to incoming messages; the
ability to uniquely identify the user through
IMEI number, subscriber number, or even
digital certificate; location sensitivity; and
camera-based applications.
 Of course, the Java ME optional API
packages are designed to provide Java appli-
cations more access to the underlying plat-
form. For instance, the PIM API allows access
to the PIM database (for example, address
book) maintained by native applications,
the file connection API provides access to
the photo and music folders on the device,
and the Location API enables location-based
applications. However, some important fea-
tures are simply not supported in current
APIs. For instance, there is no Java ME
API to support voice calls, which is by far

the biggest application for mobile phones.
Even for features that are supported in cur-
rent APIs, the JVM implementation often
leaves a lot to be desired. For instance, the
photos captured from the MMAPI typically
have much lower quality than photos cap-
tured from the native camera application.
 To make Java ME a better mobile applica-
tion development platform, we need to push
out more optional API packages and get them
implemented by phone manufacturers, which
leads to the next weakness in Java ME.
 As mentioned previously, all of the Java
ME APIs are collaboratively designed by the
JCP. Many JCP members compete among
one another. The JCP process certainly
helps those vendors to reach a consensus
that they can all support. However, this
design-by-committee approach is also very
slow, especially when some vendors have
political agendas. For instance, it took the
JCP more than three years to develop the
PIM and File Connection optional pack-
ages in Java ME, which is a very long time
in the world of mobile applications. That
delay has resulted in the situation today in
which the Java environment on the majority
of Java ME devices has no integration with
the most popular native applications.
 A potential solution for this problem is to
encourage mobile phone vendors to develop
and support proprietary Java APIs on their
devices if no standard APIs for the same func-
tionalities are available. Nokia and Motorola
have used this proprietary API approach in
the early days of Java ME out of necessity.
BlackBerry is still doing using this approach
today with very good results. Applications
developed against those proprietary APIs
would not be portable. However, that would
give Java developers a way to write advanced
applications for this particular device (or
family of devices) if they choose to. In fact,
the proprietary API can also act as a test-
ing ground for JCP APIs. If those APIs are
proven successful, the vendors can then work
together to make it a standard.

Michael Yuan, Ph.D., is a developer, speaker, and author

specializing in end-to-end enterprise and mobile solutions.

michael is the author of three mobile technology books

including Nokia Smartphone Hacks (o’reilly media Inc.,

2005); Enterprise J2ME (Prentice Hall PTr, 2003); and De-

veloping Scalable Applications for Nokia Series 40 Devices

(Addison-Wesley Professional, 2004). He has served as an

expert group member in several Java Specification requests

(JSrs), and he works currently for Jboss Inc.

http://www.javapro.com

 Mobile Java Development
 SQL Server

 Application Lifecycle Management
Presenting in-depth special reports on critical topics important to all IT professionals.

Check out these and our other must-read technical articles, tips, and market trends.

Go to: www.ftponline.com/special

Mobile Java Development
• Mobility in the Enterprise
• Get Creative Using the Java ME Platform
• Migrate Mobile Client Applications

SQL Server
• Administration Tips and Tricks
• Improve Database Performance

Application Lifecycle
Management (ALM)
• How to Manage the Entire Lifecycle
• Increase Application Reliability

And Don’t Miss Our Reports On:
• Automation and Virtualization
• Data Connectivity in Enterprise Application

Architecture
• Essential Security Tips
• Application Integration
• Data Storage for the Enterprise

© 2006 Fawcette Technical Publications, Inc.

FTPOnline Special Reports:

✓✓

✓✓
✓✓

COMINGSOON!

ad_specreport_0506_v2.indd 1ad_specreport_0506_v2.indd 1 4/20/06 6:04:27 PM4/20/06 6:04:27 PM

http://www.ftponline.com/special

Object Enterprise

by Peter VARHOL

26 www.javapro.com | Java Pro Volume 10, number 2

Java’s Desktop
Comeback
New vertical market applications require customization,
and the RCP may provide the best tools for the job

Eclipse has one. NetBeans has one.
Eclipse claims to have made signif-
icant strides in getting developers
excited about the technology and

using it in development efforts. I’m not
referring to a freely available open source
IDE, of course, but rather the Rich Client
Platform (RCP).
 You can think of the RCP as an appli-
cation framework. How does it work, you
might ask? Both Eclipse and NetBeans are
fundamentally IDEs, looking and behav-
ing the way developers expect them to per-
form. While Eclipse has shifted its image
over the last couple of years to that of a
more generic application development
platform, the concept of the RCP doesn’t
even seem to fit under that umbrella.
 Further, the recent promotion of the
Java rich client seems odd, coming as it
does after the development community
seems to have determined that Java is best
suited for Web applications and middle-
ware. Once upon a time, in the dawn
of the Internet era, Java was in fact seen
as primarily a platform for visual expe-

riences. This notion was supported by a
rich set of layout managers that in theory
enabled developers to deploy the same UI
on different display types such as desktop
computers and cell phones.
 However, Java on the desktop or in
applet form suffered from poor user
interface (UI) controls, inconsistent lay-
out managers, and above all, poor perfor-
mance. Within two years, Java largely dis-
appeared from the desktop, and still later
Java 2 provided the features needed for
true enterprise back-end solutions. Except
for Web applications, Java almost disap-
peared from the desktop.

Ch-Ch-Changes
What has changed? Fortunately, plenty.
Here are probably the three most impor-
tant changes we’ve experienced in the
platform in the last ten years.
 1. Managed languages are mature. Let’s
face it, Java was painfully slow in the 1.0
time frame. Bytecode was fully interpreted,
whereas today just about everyone JITs it.
Likewise, early versions of the Java Virtual
Machine (JVM) were not tuned for perfor-
mance. The concept of managed languages
was new for most, and expectations were
based on the relative performance of C and
C++ applications. Java clearly suffered as a
result. However, today managed languages
are the mainstream. Microsoft has intro-
duced its own managed platform, and it
is no longer such a radical idea. Scripting
languages such as Python and Ruby, which
are interpreted, are accepted as solutions
that provide for sufficient performance
and scalability on many different applica-
tions. Running Java on the desktop is no
more foolish than running Microsoft on
the desktop.

 2. Computers and networks are faster.
The poor performance of Java was exacer-
bated by slow desktop computers. While
they may have seemed pretty fast at the
time, the average computer in 1996 ran
at about 133 MHz and had about 8 MB
of memory. That amount was insufficient
memory to contain an adequate working
set for both a JVM and an application,
so the result was a lot of disk swapping
and waiting. Networks had similar limita-
tions, especially with Internet access. Any-
one who tried running Web applets across
dial-up networks around 1996 knows
that download speeds were painfully slow.
In contrast, today the proliferation of T1
lines, frame-relay networks, DSL, and
cable modems make Internet access blaz-
ingly fast, and for LANs, gigabit Ethernet
is fast becoming the standard.
 3. User interface choices are better.
When Java first launched, its UI controls
were primitive and without many prop-
erties that developers expected to have
under their control. On the Eclipse plat-
form, the Simple Widget Toolkit (SWT)
provides the Windows look and feel that
is familiar to most computer users, and on
NetBeans developers are more than happy
with Swing.
 Thus, it is not only possible, but prob-
ably inevitable, for Java to make a come-
back on the desktop. While rich client
applications seem to have lost some of the
enthusiasm of developers and IT admin-
istrators, application end users still prefer
the feel and interactive nature of the desk-
top client.
 However, those charged with build-
ing, maintaining, and administrating rich
client applications generally don’t like to
work on them. From the standpoint of

Go Online
Visit www.javapro.com for related resources.
Simply type the Locator+ code into the field in
the upper-right corner of the page.

Download
JP0602 Download all the code for this issue.

Read More
JP0602OE_T Read this article online.

JP0601OE_T Read the related article “Fast or
Good?” by Peter Varhol.

JP0511OE_T Read the related article “One or
the Other” by Peter Varhol.

JP0406PV_T Read the related article “Building
a Better Application Life Cycle” by Peter Varhol.

http://www.javapro.com
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0406PV_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0601OE_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0601OE_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0511OE_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0406PV_T

Object Enterprise

Java Pro Volume 10, number 2 | www.javapro.com 27

developers, there is too much baggage to
bring along. They not only have to create
the required features and flow of work but
also housekeeping activities such as win-
dow and text manipulation. As the appli-
cation is maintained and enhanced over
its lifetime, adding new features while
maintaining the quality of existing ones
becomes more and more difficult because
old and new code becomes intertwined.

Simply Plug It In
From the standpoint of system and soft-
ware administrators, rich client applica-
tions are the bane of their existence. Instal-
lation requires either complex scripts or
visits to every desktop, and solving prob-
lems often requires diagnosis directly on
the client. Eclipse addresses the baggage
and upgrade issues through its unique
plug-in and update strategies. The plug-
in strategy provides for features to be
incorporated as separate plug-in modules
to simply be placed in the correct direc-
tory for those features to be recognized
and integrated into the platform.
 This strategy accomplishes two pur-
poses. First, it provides a framework of
windows, menus, graphics, and other UI
elements for the plug-in. In fact, it goes
deeper than just the UI; it also provides
underlying communication and resource
management foundation for an applica-
tion. Writing the features of the appli-
cation is an easier and more straightfor-
ward proposition. Second, it provides a
streamlined way to install and support
that application. Many enterprises keep
a set of standard images for their desk-
tops, so that a given system configuration
can more easily be created on demand. If
those images also include an RCP, then
installing the right applications for a spe-
cific user can consist of loading the cor-
rect plug-ins.
 Eclipse also goes one step further with its
Update Manager, a method by which new
versions of plug-ins can be downloaded from
a specified location and installed automati-
cally. It is really a straightforward HTTP link
to a given download site, but Eclipse auto-
mates the process by either looking at fea-
tures already installed or letting you set the
link to the application you want to install.
Either way, this feature makes it possible to
load up that newly imaged computer with

the correct application by simply entering
the correct URL into the Update Manager.
Rich client application deployment and
maintenance just got significantly easier.
 The RCP concept may make more
sense in vertical industry applications,
where customization of features and
workflow is an important part of the pro-
cess. It is much easier to maintain multi-
ple versions of plug-ins rather than mul-
tiple versions of entire applications. Yet,
isn’t it still an IDE at heart? Well, yes, but
at some level an IDE is simply an appli-
cation for building applications. It shares
more characteristics with its end product

than we might realize. Virtually all com-
puter users do input, editing, switching
between files and windows, and running
tools no matter what application they are
working with, and those are the capabili-
ties that come with the platform, whether
it is Eclipse or NetBeans.
 The greatest strength of the RCP may
also be its greatest weakness. One of the
key advantages in getting an application
accepted by end users is to have a look
and feel that is familiar to those users.
Being able to leverage the look and feel
of the RCP across multiple applications is
an incredibly powerful incentive to adopt
such a standard platform.
 But the weakness is that the RCP look
is not the look that users are familiar with
today. That distinction belongs to Micro-
soft Office, which is by far the most widely
used rich application today. Most appli-
cations try to mimic that look, reasoning
that their users will have a more positive
initial impression of the application and
require less training to use it effectively.
In effect, to get an application accepted,
often the best strategy is to look like other
popular applications.

Past Perceptions
Because Java rich client UIs are only start-
ing to emerge, their look is unfamiliar to

most users. Here the Eclipse RCP may
have a slight advantage, since the SWT UI
controls use the Windows look and feel,
and thus may be more familiar to more
computer users. Moreover, more soft-
ware developers use Eclipse, so its look is
becoming familiar to that important group
of users. Either way, it’s an uphill battle for
any look and feel not associated with Win-
dows and Office to gain popularity among
end users—uphill, but not impossible.
 Despite all of its apparent advantages,
I confess that I still have my doubts about
the viability of the RCP concept. Some of
those doubts are rooted in what are prob-

ably out-of-date biases toward rich Java
applications. I don’t know if the RCP can
change that longtime perception that Java
isn’t a language for rich clients.
 The plug-in strategy, however, is really
quite unique, and it represents an entirely
new way of thinking about application
development. Developers I’ve talked to
have mixed reactions; they tend to like the
platform idea in theory, but few see it as
something they could realistically put to
use. For the most part, they are not build-
ing entirely new applications, but rather
are adding features to, or updating, exist-
ing ones. The problems with bringing an
old code base forward are well known to all
of them, but none of them can justify start-
ing over with an entirely new code base.
 This outlook may be the biggest
impediment to RCP, but new vertical
market applications are being written on
a regular basis, as markets shift and regu-
lations prompt changes. Because vertical
market applications often need custom-
ization, the RCP may be more compelling
in this type of development environment.
I applaud the trend, and believe that over
time it will mark a watershed in how we
build applications.

Peter Varhol is a senior member of the technical staff for

Progress Software. Contact Peter at peterv@mv.mv.com.

The plug-in strategy is really
quite unique, and it represents an

entirely new way of thinking about
application development

http://www.javapro.com
mailto://peterv@mv.mv.com

Pro Shop

by Daniel F. SAVARESE

28 www.javapro.com | Java Pro Volume 10, number 2

The Two Schools of
Lazy Programming
Apply a different metric to adopt practices that will save
you time while achieving a desired result

D uring my career, I’ve had the
opportunity to evaluate soft-
ware development practices at
all types of organizations. From

small start-ups and large corporations to
government and academic research labs,
software projects face many of the same
problems. Unfortunately, many of those
problems are self-created and therefore
avoidable. Strangely, self-created problems
are caused often by laziness and also can
be solved by laziness. The lessons taught by
these two schools of lazy programming—
the bad and the good—can help open the
doors of productivity. But how do you tell
the difference between bad laziness and
good laziness? There’s the rub.
 Recently, I had the opportunity to
evaluate software development at a very
early stage start-up. The name of the
game at start-ups is speed. You’ve got to
code fast and get product out the door so
you can start making money and capture
a piece of the market before your com-

petitors bury you or your money runs
out. Cutting corners is common prac-
tice, but in the long run does more harm
than good. Start-ups tend to succeed in
spite of themselves, not because they are
models of efficiency.
 The start-up I evaluated fit the pattern
I’ve encountered all too often at com-
panies big and small. No revision con-
trol. No release management process. No
requirements documents. No design doc-
uments. No API documentation. No test
procedures. You get the picture. Worse
yet, the CTO understood that the com-
pany was cutting corners and offered the
usual defense of not having enough time
to do things right. Many compromises can
be forgiven if they produce good results,
but eschewing good practices knowingly
in the interest of saving time in the short
term will always cost more time in the
long term.
 The first commandment of software
development should be “Thou shalt not
program without a revision control sys-
tem.” Whether it’s a one-programmer proj-
ect or a hundred-programmer project, revi-
sion control is the foundation for creating
reproducible results in software develop-
ment. Single programmers cannot recover
from their mistakes and failed experiments
without revision control. Efficient mul-
tideveloper collaboration is not possible
without revision control. Reliable release
management is not possible without revi-
sion control. Yet many companies develop
software without it.

No Excuses
Projects avoid revision control because
of the bad kind of laziness. An individ-
ual programmer starts coding on his or

her own, as happened at the start-up I
mentioned, and becomes more concerned
with programming than configuration
management. In the absence of a preex-
isting configuration management infra-
structure, it seems less time consuming to
simply code away. But then the program-
mer alters some code and changes his or
her mind, deciding it’s best to revert the
changes. Oops! No revision control. Now
the programmer has to recreate the origi-
nal version from memory and starts mak-
ing back-up files every now and then
before making major changes. Come
release time, he or she makes another
backup and gives it a release number. Sud-
denly, the programmer’s managing an ad
hoc version control system.
 Truly lazy programmers would start
off understanding that making man-
ual backups of source files is tedious and
error-prone. “I don’t want to waste my
time copying files to numbered directo-
ries,” they think. “I’ll just save some time
and use a proper version control system.”
With the many free and feature-rich
revision control systems available, there’s
simply no excuse to not take this tack.
At every organization where I’ve had to
introduce basic software development
practices, the practice that has gotten the
greatest positive response from program-
mers has been the use of revision con-
trol. Every programmer I’ve met who
has moved from programming with no
versioning system to programming with
a versioning system has said the same
thing: “I’m going to use version con-
trol for everything from now on. I don’t
know how I managed without it!” That’s
the good laziness setting in. If you are
truly a lazy programmer, once you recog-

Go Online
Visit www.javapro.com for related resources.
Simply type the Locator+ code into the field in
the upper-right corner of the page.

Download
JP0602 Download all the code for this issue.

Read More
JP0602PS_T Read this article online.

JP040818AK_T Read the related article “3
Tips for Developing on Linux” by Adam Kolawa
and Jeehong Min.

JP0305PS_T Read the related article “Write
Tests to Refine Your Code” by Daniel F. Savarese.

JP0310PS_T Read the related article “JMX
for Managing Java Applications” by Daniel F.
Savarese.

http://www.javapro.com
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0602PS_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP040818AK_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0305PS_T
https://ftponline.com/members/locator_plus.aspx?locator_code=JP0310PS_T

Pro Shop

Java Pro Volume 10, number 2 | www.javapro.com 29

nize that a practice will save you effort,
you embrace it wholeheartedly.
 Source control seems like such a basic
element of software development that it is
easy to disbelieve organizations exist that
don’t use it. Still, it must be applied effec-
tively to provide benefits. For example,
after the company in question adopted a
version-controlled source code repository,
it didn’t have any configuration manage-
ment procedures to guide project organi-
zation and release management. There-
fore, interdependencies between modules
and shared dependencies were handled
through duplication. Approximately 100
third-party libraries were duplicated, a
separate instance appearing in the repos-
itory for each dependent module. Proj-
ect source files also were duplicated. For
example, independent service compo-
nents all shared the same configuration
file format. To read the configuration file,
the services required the same configura-
tion class. Instead of placing this class in
a separate library, the source file was cop-
ied into the source tree for each service.
Which version was the master copy?
 The rampant duplication was borne
out of bad laziness. You’re in the mid-
dle of coding one separately versioned
component and need some functionality
from another separately versioned com-
ponent; therefore, you copy the code or
the entire source file instead of taking the
time to organize your code into reusable
libraries. Now, instead of making changes
in a single place, you have to apply the
changes in every place you copied the
code. A programmer exercising good lazi-
ness will recognize the time and mainte-
nance savings to be derived from organiz-
ing the code up front.
 Again, organizing code into units
that avoid duplication seems like such a
basic practice that it’s easy to disbelieve
any software development project would
not do so.

Testing Shortcut
Nonetheless, even if you organize your
source code and build system to avoid
duplication and rely on versioned snap-
shots of class libraries, there remain many
ways to create unnecessary work for your-
self. A common shortcut that should not

be easy to disbelieve is a lack of test pro-
cedures. Testing encompasses more than
simple unit tests, but unit tests are a good
place to start. If you implement unit tests
as you develop your code, you build reli-
ability into your system as you go along.
Writing unit tests as you go along is not
overly time-consuming. Neither is writ-
ing API documentation.
 There is a lot of dead time involved
in software development, where pro-
grammers stare at the computer screen
and think. It’s not overly time consum-
ing to use that dead time to both think
and write API docs and unit tests. Track-
ing down and fixing avoidable bugs after a
release is overly time consuming. Writing
API documentation for hundreds or thou-

sands of classes after you’ve forgotten all of
the details also is overly time-consuming.
Going back and writing unit tests after the
fact because you finally realize you need
them is overly time-consuming.
 The start-up I mentioned earlier had
written absolutely no API documentation
and no unit tests. Their production soft-
ware was deployed as a service off of the
head branch without cutting release snap-
shots. Their idea of testing was to deploy
the product and wait for the customer
complaints to arrive. The service was crash-
ing once every couple of weeks. Without
any performance measurements and anal-
ysis, they decided to make some perfor-
mance enhancements. The law of unin-
tended consequences took hold and the
service proceeded to crash every few days.
Different parts of the code base relied on
different object persistence mechanisms,
each of which created its own set of soft-
ware maintenance problems.
 To the company’s credit, it had deployed
an issue-tracking system. However, the list
of issues slated for the next release was
so long it could never be completed in a
reasonable time frame, causing them to

deploy their service off of the head branch
on a regular basis. Still, they were making
money as so many companies do in spite of
their inefficient practices.
 This company needed to cut its losses
and invest the time to put its house in
order instead of offering the excuse that
“there’s no time to do this.” Small soft-
ware companies often start life with one
or two programmers. Single program-
mers should conduct software develop-
ment as though they were working with
other programmers. Write down require-
ments even if they consist of a few bul-
lets in a text file. Sketch out your designs.
Document your code as you write it.
Write unit tests. Plan releases from the
very start as achievable goals that focus

on a handful of changes. Measure and
analyze performance before you opti-
mize code. Manage complexity by sim-
plifying wherever possible (for example,
use one object persistence system instead
of four). Don’t succumb to the bad lazi-
ness that is hastiness.
 Any practice that appears to save you
time in the short run but costs you time
in the long run is an example of bad lazi-
ness. Any practice that saves you time in
the long run while achieving a desired
result is an example of good laziness. Use
that metric to help decide what practices
to adopt. You don’t have to follow a par-
ticular software development process step
by step. It takes time to save time. It takes
work to truly be lazy.

Daniel F. Savarese is the founder of Savarese Software

research. He founded oro Inc., was a senior scientist at

Caltech’s Center for Advanced Computing research, and

was vice president of software development at WeboS.

Daniel wrote the original Jakarta oro, Commons net,

rockSaw, Sava Algorithms, and bareHTTP libraries. He also

coauthored How to Build a Beowulf (mIT Press, 1999) and

earned a Ph.D. in computer science from the university of

maryland College Park. Contact Daniel at www.savarese.

org/contact.html.

The first commandment of software
development should be, “Thou shalt

not program without a revision
control system.”

http://www.javapro.com
http://www.savarese.org/contact.html
http://www.savarese.org/contact.html

30 www.javapro.com | Java Pro Volume 10, number 2

Java Pro—Nine Years of Excellence Article Index

Title Author(s) Locator+ Code

Volume 10 Number 2, 2006
Finding the Best Value in Java IDEs Peter Varhol JP0602PV_T
Cleaning a Complex Java Code Base Matt Love JP0602ML_T
Get Creative on the Java ME Platform Michael Yuan JW041706MY_T
Object Enterprise: Java’s Desktop Comeback Peter Varhol JP0602OE_T
Pro Shop: The Two Schools of Lazy Programming Daniel F. Savarese JP0602PS_T
Editor’s Note: Java Season Terrence O’Donnell JP0602EN_T
Public Static: Two Sides of Progress Guest Opinion by

Onno Kluyt
JP0602PB_T

Volume 10 Number 1, 2006
The AJAX Approach to Richer Interfaces Chris Schalk JP0601CS_T
Putting Open Source to Work Peter Varhol JP0601PV_T
JSLT Gives Web Applications Flexibility Alan Berg JP0601AB_T
Object Enterprise: Fast or Good? Peter Varhol JP0601OE_T
Plugged In: Selecting JDBC Drivers Kevin Jones JP0601PI_T
Pro Shop: Hunting the Unicorn Daniel F. Savarese JP0601PS_T
Editor’s Note: Units of Measure Terrence O’Donnell JP0601EN_T
Public Static: Java’s Innovation Engine Guest Opinion by

Mike Milinkovich
JP0601PB_T

Volume 9 Number 6, 2005
Jini at Your Service Alexander Krapf JP0511AK_T
Migrate Java EE Applications for EJB 3.0 Debu Panda JP0507DP_T
Manage Deployment Descriptors Maria Salzberger JP0511MS_T
Object Enterprise: One or the Other Peter Varhol JP0511OE_T
Plugged In: Put a Plug-In to Use Kevin Jones JP0511PI_T
Troubleshooter’s Diary: Build Interactive Workflows Anbarasu Krish-

naswamy and Vijay
Mandava

JP0511KM_T

Pro Shop: When Old Code Stops Working Daniel F. Savarese JP0511PS_T
Editor’s Note: Making a Connection Terrence O’Donnell JP0511EN_T
Public Static: The Year of AJAX Guest Opinion by

Kito D. Mann
JP0511PB_T

Volume 9 Number 5, 2005
Adversaries and Partners Chris Schalk JP0509CS_T
Dynamic Service-Oriented Architecture Ted Farrell and

Raghu Kodali
JP0509TF_T

Manage Deployment Descriptors Sean Blanton JP0509SB_T
Troubleshoot High CPU Issues Steve Pozarycki JP0509SP_T
Object Enterprise: Moving to Modeling Peter Varhol JP0507OE_T
Plugged In: Take a JFace Detour Kevin Jones JP0507PI_T
Pro Shop: Of Software and Sherman Tanks Daniel F. Savarese JP0507PS_T
Editor’s Note: For What It’s Worth Kay Keppler JP0507EN_T
Public Static: Integration Rx Terrence O’Donnell JP0507PB_T

Volume 9 Number 4, 2005
Delivering Quality to the Enterprise Kay Keppler JP0506KK_T
Eclipse Unleashed Mike Milinkovich JP0506MM_T
Object Enterprise: Architecture Is in Your Best Interest Peter Varhol JP0506OE_T
Plugged In: Get Acquainted with Eclipse Plug-Ins Kevin Jones JP0506PI_T
Pro Shop: J2ME Let’s You Go 3D Daniel F. Savarese JP0506PS_T
Editor’s Note: The Lunatic Masses Kay Keppler JP0506EN_T

Volume 9 Number 3, 2005
Build the Network Application Platform Chris Haddad JP0505CH_T
The Business Perception of MDA Interview by Editors

of Java Pro
JP050406AB_T

Preserve Your Legacy Russell Gold JP0505RG_T
Implement a Graphical JSF Component Marc Durocher JP0505MD_T
Object Enterprise: Use Open Source Safely Peter Varhol JP0505OE_T
Plugged In: Eclipse SWT 101 Kevin Jones JP0505PI_T
Pro Shop: Implement Raw Sockets Daniel F. Savarese JP0505PS_T
Editor’s Note: When the Data Fits Kay Keppler JP0505EN_T

Volume 9 Number 2, 2005
Leverage Today’s JDO for Tomorrow’s EJB Robert Greene JP0503RG_T
Must You Choose a Single Technology? Craig R. McCla-

nahan
JP0503CM_T

Design Patterns, JMX for Manageability Justin Murray JP0503JM_T
Integrate Java and .Net Peter Varhol JP0503OE_T
Pro Shop: Conquer Class Loader Confusion Daniel F. Savarese JP0503PS_T
Editor’s Note: It’s All About SOA… P Kay Keppler JP0503EN_T
Public Static: Innovation Calling Terrence O’Donnell JP0503PU_T

Volume 9 Number 1, 2005
Pushing Portal Potential David Hritz JP0501DH_T
Apply JMX Best Practices Chris Peltz and

Pankaj Kumar
JP0501CP_T

The Devil’s in the Details Nigel Cheshire JP0501NC_T
Write a Web Service Client Kevin Jones JP0501KJ_T

Java Pro’s article index, published periodically as a convenience for readers who need specific articles, lists content that appears in print and
online. Articles are organized by issue and include Locator+ codes. To read an article online, go to either the home page for Fawcette Tech-
nical Publications at www.ftponline.com, or the Java Pro Online site at www.javapro.com, and type the Locator+ code into the field in the
upper-right corner of the page. This index is also available online.

Write a Web Service Server Kevin Jones JP0501JK_T
Pro Shop: Can’t Get There from Here Daniel F. Savarese JP0501PS_T
Editor’s Note: Surfin’ USA Kay Keppler JP0501EN_T

November/December 2004 Vol. 8 No. 8
Achieve Optimal Performance Peter Varhol JP0411PV_T
Choosing Favorites Editors of Java Pro JP0411RC_T
Object Enterprise: Put Debugging to the Test Peter Varhol JP0411OE_T
Pro Shop: Intercepting Packets on Linux with Java Daniel F. Savarese JP0411PS_T
Editor’s Note: Crunching the Numbers Kay Keppler JP0411EN_T
Public Static: Choices Terrence O’Donnell JP0411PB_T

Special Issue Java Pro Live! 2004 Vol. 8 No. 7
Align Java Technologies with Business Results Peter Varhol JP0410PV_T
Filtering JNDI Operations Bahar Limaye JP0410BL_T
SOA Design: Meeting in the Middle Boris Lublinsky JP0410BY_T
Put Convenience into Web Applications Brett Spell JP0410BS_T
Pro Shop: Adaptive Security with Virtual Services Daniel F. Savarese JP0410PS_T
Editor’s Note: There Oughtta Be a Law Kay Keppler JP0410EN_T
September/October 2004 Vol. 8 No. 6
Beyond SOA: Principles of Service Engineering Mark M. Davydov JP0409MD_T
XML Persistence Pays Off Kei G. Gauthier JP0409KG_T
The 2004 Java Technology Roundtable Simon Phipps JP0409RT_T
Object Enterprise: What Makes Developers Productive? Peter Varhol JP0409OE_T
Pro Shop: When Static Methods and Code Collide Daniel F. Savarese JP0409PS_T
Editor’s Note: Expert Opinion Kay Keppler JP0409EN_T
Public Static: Choices Terrence O’Donnell JP0409PB_T
July/August 2004 Vol. 8 No. 5
Will Application Integration Save the Enterprise? Peter Varhol JP0407PV_T
Maintain a Healthy-Software Lifestyle Klaus-P. Berg JP0407KB_T
Troubleshoot Your SOA Robbie Clark JP0407RC_T
XML and Web Services: Are We Secure Yet? Mark O’Neill JP0407MO_T
Object Enterprise: Think Integration Peter Varhol JP0407OE_T
Innovation Factory: Sun Opens Another Window Janaya Reitz JP0407IF_T
Pro Shop: Introspection JavaBeans Daniel F. Savarese JP0407PS_T
Editor’s Note: Dreaming of Convening Kay Keppler JP0407EN_T
Special Issue JavaOne 2004 Vol. 8 No. 4
Building a Better Application Life Cycle Peter Varhol JP0406PV_T
Take the Fast Track to J2SE 1.5 Calvin Austin JP0406CA_T
Keep the Ant, Hold the XML Kei G. Gauthier JP0406KG_T
All That JAAS Kevin Jones JP0406KJ_T
Object Enterprise: Why Our Computers Act Irrationally Peter Varhol JP0406OE_T
Innovation Factory: Making Concurrency Easier Brian Goetz JP0406IF_T
Pro Shop: Remote Access for Managed Applications Daniel F. Savarese JP0406PS_T
Editor’s Note: Who Let the Dogs Out? Kay Keppler JP0406EN_T
Public Static: One-Two Punch Dan Ruby JP0406DR_T
May/June 2004 Vol. 8 No. 3
Teaming Up Portals and Web Services Ash Parikh, Rajesh

Pradhan, and Nirav
Shah

JP0405AP_T

Cluster WebSphere Servers Kulvir Singh Bhogal
and Javid Jamae

JP0405BJ_T

Combining SOAP and JavaMail Sameer Tyagi JP0405ST_T
Javatecture: Starting Java Applications from the Web James W. Cooper JP0405JT_T
Object Enterprise: Build a Services-Oriented Architecture Peter Varhol JP0405OE_T
Pro Shop: Java Scripting Gets Groovy Daniel F. Savarese JP0405PS_T
Editor’s Note: Open Season Kay Keppler JP0405EN_T
Public Static: Seven Questions Dan Ruby JP0405PB_T
March/April 2004 Vol. 8 No. 2
What UML Is and Isn’t Craig Larman JP0403CL_T
Go Beyond Tag Libraries Kevin Jones JP0403KJ_T
Innovation Factory: Support for the Grid Economy Edmund X. DeJesus JP0403IF_T
Pro Shop: Programming with Active Objects Daniel F. Savarese JP0403PS_T
Object Enterprise: Get Ready for the Enterprise Supply Chain Peter Varhol JP0403OE_T
Editor’s Note: Going over the Wall Kay Keppler JP0403EN_T
January/February 2004 Vol. 8 No. 1
Working with Large Object Datatypes John O’Donahue JP0401JO_T
From Error Detection to Error Prevention Adam Kolawa, Ph.D. JP0401AK_T
Developing Web Interfaces with JSF Chris Schalk JP0401CS_T
Object Enterprise: Why I Want an App Life-Cycle Platform Peter Varhol JP0401OE_T
Pro Shop: Prevent Web Application Hijacking Daniel F. Savarese JP0401PS_T
Editor’s Note: Fly United Kay Keppler JP0401EN_T
Public Static: Standards and Innovation Dan Ruby JP0401PB_T
December 2003 Vol. 7 No. 12
Can Your Web Services Interoperate? Sameer Tyagi JP0312ST_T
Magical Web Interface Development Kito D. Mann JP0312KM_T
Javatecture: Don’t Flee the Nest James W. Cooper JP0312JT_T
Object Enterprise: Keep Up Without Losing Sleep Peter Varhol JP0312OE_T
Pro Shop: Prepare for Java Language Changes Daniel F. Savarese JP0312PS_T
Editor’s Note: Taking Java Off Road Terrence O’Donnell JP0312EN_T
Public Static: Radical Economics Dan Ruby JP0312PB_T
November 2003 Vol. 7 No. 11
Build Reporting into Applications Peter Varhol JP0311PV_T

http://www.javapro.com
http://www.ftponline.com
http://www.javapro.com

Java Pro Volume 10, number 2 | www.javapro.com 31

Java Pro—Nine Years of ExcellenceArticle Index

The Philosophy of Interface-Driven Design Jason Byassee JP0311JB_T
Sun ONE Approaches to Web Development Sameer Tyagi JP0311ST_T
Object Enterprise: Write Once, Run… Where? Peter Varhol JP0311OE_T
Pro Shop: A Trio of Quadtrees Daniel F. Savarese JP0311PS_T
Editor’s Note: The Ice Man Cometh Kay Keppler JP0311EN_T
Product Review: WebLogic Platform 8.1 Daniel F. Savarese JP0311PR_T
October 2003 Vol. 7 No. 10
Java Pro 2003 Enterprise Buyer’s Guide Editors of Java Pro JP0310BG_T
The 2003 Java Pro Technology Roundtable Simon Phipps JP0310RT_T
Object Enterprise: The Power of Patterns Peter Varhol JP0310OE_T
Pro Shop: JMX for Managing Java Applications Daniel F. Savarese JP0310PS_T
Editor’s Note: The Right Stuff Kay Keppler JP0310EN_T
September 2003 Vol. 7 No. 9
Architecture Is Key to Optimization Peter Varhol JP0309PV_T
Deploy a Web Application with OC4J David Gallardo JP0309DG_T
Stay Flexible with Logic Scripts Mark Nadelson JP0309MN_T
Object Enterprise: The Promise of Java Everywhere Peter Varhol JP0309OE_T
Innovation Factory: JSIS and Source Code Dependencies Claude Duguay JP0309IF_T
Editor’s Note: In the Mist Kay Keppler JP0309EN_T
Public Static: Tipping Point Dan Ruby JP0309PB_T
August 2003 Vol. 7 No. 8
Building Enterprise Portals Howard Block, Rob

Castle, and David
Hritz

JP0308WP_T

The Readers Choose Editors of Java Pro JP0308RC_T
Architecting Security for Web Services Mark O’Neill JP0308MO_T
J2EE 1.4: A Web Services Kit Peter Varhol JP0308PV_T
Javatecture: The Trie of Knowledge James W. Cooper JP0308JT_T
Object Enterprise: Managing for Security Peter Varhol JP0308OE_T
Pro Shop: The Trouble with Distributed Objects Daniel F. Savarese JP0308PS_T
Editor’s Note: The Next Big Thing Kay Keppler JP0308EN_T
Public Static: Center of Gravity Dan Ruby JP0308PB_T
Product Review: Rational XDE Kito D. Mann JP0308PR_T
July 2003 Vol. 7 No. 7
7 Keys to Secure Java Software Daniel F. Savarese JP0307DS_T
Plug and Play with Java Jason Byassee JP0307JB_T
Visual Components: Employ Visual Text-Editing Features
in JEditor

Claude Duguay JP0307VC_T

Java Unplugged: Make Mobile Phones Smarter Jeff Jurvis JP0307JU_T

Pro Shop: Prove It, Don’t Compute It Daniel F. Savarese JP0307PS_T
Editor’s Note: Soup’s On Kay Keppler JP0307EN_T
Public Static: The Permanent Evolution Dan Ruby JP0307PB_T
Product Review: SourceCafe Curtis Krauskopf JP0307PR_T

Book Reviews: Core JSTL: Mastering the JSP Standard
Tag Library by David M. Geary and Ant Developer’s
Handbook by Alan Williamson et al.

Claude Duguay JP0307BR_T

June 2003 Vol. 7 No. 6
Learning to Fly Daniel F. Savarese JP0306DS_T
Serialize Java Data Objects to XML Charles D. Havener JP0306CH_T
Make Applications Update-Aware Mark Nadelson JP0306MN_T
IXC Simplifies Xlet Communication Xiaozhong Wang JP0306XW_T
Pro Shop: Control Your Exceptions Daniel F. Savarese JP0306PS_T
Weblication: Java and the Model Driven Architecture Peter Varhol JP0306WC_T
Editor’s Note: Where Have All the [Virtual] Flowers Gone? Kay Keppler JP0306EN_T
Public Static: Expanding the Pie Dan Ruby JP0306PB_T

May 2003 Vol. 7 No. 5
Integrated Testing Builds In Quality Peter Varhol JP0305PV_T
Streamline Your Exception Processing Derek Ashmore JP0305DA_T
Turn a JTable into a Spreadsheet Thierry Manfé‚ JP0305TM_T
Javatecture: A Ticket to Success James W. Cooper JP0305JT_T
Pro Shop: Write Tests to Refine Your Code Daniel F. Savarese JP0305PS_T
Editor’s Note: It’s the Real Thing Kay Keppler JP0305EN_T
Public Static: Bread and Chocolate Dan Ruby JP0305PB_T

Book Reviews: Java Development with Ant by Erik
Hatcher & Steve Loughran, Java Data Objects by Robin
M. Roos, and Writers’ Workshops & the Work of Making
Things: Patterns, Poetry… by Richard P. Gabriel

Claude Duguay
James W. Cooper

JP0305BR_T

April 2003 Vol. 7 No. 4
Fail-Safe Interop for Your Enterprise Daniel F. Savarese JP0304DS_T
Monitor Multitiered Apps in One Location Mark Nadelson JP0304MN_T
Weblication: Putting a New Face on Web Interfaces Peter Varhol JP0304WC_T
Java To Go: Open a S.O.D.A. Rick Grehan JP0304JG_T
Pro Shop: On Optimizing Service Orchestration Daniel F. Savarese JP0304PS_T
Editor’s Note: The Long and Winding Road Kay Keppler JP0304EN_T
Pulic Static: Groucho’s Revenge Dan Ruby JP0304PB_T

Book Reviews: JSTL in Action by Shawn Bayern, Sun
ONE Studio Programming by Rashim Mogha and Ruchi
Bhargava, and Programming LEGO Mindstorms with
Java by Giulio Ferrari et al.

Claude Duguay
Rick Grehan

JP0304BR_T

March 2003 Vol. 7 No. 3
Get Small with Wireless Messaging and Mobile Media Daniel F. Savarese JP0303DS_T
Use Threading Tricks to Improve Programs Osvaldo Pinali

Doederlein
JP0303OD_T

MIDP 2.0 Is Ready for the Enterprise David Hemphill
and David G.
Morehouse II

JP0303HM_T

Javatecture: Aspects, Concerns, and Java James W. Cooper JP0303JT_T
Visual Components: JIcon Dresses Up Your Interfaces Claude Duguay JP0303VC_T
Java Unplugged: The Push Is On Jeff Jurvis JP0303JU_T
Pro Shop: The Case for Conditional Compilation Daniel F. Savarese JP0303PS_T
Editor’s Note: Flash! Here’s Cold, Rational Fusion Kay Keppler JP0303EN_T

February 2003 Vol. 7 No. 2
Five Paths to Persistence Daniel F. Savarese JP0302DS_T
Build a Better Robot with Ant Erik Hatcher JP0302EH_T
Weblication: Automate Updates of Dynamic Web Apps Peter Varhol JP0302WC_T
Java To Go: Native PalmOS Databases Rick Grehan JP0302JG_T
Pro Shop: JAXB Revisited Daniel F. Savarese JP0302PS_T
Editor’s Note: Skating Trials Kay Keppler JP0302EN_T
Public Static: Community Evolution Dan Ruby JP0302PB_T

January 2003 Vol. 7 No. 1
JMS Delivers the Message Peter Varhol JP0301PV_T
Just Browsing Budi Kurniawan JP0301BK_T
Create Rich Media Applications Jonathon Maron and

Jason Kinner
JP0301JM_T

Javatecture: Easy as Reeling Off a Log James W. Cooper JP0301JT_T
Visual Components: Line ’Em Up Claude Duguay JP0301VC_T
Pro Shop: Monitor Your Messages Daniel F. Savarese JP0301PS_T
Editor’s Note: Securing the Franchise Kay Keppler JP0301EN_T

December 2002 Vol. 6 No. 12
J2ME Gets Personal David Hemphill JP0212DH_T
IDEs for Wireless Java Rick Grehan JP0212RG_T
Javatecture: The Focus Puller James W. Cooper JP0212JT_T
Weblication: Driving Java Development Through Testing Peter Varhol JP0212WC_T
Pro Shop: Eclipse vs. Swing Daniel F. Savarese JP0212PS_T
Editor’s Note: From Server to Desktop Kay Keppler JP0212EN_T
Public Static: Method in Madness Dan Ruby JP0212PB_T
Product Review: JBuilder 7 Enterprise Sue Spielman JP0212PR_T

November 2002 Vol. 6 No. 11
Enterprise Software in a Services World Peter Varhol JP0211PV_T

2002 Java Pro Technology Roundtable Simon Phipps JP0211TR_T

Java’s Continuing Evolution Daniel F. Savarese JP0211DS_T
Javatecture: Handling SAX Errors James W. Cooper JP0211JT_T
Visual Components: A Window of Opportunity Claude Duguay JP0211VC_T
Java To Go: Direct to Palm Rick Grehan JP0211JG_T
Pro Shop: Close to Correct Daniel F. Savarese JP0211PS_T
Editor’s Note: Blue Skies Kay Keppler JP0211EN_T
Public Static: Standard Deviation Dan Ruby JP0211PB_T

October 2002 Vol. 6 No. 10
What’s New in EJB 2.1? Tarak Modi JP0210TM_T
Build a Smarter Search Engine Baylor Wetzel JP0210BW_T
Custom-Fit Web Development Budi Kurniawan JP0210BK_T
JAXR: A Web Services Building Block Sameer Tyagi JP0210ST_T
Weblication: Profile Your Web Services Peter Varhol JP0210WC_T
Javatecture: Practicing Safer SAX James W. Cooper JP0210JT_T
Visual Components: Just What You Want to See Claude Duguay JP0210VC_T
Java To Go: Liten Up Rick Grehan JP0210JG_T
Pro Shop: How Hot Is HotSpot? Daniel F. Savarese JP0210PS_T
Editor’s Note: The Energy Equation Kay Keppler JP0210EN_T
Public Static: Whom Can You Trust? Dan Ruby JP0210DR_T

September 2002 Vol. 6 No. 9
Extending the Enterprise Peter Varhol WE0201PV_T
Nokia’s Data Strategy James E. Fawcette WE0201JF_T
Deliver Big Functionality on Small devices Rick Grehan WE0201RG_T
Execute Applications Remotely in Java Mark Nadelson JP0209MN_T
Hot Java Devices Lee Sherman WE0201LS_T
Weblication: Java to XML and Back Again Peter Varhol JP0209WC_T
Javatecture: Stating Your Preference James W. Cooper JP0209JT_T
Visual Components: Keep Tabs on Your Software Claude Duguay JP0209VC_T
Java To Go: A Catalog Model Rick Grehan JP0209JG_T
Pro Shop: Application, Heal Thyself Daniel F. Savarese JP0209PS_T
Editor’s Note: Buckle Up Kay Keppler JP0209EN_T
Public Static: Casualty of War Dan Ruby JP0209PB_T

August 2002 Vol. 6 No. 8
Undaunted Testing Mark Nadelson and

Marina Evenstein
JP0208MN_T

JDBC: The Next Generation Brett Spell JP0208BS_T
A View from a JTree Budi Kurniawan JP0208BK_T
A New Security Blanket Josh Street JP0208JS_T
Weblication: Build Quality Apps with JMeter Peter Varhol JP0208WC_T
Javatecture: Native Intelligence James W. Cooper JP0208JT_T
Visual Components: An Easy Way to Sort Things Out Claude Duguay JP0208VC_T
Java To Go: Setting a Record Rick Grehan JP0208JG_T
Pro Shop: Whatever Happened to Jini? Daniel F. Savarese JP0208PS_T
Editor’s Note: A Free Lunch Kay Keppler JP0208EN_T
Public Static: Nearly Full Monty Dan Ruby JP0208PB_T

http://www.javapro.com

32 www.javapro.com | Java Pro Volume 10, number 2

Java Pro—Nine Years of Excellence Article Index

Book Reviews: JBoss Administration and Development by
Scott Stark et al. and Java for the Web with Servlets, JSP,
and EJB: A Developer’s Guide to J2EE Solutions by Budi
Kurniawan

Claude Duguay
Andrés Gómez de
Silva Garza

JP0208BR_T

July 2002 Vol. 6 No. 7
JDOQL: The JDO Query Language David Jordan JP0207DJ_T
Integrate Java Cryptography with Windows Brian Boyter JP0207BB_T
Using Hashtables in Java Pete Ford JP0207PF_T
Protect Your Investment Thierry Manfé‚ JP0207TM_T
Weblication: The Necessity of Performance Profiling Peter Varhol JP0207WC_T
Javatecture: Workbook Your Way Through Design Patterns James W. Cooper JP0207JT_T
Visual Components: A JRange of Options Claude Duguay JP0207VC_T
Java To Go: Simply Mobile Rick Grehan JP0207JG_T
Pro Shop: The Right SOAP Daniel F. Savarese JP0207PS_T
Editor’s Note: Slicing the Pie Kay Keppler JP0207EN_T
Public Static: Sun’s Softer Side Dan Ruby JP0207PB_T

Book Reviews: Java 1.4 Tutorial by Gregory M. Travis and
Bitter Java by Bruce A. Tate

Claude Duguay JP0207BR_T

June 2002 Vol. 6 No. 6
Salary Survey: Java Still Hot Kay Keppler JP0206SS_T
Configure Tomcat for Secure Web Apps Budi Kurniawan JP0206BK_T
The Java Logging API Stuart Dabbs Hal-

loway
JP0206SH_T

Weblication: Serve Users but Prepare for the Worst Peter Varhol JP0206WC_T
Javatecture: You Can’t Go Home Again James W. Cooper JP0206JT_T
Java To Go: Jumping with Jazelle Rick Grehan JP0206JG_T
Visual Components: Border Control Claude Duguay JP0206VC_T
Pro Shop: Make Some Noise with Java Sound Daniel F. Savarese JP0206PS_T
Editor’s Note: Looking Ahead Kay Keppler JP0206EN_T
Public Static: Common Cause Dan Ruby JP0206DR_T
Product Review: Adalon 2.1 Paul Bonner JP0206AD_T

Book Reviews: Component Development for the Java
Platform by Stuart Dabbs Halloway and SAX2 by David
Brownell

Claude Duguay JP0206BR_T

May 2002 Vol. 6 No. 5
The Power of Speech William Chuong JP0205CC_T
Build a Dynamic Module Subsystem Claude Duguay JP0205CD_T
The Readers Choose Editors Java Pro JP0205RC_T

Javatecture: Eclipse Your IDE James W. Cooper JP0205JT_T
Weblication: Applying the MVC Design Pattern Using
Struts

Peter Varhol JP0205WC_T

Java To Go: JTRON = Java + ITRON Rick Grehan JP0205JG_T
Visual Components: Develop JDigital Imagery Claude Duguay JP0205VC_T
Pro Shop: What Dynamic Proxies Can Do for You Daniel F. Savarese JP0205PS_T
Editor’s Note: Good News Kay Keppler JP0205EN_T
Public Static: Competing Within Standards Jack Walicki JP0205JW_T
Product Review: Oracle9i JDeveloper Peter Varhol JP0205PR_T

Book Reviews: JDBC Practical Guide for Java Program-
mers by Gregory D. Speegle and Early Adopter JXTA:
Peer-to-Peer Computing with Java by Sing Li

Claude Duguay JP0205BR_T

April 2002 Vol. 6 No. 4
Struts: A Solid Web-App Framework Tim Holloway JP0204TH_T
Write Persistent Modules in Java Bob Beauchemin JP0204BB_T
The Great Exchange David Essex JP0204DE_T
J2ME and J2EE: Together at Last David Hemphill JP0204DH_T
Documents and Views, Observables and Observers Pete Ford JP0204PF_T
Weblication: Strut Your Stuff Peter Varhol JP0204WC_T
Javatecture: Java Laid Bare James W. Cooper JP0204JT_T
Java To Go: Get the JavaPhone Rick Grehan JP0204JG_T
Visual Components: Slide into Java Claude Duguay JP0204VC_T
Pro Shop: The Next Step for Web Services Daniel F. Savarese JP0204PS_T
Editor’s Note: Let the Games Begin Kay Keppler JP0204EN_T
Public Static: Cajun Unveiled Scott Dietzen JP0204SD_T
Product Review: JET Version 2.1 Claude Duguay JP0204EJ_T
Product Review: Eclipse Jon Strande

Book Reviews: Java Tools for Extreme Programming by
Richard Hightower and Nicholas Lesiecki and Apache
Jakarta-Tomcat by James Goodwill

Claude Duguay JP0204BR_T

March 2002 Vol. 6 No. 3
Log On! Josh Street JP0203JS_T
Merlin Demystifies Java Debugging Tarak Modi JP0203TM_T
Get the JMS Message Kevin Jones JP0203KJ_T
Inspect Your Java Objects Alexandre Calsavara JP0203AC_T
Take Control of Your Home Mark Nadelson and

Victor Veloso
JP0203MN_T

A Different View of XML John B. O’Donahue JP0203JO_T
Weblication: Keep Them Separated Peter Varhol JP0203WC_T
Javatecture: Is Java Fast Enough? James W. Cooper JP0203JT_T
Java To Go: The Multifaceted Quartz Rick Grehan JP0203JG_T
Visual Components: A Document Divided Claude Duguay JP0203VC_T
Pro Shop: High-Performance I/O Arrives Daniel F. Savarese JP0203PS_T
Editor’s Note: Reinventing Again Kay Keppler JP0203EN_T

Public Static: Where is Java Going? Dan Ruby and Jim
Fawcette

JP0203DR_T

Book Reviews: Java Deployment with JNLP and WebStart
by Dr. Mauro Marinilli and Java Event Handling by
Grant Palmer

Claude Duguay JP0203BR_T

February 2002 Vol. 6 No. 2
Filters for Pre- and Post-Processing Kevin Jones JP0202KJ_T
Lifecycle Events Monitor Context Changes Budi Kurniawan JP0202BK_T
Plug ’n’ Play Enterprise Apps Tarak Modi JP0202TM_T
Unravel the Complexity of Thread Programming Karthik Rangaraju JP0202KR_T
Take Java to Task Efraim Berkovich JP0202EB_T
Weblication: Those Pesky Errors Peter Varhol JP0202WC_T
Javatecture: OOPSLA Did it Again James W. Cooper JP0202JT_T
Java To Go: A Comfortable Jbed Rick Grehan JP0202JG_T
Visual Components: A Java Hex Claude Duguay JP0202VC_T
Pro Shop: The Road Goes Ever On Daniel F. Savarese JP0202PS_T
Editor’s Note: Give Me Liberty or Give Me Passport Kay Keppler JP0202EN_T
Product Review: Rational RequisitePro version 2002 Sue Spielman JP0202RR_T

Book Reviews: Programming Open Service Gateways with
Java Embedded Server by Kirk Chen and Li Gong and
Java 3D API Jump-Start by Aaron E. Walsh and Doug
Gehringer

Claude Duguay JP0202BR_T

January 2002 Vol. 6 No. 1
Automate SOAP Calls in Java with the Proxy Pattern Henry Bequet JP0201HB_T
Discover Your Inner Classes Harris W. Kirk JP0201HK_T
The Lowdown on Uploads Alexandre Calsavara JP0201AC_T
Don’t Get Stuck in the GUI Thread Charles W. Kann JP0201CK_T
How to Climb a B-tree Rick Grehan JP0201RG_T
Weblication: Sophisticated Databases Peter Varhol JP0201WC_T
Javatecture: Java: Closer to .Net than You Think James W. Cooper JP0201JT_T
Java To Go: Cure Your Waba Woes with a Serial Socket Rick Grehan JP0201JG_T
Visual Components: Make Progress with JSequence Claude Duguay JP0201VC_T
Pro Shop: XML Messaging with JAXM Daniel F. Savarese JP0201PS_T
Editor’s Note: Rushing to Judgment Kay Keppler JP0201EN_T
Product Review: SavaJe XE Rick Grehan JP0201SJ_T

Book Reviews: Java and XML, 2nd Edition by Brett
McLaughlin and Java and XSLT by Eric M. Burke

Claude Duguay JP0201BR_T

Guide to Application Servers 2001 Vol. 5 No. 13
Java Application Server Roundup Rick Grehan and

Peter Varhol
JP0113RG_T

State of the Market Steve Gillmor and
Sean Gallagher

JP0113SG_T

ONE Web to Bind Them Daniel F. Savarese JP0113DS_T
Better Security with J2EE Simon Horrell JP0113SH_T
The SOAP Factory James W. Cooper JP0113JC_T
JMX Makes App Management Simple Tarak Modi JP0113TM_T
XML and the JavaBeans Model Claude Duguay JP0113CD_T
Take a Dip in the Resource Pool Derek Ashmore JP0113DA_T
HTML Parsing on the Server Side Eduard Skhisov JP0113ES_T
Editor’s Note: Getting Better all the Time Steve Gillmor JP0113EN_T
Product Review: Versant enJin Peter Varhol JP0113VE_T

December 2001 Vol. 5 No. 12
A JXTA Chat Budi Kurniawan JP0112BK_T
In the JDBC Driver Seat John B. O’Donahue JP0112JO_T
12 Tips for Better EJB Performance Krishna Kothapalli

and Raghava Ko-
thapalli

JP0112KK_T

XSLT and JSP: A Dynamic Combination Chi Son JP0112CS_T
Let Me Paint You a Picture Steve Lloyd JP0112SL_T
Weblication: Calling All Databases Peter Varhol JP0112WC_T
Javatecture: Caught in a Lobster Trap James W. Cooper JP0112JT_T
Java To Go: Get CrEmed Rick Grehan JP0112JG_T
Visual Components: The Strongest Link Claude Duguay JP0112VC_T
Pro Shop: Binding Java to XML with JAXB Daniel F. Savarese JP0112PS_T
Editor’s Note: Let Freedom Ring Kay Keppler JP0112EN_T
Product Review: Pramati Server 2.5 and Pramati Studio 2.5 Rick Grehan JP0112PR_T

Book Reviews: Understanding SQL and Java Together by
Jim Melton and Andrew Eisenberg and HAVi Example by
Example by Rodger Lea et al.

Claude Duguay JP0112BR_T

November 2001 Vol. 5 No. 11
Secure Data Delivery Claude Duguay JP0111CD_T
Achieve Persistence Independence John Wheeler and

Willie Wheeler
JP0111JW_T

The Good Side of ISOLATION Alexandre Calsavara JP0111AC_T
Weblication: How JavaBeans Drive JSP Processing Peter Varhol JP0111WC_T
Javatecture: Courage in Profiles James W. Cooper JP0111JT_T
Java To Go: Put a JStamp on It Rick Grehan JP0111JG_T
Visual Components: Take Stock of the Market Claude Duguay JP0111VC_T
Pro Shop: Aspect-Oriented Programming in Java Daniel F. Savarese JP0111PS_T
Editor’s Note: Secure Your Future Kay Keppler JP0111EN_T
Product Review: WebGain Studio 4.5 Peter Varhol JP0111PR_T
Product Review: JBuilder 5 Enterprise Michiel de Bruijn

http://www.javapro.com

Get the best in Java news, resources, how-to tips and
more de liv ered to your inbox every week—FREE. With
Java Insight, it’s easy to keep up on the latest Java news
and in for ma tion.

Delivered every single week to your inbox, it gives you
regular, spirited coverage of hot topics like:

• The latest in Java EE technology

• Using Java to develop Web services

• Creating Web apps with JSP

• Extending Java to embedded and wireless systems
and devices

• And much, much more!

 How Much JavaTM Do YOU Want?

 It’s FREE, it’s

 EASY, and

 it’s chock full

 of JAVA!

Java is a trademark or registered trademark of Sun Microsystems, Inc., in the United States and other countries.
Java Pro magazine and Fawcette Technical Publications, Inc., are independent of Sun Microsystems, Inc.

And while you’re there, check out the complete FTPOnline network of technical
sites for IT development pro fes sion als.

Sign up online at:

FREE Weekly
E-Mail News

From the Editors of Java Pro:

www.javapro.com

jpinsite0406.indd 1jpinsite0406.indd 1 4/25/06 11:32:26 AM4/25/06 11:32:26 AM

http://www.javapro.com

34 www.javapro.com | Java Pro Volume 10, number 2

Java Pro—Nine Years of Excellence Article Index

Book Reviews: Java Cookbook by Ian F. Darwin and JSP,
Servlets, and MySQL by David Harms

Claude Duguay JP0111BR_T

October 2001 Vol. 5 No. 10
The New Face of JavaBeans John B. O’Donahue JP0110JO_T
Build Secure Java 2 Applications Brett Spell JP0110BS_T
Make it Easy on the User Budi Kurniawan JP0110BK_T
Convert XML to Java Objects Joe Panko JP0110JP_T
Weblication: Collecting Information Peter Varhol JP0110WC_T
Javatecture: Going to Extremes James W. Cooper JP0110JT_T
Java To Go: Let There Be an Index Rick Grehan JP0110JG_T
Visual Components: The Wonderful Thing About Tickers Claude Duguay JP0110VC_T
Pro Shop: Take the Work Out of Unit Testing Daniel F. Savarese JP0110PS_T
Editor’s Note: In the Driver Seat Steve Gillmor JP0110EN_T
Public Static: Saved by the Bell Kay Keppler JP0110PB_T
Product Reviews: Simplicity For Palm OS Platform and
Visual Waba

Rick Grehan JP0110PR_T

Book Reviews: JSP Tag Libraries by Gal Shachor et al.
and Professional Java Security by Jess Garms and Daniel
Somerfield

Claude Duguay JP0110BR_T

September 2001 Vol. 5 No. 9
The Great Migration Daniel F. Savarese JP0109DS_T
Jazz Up Java Security with JAAS Tarak Modi JP0109TM_T
Manage Documents on the Internet Budi Kurniawan JP0109BK_T
A Tokenizer for Your Collection Claude Duguay JP0109CD_T
Weblication: The Zen of Xang Peter Varhol JP0109WC_T
Javatecture: A Walk in the Clouds James W. Cooper JP0109JT_T
Java To Go: OO Databases Get Small Minded Rick Grehan JP0109JG_T
Visual Components: Scratching the Surface Claude Duguay JP0109VC_T
Pro Shop: Generics in Java Daniel F. Savarese JP0109PS_T
Editor’s Note: Services with a Smile Steve Gillmor JP0109EN_T
Public Static: Community Spirit Sean Gallagher JP0109PB_T
Product Review: InstallAnywhere Enterprise Edition 4 Michiel de Bruijn JP0109IA_T

Book Reviews: Core J2EE Patterns by Deepak Alur et al.
and Java Collections by John Zukowski

Claude Duguay JP0109BR_T

August 2001 Vol. 5 No. 8
Readers’ Choice 2001: Best in Show Sean Gallagher JP0108SG_T
Bridge the Language Barrier Simon Horrell JP0108SH_T
ONE Web to Rule Them All Daniel F. Savarese JP0108DS_T
Time for Java Kevin T. Manley JP0108KM_T
Weblication: Extract XML Data Using SAX Peter Varhol JP0108WC_T
Javatecture: The Key to Managing Programming
Knowledge

James W. Cooper JP0108JT_T

Java To Go: Energizing Waba: More on Less Rick Grehan JP0108JG_T
Visual Components: Sum It Up with JCalculator Claude Duguay JP0108VC_T
Pro Shop: Juxtaposing P2P Daniel F. Savarese JP0108PS_T
Editor’s Note: Community Property Steve Gillmor JP0108EN_T
Public Static: Apple Waits to Percolate Sean Gallagher JP0108PB_T
Product Reviews: Kada Mobile and JProbe 2.8.1 Rick Grehan JP0108PR_T

Sue Spielman

Book Reviews: Mastering RMI: Developing Enterprise Ap-
plications in Java and EJB by Richard Öberg and Building
Parsers with Java by Steven John Metsker

Claude Duguay JP0108BR_T

July 2001 Vol. 5 No. 7
What Are You Worth? Sean Gallagher JP0107SS_T
Take the Pain Out of Distributed Java Asif Habibullah and

Jimmy Xu
JP0107AH_T

Newer Is Better Kevin Jones JP0107KJ_T
Demystifying GridBagLayout Brett Spell JP0107BS_T
Chatting It Up at the BeVocal Café‚ David Essex JP0107DE_T
Weblication: Process and Output Data Queries Using XML Peter Varhol JP0107WC_T
Javatecture: Unchained Malady James W. Cooper JP0107JT_T
Java To Go: Serial Palm Rick Grehan JP0107JG_T
Visual Components: Actions Speak Louder than Words Claude Duguay JP0107VC_T
Pro Shop: Build Your Own Web Server Daniel F. Savarese JP0107PS_T
Editor’s Note: Less Is More Steve Gillmor JP0107EN_T
Public Static: Is the Mac Back? Sean Gallagher JP0107SG_T
Product Reviews: Together Control Center 4.2 and JBoss
Application Server

Peter Varhol
Budi Kurniawan

JP0107PR_T

Book Reviews: Constructing Intelligent Agents Using Java:
Professional Developer’s Guide, 2nd Edition by Joseph
P. Bigus and Jennifer Bigus and Java 2 Micro Edition by
Eric Giguere

Claude Duguay JP0107BR_T

June 2001 Vol. 5 No. 6
Maximum Server Security Joe Walker and Sarah

Walker
JP0106JW_T

The Comfort of Custom-Fit JSP Sameer Tyagi JP0106ST_T
Bringing Reusability to the Table Brett Spell JP0106BS_T
Dynamic Intervention KrishnaKumar

Ramamurthy
JP0106KR_T

Javatecture: SOAP Your Windows James W. Cooper JP0106JT_T
Java To Go: Real Synchronization Rick Grehan JP0106JG_T
Visual Components: Meter Your Data Claude Duguay JP0106VC_T
Pro Shop: Teach Your Computer to Think for Itself Daniel F. Savarese JP0106PS_T

Ed Note: You’ve Got Services Steve Gillmor JP0106EN_T
Public Static: Opening Up to Open Source Sean Gallagher JP0106SG_T
Product Review: Jdeveloper 3.2.2 Peter Varhol JP0106PR_T

Book Reviews: A Programmer’s Guide to Jini by Jan New-
march and Enterprise Java with UML by CT Arrington

Claude Duguay JP0106BR_T

May 2001 Vol. 5 No. 5
Big Plans for J2ME Jim White JP0105JW_T
Rolling Off a Log Thomas Hubbard JP0105TH_T
Thinking Small Brian Roelofs JP0105BR_T
Javatecture: Get Started Using SOAP James W. Cooper JP0105JT_T
Visual Components: Java on the Desktop Claude Duguay JP0105VC_T
Java To Go: Separate and Unequal Rick Grehan JP0105JG_T
Pro Shop: Express Yourself Daniel F. Savarese JP0105PS_T
Editor’s Note: Perception Is Reality Steve Gillmor JP0105EN_T
Public Static: Of Particles and Java Sean Gallagher JP0105SG_T
Product Reviews: DreamWeaver UltraDev 4 and Rational
Rose 2001e

Budi Kurniawan
Sue Spielman

JP0105PR_T

Book Reviews: Definitive Guide to Swing for Java2,
Second Edition by John Zukowski and Thinking in Java,
Second Edition by Bruce Eckel

Claude Duguay JP0105BK_T

April 2001 Vol. 5 No. 4
XML and Java on the Menu Dan Wahlin JP0104DW_T
Benefits of Body Tags Kevin Jones JP0104KJ_T
Making SOAP Out of Java Partick R. Schonfeld JP0104PT_T
Sorting Out Differences John Strande JP0104JS_T
Javatecture: Object Memories James W. Cooper JP0104JT_T
Visual Components: Scroll with It Claude Duguay JP0104VC_T
Java To Go: Expecting the Unexpected Rick Grehan JP0104JG_T
Pro Shop: The Sort-ed Details Daniel F. Savarese JP0104PS_T
Editor’s Note: Musical Chairs Steve Gillmor JP0104EN_T
Public Static: Prior Art Sean Gallagher JP0104SG_T

Book Reviews: Java Enterprise in a Nutshell by David Fla-
nagan et al. and Teach Yourself Java 2 in 21 Days, Second
Edition by Laura Lemay and Rogers Cadenhead

Claude Duguay
Sean Gallagher

JP0104BR_T

March 2001 Vol. 5 No. 3
A Better Way to Build Stuart Halloway JP0103SH_T
A Time for Reflection Bruce Wallace JP0103BW_T
Putting Up a Good Front Kevin Jones JP0103KJ_T
Networking People David Essex and Sue

Spielman
JP0103DE_T

Squeezing Java into Smartphones Jim Fawcette JP0103JF_T
Javatecture: Testing the Limits James W. Cooper JP0103JT_T
Java To Go: Pesky Parameters Rick Grehan JP0103JG_T
Visual Components: Out of Left Field Claude Duguay JP0103VC_T
Pro Shop: Strings and Things Daniel F. Savarese JP0103PS_T
Editor’s Note: Breakfast with Jeremy Steve Gillmor JP0103EN_T
Public Static: The Dot Gets Slashed Sean Gallagher JP0103SG_T
Product Review: GDPro 5.0 Michiel de Bruijn JP0103PR_T

Book Reviews: Debugging Java: Troubleshooting for
Programmers by Will David Mitchell; Enterprise Java Per-
formance by Steven L. Halter et al.; Java Design Patterns:
A Tutorial by James W. Cooper; Essentials of the Java
Programming Language: A Hands-On Guide by Monica
Pawlan; and Java Programmer’s Reference by Grant Palmer

Claude Duguay JP0103BR_T

February 2001 Vol. 5 No. 2
Develop Extensible Applications with Java and EJB Raees Uzhunnan JP0102RU_T
EJB 2.0 Impacts Next-Generation J2EE Servers Jonathan Maron and

Greg Pavlik
JP0102JM_T

The Up Side to Downsizing Claude Duguay JP0102CD_T
Javatecture: A Pattern Solution to a Meta-Problem James W. Cooper JP0102JT_T
Java To Go: Right on Schedule Rick Grehan JP0102JG_T
Visual Components: The Key to Flexibility Claude Duguay JP0102VC_T
Pro Shop: Implement Spatial Data Structures Daniel F. Savarese JP0102PS_T
Editor’s Note: Middle War Steve Gillmor JP0102EN_T
Public Static: Not the Same Old Grind Sean Gallagher JP0102SG_T
Product Reviews: Espial Architect 3.0 and Simplicity
Professional

Peter Varhol JP0102PR_T

January 2001 Vol. 5 No. 1
A Message for the Enterprise Jonathan Maron and

Greg Pavlik
JP0101JM_T

Improve Java Performance Tarak Modi JP0101TM_T
Send Users a Browser Message Timothy Eden JP0101TE_T
The Payoff of Persistence Cheng-Yaw Chang JP0101CC_T
Javatecture: Stupid Browser Tricks with JavaServer Pages James W. Cooper JP0101JT_T
Java To Go: Priority Inversion Redux Rick Grehan JP0101JG_T
Visual Components: Swinging on a JCheckTree Claude Duguay JP0101VC_T
Pro Shop: Parsing XML for Beginners Daniel F. Savarese JP0101PS_T
Editor’s Note: Open the Pod Bay Door, HAL Steve Gillmor JP0101EN_T
Public Static: Casting the Last Stone Sean Gallagher JP0101SG_T
Product Reviews: WebGain Studio 4.0 Standard Edition
and Jpython 1.1

Peter Varhol JP0101PR_T

Fall 2000 Vol. 4 No. 13
A Glimpse at Java’s Past, Present, and Future Claude Duguay and

Patrick Sokolan
JP0013CD_T

http://www.javapro.com

As a software architect, both
business needs and technology demands
aff ect your decisions. You have to make
strategic architecture decisions based on
whatʼs achievable today—with an eye to future
growth and change.

Thatʼs where FTP Onlineʼs Software
Architecture Insight helps you. Twice a month,
this must-have e-mail newsletter gives you
both technical perspective and actionable
advice for building applications and enterprise
solutions. Youʼll learn about important
topics like:

 • real-world SOA
 • proven middle-tier strategies
 • best practices
 • modeling business processes
 • architecting for scalability
 • migration strategies
 • much more!

www.ftponline.com/channels/arch/

Put some Insight into your Software Architecture

Free newsletter:
Sign up today!

sai06_ad_v3.indd 1sai06_ad_v3.indd 1 2/22/06 3:33:02 PM2/22/06 3:33:02 PM

http://www.ftponline.com/channels/arch/

36 www.javapro.com | Java Pro Volume 10, number 2

Java Pro—Nine Years of Excellence Article Index

The World According to BEA Sean Gallagher and
Steve Gillmor

JP0013SD_T

What J2ME Is and What It Isn’t Rick Grehan JP0013RG_T
Evolving Business Solutions Sean Gallagher and

Steve Gillmor
JP0013RS_T

Java Application Delivery with JNLP Daniel F. Savarese JP0013DS_T
Javatecture: The Future of Java Applications James W. Cooper JP0013JT_T
Java To Go: A Scaler Force Rick Grehan JP0013JG_T
Ask the Java Pro: Unifying Wireless Software Develop-
ment

Daniel F. Savarese JP0013AP_T

Editor’s Note: Traveling in Time Steve Gillmor JP0013EN_T

December 2000 Vol. 4 No. 12
Directory Assistance John Butterfield JP0012JB_T
Be the Top Cat with Tomcat Budi Kurniawan JP0012BK_T
Get Your Toes Wet with Open Source Michiel de Bruijn JP0012MD_T
Javatecture: End the Pattern of Neglect James W. Cooper JP0012JT_T
Java To Go: An Itty Bitty Database Rick Grehan JP0012JG_T
Visual Components: In Range, on Jradar Claude Duguay JP0012VC_T
Ask the Java Pro: An EJB Primer Daniel F. Savarese JP0012AP_T
Editor’s Note: You Say Hardware, I Say Software Steve Gillmor JP0012EN_T
Public Static: The Open Source Jam Sean Gallagher JP0012SG_T
Product Reviews: JBuilder 4 and WebObjects 4.5 Peter Varhol JP0012PR_T

Emmanuel Proulx

November 2000 Vol. 4 No. 11
The RMI Activation Framework Tarak Modi JP0011TM_T
Friction-Free Debugging with Proxies Julian Macri JP0011JM_T
Use XML as a Java Localization Solution Masaki Itagaki JP0011MI_T
Javatecture: The Visit James W. Cooper JP0011JT_T
Java To Go: Simplifying JNI-Enabled Application Develop-
ment on EPOC

Rick Grehan JP0011JG_T

Visual Components: JBinder Gives Users the Book Claude Duguay JP0011VC_T
Ask the Java Pro: Dynamic Class Loading with KVM Daniel F. Savarese JP0011AP_T
Editor’s Note: Veni, Vidi, Vici Steve Gillmor JP0011EN_T
Product Review: JRun 3.0 Java Application Server Sue Spielman JP0011PR_T

October 2000 Vol. 4 No. 10
Decorating with Java Dan Malks JP0010DM_T
Why Thread Pools are Important in Java Tarak Modi JP0010TM_T
Logging Events Claude Duguay JP0010CD_T
Javatecture: Making Databases Easier for Your Users James W. Cooper JP0010JT_T
Java To Go: Making a Java App Look Like an EPOC App Rick Grehan JP0010JG_T
Visual Components: JPattern for Coloring Between the Lines Claude Duguay JP0010VC_T
Ask the Java Pro: Perl Regular Expressions in Java Daniel F. Savarese JP0010AP_T
Editor’s Note: Strange Bedfellows Steve Gillmor JP0010EN_T
Product Review: CodeWarrior PersonalJava Platform Edi-
tion Version 1.0

Sue Spielman JP0010SS_T

September 2000 Vol. 4 No. 9
Scaling the Enterprise: iPlanet Application Server Rick Grehan JP0009RG_T
Delivering Messages for Business Integration Sameer Tyagi JP0009ST_T
JNI Exception Handling for the Enterprise Shubhajit Bhat-

tacharya
JP0009SB_T

Javatecture: Don’t Object to Objects James W. Cooper JP0009JT_T
Java To Go: More EPOC Java Rick Grehan JP0009JG_T
Visual Components: Measure Up with JRuler Claude Duguay JP0009VC_T
Ask the Java Pro: Managing Projects with Ant Daniel F. Savarese JP0009AP_T
Editor’s Note: When Worlds Collide Steve Gillmor JP0009EN_T
Product Reviews: SourceGuard Enterprise 4.00 and Silver-
Stream Application Server 3.0

Sue Spielman
Michiel de Bruijn

JP0009PR_T

August 2000 Vol. 4 No. 8
Serving XML with JavaServer Pages Duan Yunjian and

Willie Wheeler
JP0008WW_T

A Better Way for Web Development Kevin Jones JP0008KJ_T
Javatecture: Measuring the Maturity of Software Engineering James W. Cooper JP0008JT_T
Java To Go: A Java EPOC Rick Grehan JP0008JG_T
Visual Components: Java in Transition Claude Duguay JP0008VC_T
Ask the Java Pro: Parallel Computing with RMI Daniel F. Savarese JP0008AP_T
Editor’s Note: Problem Solved Sean Gallagher JP0008EN_T
Product Review: InstallAnywhere 3.0 Enterprise Edition Michiel de Bruijn JP0008PR_T

July 2000 Vol. 4 No. 7
Compose Java Objects with XML at Run Time Sergey Kalinichenko JP0007SK_T
Finding a Perfect Match Claude Duguay JP0007CD_T
Merging Mobility and Middleware John Allen JP0007JA_T
The Coders Have Spoken Sean Gallagher JP0007SG_T
Javatecture: Bitten by the ASP James W. Cooper JP0007JT_T
Java To Go: Small Screen Java Rick Grehan JP0007JG_T
Visual Components: Time for JDayTime Claude Duguay JP0007VC_T
Ask the Java Pro: Keeping Up with J2ME Daniel F. Savarese JP0007AP_T
Editor’s Note: And The Winners Are . . . Sean Gallagher JP0007EN_T
Product Review: GDPro 4.1 Richard M. Marshall JP0007PR_T

June 2000 Vol. 4 No. 6
Salary Survey: How Does Your Career Compare? Sean Gallagher JP0006SS_T
Best Utility Player in the Business John W. Ross JP0006JR_T

Build an E-Commerce Shopping Cart Gary Bollinger and
Bharathi Natarajan

JP0006GB_T

Leave Your Legacy Behind Timothy Eden JP0006TE_T
Javatecture: Title Transfer James W. Cooper JP0006JT_T
Java to Go: VMs for Your Palm Rick Grehan JP0006JG_T
Visual Components: Changing the Status Quo Claude Duguay JP0006VC_T
Ask the Java Pro: Running Java on the Palm OS Daniel F. Savarese JP0006AP_T
Editor’s Note: Whatever Doesn’t Kill You? Sean Gallagher JP0006EN_T
Product Reviews: iPortal Application Server; VisualAge
for Java, Enterprise Edition 3.0; and InstallShield Java
Edition 3.0

Rick Grehan
Michiel de Bruijn

JP0006PR_T

May 2000 Vol. 4 No. 5
Agent X(ML) Mike Fichtelman JP0005MF_T
Managing Object Persistence with JDBC Piyush Khanna JP0005PK_T
PDF Gets a New Image Timothy Eden JP0005TE_T
Javatecture: Load Database Tables the Native Code Way James W. Cooper JP0005JT_T
Visual Components: Preview Your Printed Page Claude Duguay JP0005VC_T
Ask the Java Pro: Validating JSP Input with JavaBeans Daniel F. Savarese JP0005AP_T
Editor’s Note: This Is In Sean Gallagher JP0005EN_T
Product Review: Cool:Joe 1.0 Jeff Jurvis JP0005PR_T

April 2000 Vol. 4 No. 4
Introducing JavaServer Pages Timothy Eden and

Ed Ludke
JP0004TE_T

Create Enterprise Applications With JDBC 2.0 Brett Spell JP0004BS_T
Divide and Conquer Your Workflow with JSP Willie Wheeler JP0004WW_T
Javatecture: Comparing JSP, ASP, and Servlets James W. Cooper JP0004JT_T
Impure Thoughts: Serial Java Rick Grehan JP0004IT_T
Visual Components: Check Out JBulletList Claude Duguay JP0004VC_T
Ask the Java Pro: Java, Apache Style Daniel F. Savarese JP0004AP_T
Editor’s Note: Tagged for Success Sean Gallagher JP0004EN_T
Product Reviews: Visual SlickEdit 5.0 and JViews Compo-
nent Suite 3.0

Michiel de Bruijn JP0004PR_T

March 2000 Vol. 4 No. 3
Not Just a Language Anymore Andy Patrizio JP0003PA_T
Designing Multithreaded EJB Applications Mani Malarvannan

and Oliver Enseling
JP0003MM_T

Jump a Proxy/Firewall and Live to Tell About It Timothy Eden JP0003TE_T
New Data Types Add Flexibility to JDBC 2.0 Brett Spell JP0003BS_T
Javatecture: How JavaServer Pages Can Use Design Patterns James W. Cooper JP0003JT_T
Impure Thoughts: Small Protection Rick Grehan JP0003IT_T
Visual Components: Give Your Lists Flexibility with
JOrganizer

Claude Duguay JP0003VC_T

Ask the Java Pro: Open Source Java Development Daniel F. Savarese JP0003AP_T
Editor’s Note: The Server at the Center Sean Gallagher JP0003EN_T
Product Reviews: Enterprise Application Studio 3.0 and
Visual Café‚ 4 Expert Edition

Michiel de Bruijn JP0003PR_T

February 2000 Vol. 4 No. 2
Transform MTS into a Pure Java Object Monitor Marcus Daley JP0002MD_T
Build Faster, More Flexible Databases with JDBC 2.0 Brett Spell JP0002BS_T
Java to COM+: Making Cross-Platform Accessibility Work Bill Block and Jerry

Brunning
JP0002JB_T

Javatecture: How I Started Using JavaServer Pages James W. Cooper JP0002JT_T
Impure Thoughts: Getting Sparse Rick Grehan JP0002IT_T
Visual Components: JIconEditor Lets Users Customize
Visual Elements

Claude Duguay JP0002VC_T

Ask the Java Pro: Inveighing against Insidious Inlining Daniel F. Savarese JP0002AP_T
Editor’s Note: When Worlds Collide Sean Gallagher JP0002EN_T
Product Reviews: Tango 2000 and JFC Suite 2.1 Michiel de Bruijn JP0002PR_T

January 2000 Vol. 4 No. 1
Object/Relational Database Mapping Claude Duguay JP0001CD_T
Advanced String Handling with Regular Expressions Taylor G. Cowan JP0001TC_T
Javatecture: Colorful Language James W. Cooper JP0001JT_T
Impure Thoughts: An Array of Choices Rick Grehan JP0001IT_T
Ask the Java Pro: A Study of Servlets and Server Pages Daniel F. Savarese JP0001AP_T
Editor’s Note: Doorways in the Sand Tyler Sperry JP0001EN_T
Product Reviews: JumpStart 1.6 and Vantage Point 3.3.4 Michiel de Bruijn JP0001PR_T

John Pearson

Guide to Middleware 1999 Vol. 3 No. 13
Electronic Mail Merge Claude Duguay JP1399CD_T
Generating CORBA Architectures Gary Bollinger JP1399GB_T
Java and UML Jacques Surveyer JP1399JS_T
Parallel Worlds Simon Phipps JP1399SP_T
Tips on Implementing Enterprise JavaBeans Jeff Gallimore JP1399JG_T
XML Filtering with Servlets Claude Duguay JP1399DC_T
Editor’s Note: Putting It All Together Tyler Sperry JP1399EN_T

December 1999 Vol. 3 No. 12
Making Enterprise Connections with JNDI and LDAP Scott Grant and

Joseph Campolongo
JP1299SG_T

The Code Fragment Container Robert Flenner JP1299RF_T
Javatecture: The Forest and the Trees James W. Cooper JP1299JT_T
Impure Thoughts: Let’s Waba Rick Grehan JP1299IT_T
Visual Components: Create a JGraph Claude Duguay JP1299VC_T
Ask the Java Pro: Referencing Garbage Daniel F. Savarese JP1299AP_T

http://www.javapro.com

Java Pro Volume 10, number 2 | www.javapro.com 37

Java Pro—Nine Years of ExcellenceArticle Index

Editor’s Note: Going to Zero Tyler Sperry JP1299EN_T
Product Reviews: Metamata Debug Enterprise 1.1 and
IBM alphaBeans

Michiel de Bruijn JP1299PR_T

November 1999 Vol. 3 No. 11
Capturing Console Output Tony LaPaso JP1199TL_T
Serving PDF to the Browser Timothy Eden JP1199TE_T
Javatecture: Patterns on the Table James W. Cooper JP1199JT_T
Impure Thoughts: Due North of Java Rick Grehan JP1199IT_T
Visual Components: Make a Run to the Jborder Claude Duguay JP1199VC_T
Ask the Java Pro: Dropping Can Be a Drag Daniel F. Savarese JP1199AP_T
Editor’s Note: The Purloined Java Tyler Sperry JP1199EN_T
Product Reviews: JClass Enterprise Suite 4.0 and Vision
JADE Developer Studio 4.1

Michiel de Bruijn
Piroz Mohseni

JP1199PR_T

October 1999 Vol. 3 No. 10
Internationalize Your Java Apps Dave Rodenbaugh JP1099DR_T
Java 2 Cryptography Jess Garms and

Daniel R. Somerfield
JP1099DS_T

Searching with Servlets Claude Duguay JP1099CD_T
Javatecture: Objects and RMI James W. Cooper JP1099JT_T
Impure Thoughts: Floating Mines Rick Grehan JP1099IT_T
Visual Components: A Room with a JScrollView Claude Duguay JP1099VC_T
Ask the Java Pro: Documenting with Doclets Daniel F. Savarese JP1099AP_T
Editor’s Note: Three Things I Love About Linux Tyler Sperry JP1099EN_T
Product Review: Inprise JBuilder 3 Luke Andrew Cas-

sady-Dorion
JP1099PR_T

September 1999 Vol. 3 No. 9
Using Database Transactions in Java Brett Spell JP0999BS_T
The Readers Have Their Say Editors of Java Pro JP0999RC_T
JToolbar Controller for JTables Mac Holden JP0999MH_T
Servlet Solutions: Revolt into Style Larry O’Brien JP0999LO_T
Javatecture: I’ve Got a Little List James W. Cooper JP0999JT_T
Impure Thoughts: Synchronizing with Native Threads Rick Grehan JP0999IT_T
Visual Components: A Very Vivid Widget Claude Duguay JP0999VC_T
Ask the Java Pro: Generic Programming Without Templates Daniel F. Savarese JP0999AP_T
Editor’s Note: Natural Selection Tyler Sperry JP0999EN_T
Product Reviews: JProbe Developer and PowerJ 3.0 Rick Grehan JP0999PR_T

Michiel de Bruijn

August 1999 Vol. 3 No. 8
Testing Java 2 Performance Osvaldo Doederlein JP0899OD_T
Managing Your Thread Pool Mani Malarvannan JP0899MM_T
Migrating from RMI to EJB Venkat Subbarao JP0899VS_T
Servlet Solutions: Stressed For Success Larry O’Brien JP0899SS_T
Javatecture: Why I Finally Learned to Love Servlets James W. Cooper JP0899JT_T
Impure Thoughts: Exceptionally Native Rick Grehan JP0899IT_T
Visual Components: Improve Your View Navigation Claude Duguay JP0899VC_T
Ask the Java Pro: Make Threads Work for You Daniel F. Savarese JP0899AP_T
Editor’s Note: Full Speed Ahead Tyler Sperry JP0899EN_T
Product Reviews: Kawa 3.21 and System Architect 2001 Luke Cassady-

Dorion
JP0899PR_T

Jacques Surveyer

July 1999 Vol. 3 No. 7
Demystifying CORBA Scott Grant JP0799SG_T
Solving the Java Component Puzzle Tyler Sperry JP0799TS_T
OLAP for Java Developers Ken North JP0799KN_T
Javatecture: Adapting Your Work James W. Cooper JP0799JT_T
Servlet Solutions: Fostering Feedback Larry O’Brien JP0799SS_T
Visual Components: Your Basic Report Widget Claude Duguay JP0799VC_T
VM Roadtest: Battle of the JDKs Paul Tyma JP0799VM_T
Ask the Java Pro: Making Sense of Open Source Java Daniel F. Savarese JP0799AP_T
Editor’s Note: Bragging Rites Tyler Sperry JP0799EN_T
Product Reviews: SourceGuard 3.0 and Visual SlickEdit 4.0 Susan Schudie and

Claude Duguay
JP0799PR_T

James W. Cooper

June 1999 Vol. 3 No. 6
Enhancing Database Code with Metadata Brett Spell JP0699BS_T
Plugging Memory Leaks Tony K.T. Leung JP0699TL_T
XML Software with a Splash of Java Jacques Surveyer JP0699JS_T
Javatecture: A Singleton in Port James W. Cooper JP0699JT_T
Impure Thoughts: A Native Trip Rick Grehan JP0699IT_T
Servlet Solutions: Vox Populi Larry O’Brien JP0699SS_T
Ask the Java Pro: Embedding Java Daniel F. Savarese JP0699AP_T
Editor’s Note: The Dark Side of Open Source Tyler Sperry JP0699EN_T
Product Reviews: Formula One and OptimizeIt 3.0
Professional

Michiel de Bruijn
Susan Schudie and
Claude Duguay

JP0699PR_T

May 1999 Vol. 3 No. 5
Write Once, Trust Anywhere Gregory Frascadore JP0599GF_T
Applet to Servlet Communication Larry O’Brien JP0599LO_T
Writing Powerful Code with Interfaces Jay R. Gindin JP0599JG_T
Javatecture: The Factory Down the Road James W. Cooper JP0599JT_T
Impure Thoughts: Going Native with Serial Communications Rick Grehan JP0599IT_T

Servlet Solutions: You’ve Got MailingListManager Larry O’Brien JP0599SS_T
VM RoadTest: Introducing HotSpot Paul Tyma JP0599VM_T
Ask the Java Pro: Semaphores, Resource Bundles, and
Other Tidbits

Daniel F. Savarese JP0599AP_T

Editor’s Note: An Insecure World Tyler Sperry JP0599EN_T
Product Reviews: Utility+ 2.1, Apptivity 3, and Visaj 2 Daniel F. Savarese JP0599PR_T

Luke Andrew
Cassady-Dorion
Steve Renaker

April 1999 Vol. 3 No. 4
XML Filtering with Servlets Claude Duguay JP0499CD_T
XML Meets Java Jacques Surveyer JP0499JS_T
Reusable UI Components for HTML Daniel R. Somerfield JP0499DS_T
Javatecture: Java Business Expo Roundup James W. Cooper JP0499JT_T
Impure Thoughts: Level with Me Rick Grehan JP0499IT_T
Servlet Solutions: ServletSolutions.com Larry O’Brien JP0499SS_T
VM RoadTest: Java’s Dirty Little Secrets Paul Tyma JP0499VM_T
Ask the Java Pro: Programming with Style Daniel F. Savarese JP0499AP_T
Editor’s Note: Unbelievably Cool Tyler Sperry JP0499EN_T
Product Reviews: Visual Café, Database Edition 3.0, and
JWave 2.0 and StudioJ 1.1

Michiel de Bruijn
Luke Andrew
Cassady-Dorion

JP0499PR_T

Richard G. Baldwin

March 1999 Vol. 3 No. 3
Java in the Database Ken North JP0399KN_T
An Introduction to XML for Java Programmers Piroz Mohseni JP0399PM_T
Security for Servlets Jason Hunter with

William Crawford
JP0399JH_T

Using Memory-Mapped Files in Java Tom Guinther JP0399TG_T
Javatecture: OO Ideas and Plotting Algorithms James W. Cooper JP0399JT_T
Impure Thoughts: Get Semaphores in Line Rick Grehan JP0399IT_T
Servlet Solutions: Portal Kombat Larry O’Brien JP0399SS_T
VM RoadTest: Solaris Ups the Ante Paul Tyma JP0399VM_T
Ask the Java Pro: Java Gets the Job Done Daniel F. Savarese JP0399AP_T
Editor’s Note: Strength in Numbers Tyler Sperry JP0399EN_T
Product Reviews: SilverStream 2.0, Visual J++ 6.0, and
JaVISION 1.0

Luke Andrew Cas-
sady-Dorion

JP0399PR_T

Jacques Surveyer

February 1999 Vol. 3 No. 2
A Test Panel for Pluggable Look and Feel Richard G. Baldwin JP0299RB_T
Introduction to the Datagram Protocol Richard G. Baldwin JP0299DP_T
A SortFactory for the Collections API Claude Duguay JP0299CD_T
Dynamic Method Invocation with CORBA and Java Luke Andrew Cas-

sady-Dorion
JP0299LC_T

Javatecture: Using Exceptions Effectively James W. Cooper JP0299JT_T
Impure Thoughts: Inverted Priorities Rick Grehan JP0299IT_T
Servlet Solutions: Headline News Larry O’Brien JP0299SS_T
VM RoadTest: Platform Independence Calls for Platform
Savvy

Paul Tyma JP0299VM_T

Ask the Java Pro: Are We There Yet? Daniel F. Savarese JP0299AP_T
Editor’s Note: Java Grows Up Tyler Sperry JP0299EN_T
Product Reviews: DashO-Pro 1.1, jtest! 2.04, and JDe-
signerPro 3.0

Claude Duguay and
Susan Schudie

JP0299PR_T

Luke Andrew
Cassady-Dorion

January 1999 Vol. 3 No. 1
A Middle-Tier Query Builder in Java Stephen Rao and

Mary Xing
JP0199SR_T

Beyond PrintLn Mike Little JP0199ML_T
Comparing Win32 and Java Synchronization Jay R. Gindin JP0199JG_T
Interprocess Communication with Java Tom Guinther JP0199TG_T
Introduction to Socket Programming Richard G. Baldwin JP0199RB_T
Javatecture: A Piece of the Action James W. Cooper JP0199JT_T
Impure Thoughts: All Threads Are Not Created Equal Rick Grehan JP0199IT_T
Servlet Solutions: Enter the Servlet Larry O’Brien JP0199SS_T
VM RoadTest: Talking Trash Paul Tyma JP0199VM_T
Ask the Java Pro: Step Through AWT before You Swing Daniel F. Savarese JP0199AP_T
Editor’s Note: Java’s Road Ahead Tyler Sperry JP0199EN_T
Product Reviews: JProbe Profiler 1.1.1, VisualAge for Java
2.0, and NuMega TrueTime 1.11

Michiel de Bruijn
Luke Andrew
Cassady-Dorionn

JP0199PR_T

December 1998 Vol. 2 No. 7
Scripting Tools and Java Luke Andrew

Cassady-Dorion
JP1298LC_T

Playing Audio with JavaBeans Michael Morrison JP1298MM_T
Network Programming in Java Richard G. Baldwin JP1298RB_T
Javatecture: Handling Databases More Effectively James W. Cooper JP1298JT_T
Impure Thoughts: Native Data Streams Andy Wilson JP1298IT_T
Servlet Solutions: Hey Good Buddy Larry O’Brien JP1298SS_T
VM RoadTest: Getting More Than You Pay For Paul Tyma JP1298VM_T
Ask the Java Pro: Unbottling the Java Jini Daniel F. Savarese JP1298AP_T
Editor’s Note: Talking Turkey Tyler Sperry JP1298EN_T
Java Bookshelf Roundup: Claude Duguay JP1298BR_T

http://www.javapro.com

38 www.javapro.com | Java Pro Volume 10, number 2

Java Pro—Nine Years of Excellence Article Index

Product Reviews: Developer Training for Java, Formula
One for Java 5.5,
and JClass Suite 3.5

Richard G. Baldwin
Luke Andrew
Cassady-Dorion
Eric Ries

JP1298PR_T

November 1998 Vol. 2 No. 6
Creating Dynamic Content with Servlets Claude Duguay JP1198CD_T
A Framework for Building Solid Code Jay Gindin JP1198JG_T
Using RMI in the Real World Trevor Harmon JP1198TH_T
Getting to Know Java IDL Geoffrey R. Lewis,

Steven Barber,
and Ellen Siegel

JP1198GL_T

Javatecture: Calling the Mediator James W. Cooper JP1198JT_T
Servlet Solutions: Data Logging, Servlet Style Larry O’Brien JP1198SS_T
VM RoadTest: Making Your Runtime Happy! Paul Tyma JP1198VM_T
Ask the Java Pro: Scripting Java Daniel F. Savarese JP1198AP_T
Editor’s Note: November Verdicts Tyler Sperry JP1198EN_T
Product Reviews: Parts for Java Professional 2.5 and
CodeWarrior Pro 3.1

Luke Andrew
Cassady-Dorion

JP1198PR_T

Peter Adler

October 1998 Vol. 2 No. 5
And Then a Miracle Happens Larry O’Brien JP1098LO_T
Class Loaders and Java Security Scott Oaks JP1098SO_T
Putting Threads to Work Luke Andrew

Cassady-Dorion
JP1098LC_T

Roll Your Own LayoutManager Tom Yarker JP1098TY_T
Javatecture: Your Command Is My Wish James W. Cooper JP1098JT_T
Impure Thoughts: Java and Windows Sockets 2 Andy Wilson JP1098IT_T
View Source: Linking JavaScript and Java Gary Cornell JP1098VS_T
VM Roadtest: Java for the Sake of Java Paul Tyma JP1098VM_T
Ask the Java Pro: Web Browser Woes Continue Daniel F. Savarese JP1098AP_T
Editor’s Note: Back to School Tyler Sperry JP1098EN_T
Product Reviews: HOW 2.0 Professional Edition for Java,
IBM Visual Age for Java 1.0, and Borland JBuilder 2

Michiel de Bruijn JP1098PR_T

August/September 1998 Vol. 2 No. 4
Redefining Portability Tyler Sperry JP0898TS_T
Threading 101 Luke Andrew

Cassady-Dorion
JP0898LC_T

Eventfully Speaking Larry O’Brien JP0898LO_T
From C to Java—a Structured Transition Peter Varhol JP0898PV_T
Connecting to JDBC George Reese JP0898GR_T
Plugging into Oracle Dennis Harvey and

Steve Beitler
JP0898DH_T

Javatecture: Observing Your Windows James W. Cooper JP0898JT_T
Impure Thoughts: Visual J++ 6.0 and ActiveX Data Objects Andy Wilson JP0898IT_T
View Source: Handling Events in JavaScript Gary Cornell JP0898VS_T
VM Roadtest: Microsoft’s Jview JIT Paul Tyma JP0898VM_T
Ask the Java Pro: Socket to Me Daniel F. Savarese JP0898AP_T
Editor’s Note: Excess Baggage? Tyler Sperry JP0898EN_T
Product Reviews: SuperCede for Java 2.01 Professional
Edition, eSuite DevPack, Data ExplorerJ 2.0 for JFC, and
ProtoSpeed 2.0

Michiel de Bruijn JP0898PR_T

June/July 1998 Vol. 2 No. 3
The Road from Redmond Larry O’Brien JP0698LO_T
Business-Rule Extraction from Cobol to Java Len Erlikh and Mike

Ferris
JP0698LE_T

Design Java Apps with UML Hans-Erik Erikkson
and Magnus Penker

JP0698HE_T

Java Gotchas Lee Fesperman JP0698LF_T
Java Mobile Agents Randolph Kahle JP0698RK_T
Javatecture: User Interfaces that Vary with Your Data James W. Cooper JP0698JT_T
Impure Thoughts: Java and the Registry Andy Wilson JP0698IT_T
View Source: Validate Your JavaScript Code Gary Cornell JP0698VS_T
VM Roadtest: Symantec’s Racy New JIT Paul Tyma JP0698VM_T
Ask the Java Pro: Multithreading and More Daniel F. Savarese JP0698AP_T
Editor’s Note: Points of Departure Tyler Sperry JP0698EN_T
Product Reviews: Jsuite and Visual JavaScript Michiel de Brujn JP0698PR_T

April/May 1998 Vol. 2 No. 2
Be Persistent! Enrique Travieso JP0498ET_T
Java Mobile Agents Randolph S. Kahle JP0498RK_T
Run Anywhere...and Be the Right Size Russell Frey JP0498RF_T
Servlets Make a Web Site Sizzle Alan Williamson JP0498AW_T
The Elegant (and Fast) Skip List Thomas Wenger JP0498TW_T
Wrapper Your C++ Tim Park JP0498TP_T
Javatecture: Factories for Making Classes James W. Cooper JP0498JT_T
Impure Thoughts: Java Interprocess Communication Andy Wilson JP0498IT_T
View Source: Neatness Counts Gary Cornell JP0498VS_T
VM Road Test: Welcome to VM Roadtest #1 Paul Tyma JP0498VM_T
Ask the Java Pro: Your Answer Could Have Been Here Daniel F. Savarese JP0498AP_T
Editor’s Note: Java in the Year 2000 Kevin Strehlo JP0498EN_T
Product Reviews: JDBTools, InstallShield Java Edition
1.0.1, HAHTsite 3.0

Michiel de Bruijn JP0498PR_T

February/March 1998 Vol. 2 No. 1
Let Java Middleware Juggle Your Tiers Kevin Strehlo JP0298KS_T
Actually, You Need CORBA to Run Anywhere Luke Andrew

Cassady-Dorion
JP0298LC_T

Create Distributed Apps with RMI Randolph S. Kahle JP0298RK_T
DIFFing C++ and Java Bruce Eckel JP0298BE_T
Improve Java Printing with Design Patterns James W. Cooper JP0298JC_T
Roll a New Data Format with XML Michiel de Bruijn JP0298MD_T
JFC Beats AWT, But For Naught? Daniel F. Savarese JP0298DS_T
Let InfoBus Plug Your Beans Together Mark Colan and

Christopher J. Karle
JP0298MC_T

Javatecture: Don’t Write Code, Build Objects James W. Cooper JP0298JT_T
Impure Thoughts: Get Win32 Messages in Java Andy Wilson JP0298IT_T
View Source: JavaScript History Lesson Gary Cornell JP0298VS_T
Ask the Java Pro: A’s For Your Q’s Daniel F. Savarese JP0298AP_T
Publisher’s Note: OS for the Enterprise James E. Fawcette JP0298JF_T
Point/Counterpoint Roger Sessions and

Dr. Jens Christensen
JP0298PC_T

Tech Tips JP0298TT_T
Product Reviews: Visual Cafe for Java 2.0, NetComponents
1.0.1, and Javabeans Bridge for ActiveX 1.0

Michiel de Bruijn JP0298PR_T

Winter 1997 Vol. 1 No. 1
Java IDEs: Ready for Prime Time? Michiel de Bruijn JP97WIMD_T
Java RAD: What’s Hot, What’s Not Richard Hale Shaw JP97WIRI_T
Beans Bring Components to Java Developers Randolph S. Kahle JP97WIBC_T
Build Your First App(let) Gary Cornell JP97WIGC_T
COMmunicate With Java Applets Brian Maso JP97WIBM_T
Create a Customer Database Applet in VJ++ Stephen R. Davis JP97WISD_T
Extend Java With Active Server Pages Ronan Sorensen JP97WIRS_T
Networking Enterprise Apps Randolph S. Kahle JP97WINE_T
Sweeten Your Java With Some GUI Robert H. Mowery III JP97WIRM_T

Advertising Sales Contacts

	 Kevin	White,	
	 Advertising	Director,	VSM/Java	Pro
	 650-378-7168
	 kwhite@fawcette.com

Advertiser Index

Ajax Virtual Tradeshow 5
www.ftponline.com/ajax

Catalyst Systems 7
www.openmake.com

Free Archives 19
www.ftponline.com

FTPOnline Resources 11
www.ftponline.com

FTPOnline Special Reports 25
www.ftponline.com/special

This	listing	is	provided	as	a	courtesy	to	our	readers	and	advertisers.	The	publisher	assumes	no	responsibility	for	errors	or	omissions.		
Sales	Department:	2600	South	El	Camino	Real,	Suite	300	•	San	Mateo,	CA,	USA	94403	•	650-378-7100

IBM C2, 1
www.ibm.com/takebackcontrol/flexible

InterSystems C3
www.InterSystems.com

Java Insight Newsletter 33
www.javapro.com

Microsoft Architecture Journal 23
www.architecturejournal.net

Software Architecture Insight 35
www.ftponline.com/channels/arch

Sun Microsystems C4
www.netbeans.org

Sybase 15
www.sybase.com/workspace

XML Insight Newsletter 39
www.xml-mag.com

http://www.javapro.com
mailto:kwhite@fawcette.com
http://www.ftponline.com/ajax
http://www.openmake.com
http://www.ftponline.com
http://www.ftponline.com
http://www.ftponline.com/special
http://www.ibm.com/takebackcontrol/flexible
http://www.InterSystems.com
http://www.javapro.com
http://www.architecturejournal.net
http://www.ftponline.com/channels/arch
http://www.netbeans.org
http://www.sybase.com/workspace
http://www.xml-mag.com

Free E-News let ter!

FREE Monthly
E-mail News!
Subscribe to XML & Web Services

Insight news let ter—

the FREE e-mail news let ter.

Get practical, hands-on articles, tips

and enterprise-level solutions de liv ered

to your inbox. It's easy, it's fast, it's free.

Subscribe at www.ftponline.com.

www.ftponline.com

FPO Web screen

Brought to you by

Maximize your
XML Insights!

xml06_insitead.indd 1xml06_insitead.indd 1 4/20/06 6:11:27 PM4/20/06 6:11:27 PM

http://www.ftponline.com

public static

40 www.javapro.com | Java Pro Volume 10, number 2

The Two Sides
of Progress

A lot is being said and written about standards and inno-
vation in technology: standards are a roadblock to inno-
vation because the process of standardization is too slow
to capture innovation in a timely manner, and standards

are more about politics than technology. In fact, across the industry
there is plenty of evidence of how standards and innovation work
together to advance technology. Being closest to the Java Commu-
nity Process (JCP), I know that this community has accomplished
a marvelous thing: redefining standards and innovation as the sides
of the same process—progress. Let’s look at a few Java Specification
Requests (JSRs) that I encourage you to check out for yourself at the
technical sessions (TS), hands-on labs (LAB), and birds-of-a-feather
(BOF) sessions at the 2006 JavaOne Conference in San Francisco.
 Let’s begin with JSR 245, JavaServer Pages (JSP), and JSR
252, JavaServer Faces (JSF) 1.2 (LAB-4255 and BOF-2311).
JSR 245 is the next revision of the JSP specification, and it im-
proves alignment with JSF and enhances ease of development.
Similarly, JSR 252 updates the 1.1 version of the JSF specifica-
tion. These JSRs provide good examples of how standards build
on standards and prepare and inspire innovation. They also
demonstrate how innovation is worked into platform standards
as the so-called umbrella JSRs, including JSR 244, Java EE 5.
 For another example of advances at the standards-innovation in-
tersection, there’s JSR 224, JAX-WS (TS-1194). The major focus of
this standard is ease of development to allow the technology to be
used by a wide circle of developers and simplify their tasks. The spec-
ification extends JAX-RPC in a number of ways including alignment
with JSR 181, Web Services Metadata for the Java Platform. You’ll
also find out how the spec strongly aligns with JSR 222, Java Archi-
tecture for XML Binding (JAXB) 2.0 (TS-1607), to which it dele-
gates all data binding-related tasks and how it supports new versions
of external standards from organizations such as W3C and WS-I.
 Another JSR-based session for JSR 286, Portlet Specification 2.0
(TS-3627) and headed by IBM, showcases the functionality that will
be added to the new portlet specifications. This API advances and
will be binary compatible with version 1.0 defined in JSR 168. If you
want to find out how a standard developed today seeds innovation,
attend the Java Module System (BOF-0684) session that is targeted
to be delivered as a component of Java SE 7.0 (“Dolphin”). The Sun-
developed specification sets out to define a distribution format and a
repository for collections of Java code and related resources as well as
discovery, loading, and integrity mechanisms at runtime.
 JSR 220, EJB 3.0, is another example of how standards and
innovation find a way to build on the strengths co-leads Sun and

Oracle bring to the table and as a result cause progress to hap-
pen. One of the results this JSR has yielded is a simplified persis-
tence architecture. Key features of the Java Persistence API (TS-
3395) will be highlighted, including those introduced since the
publication of the JSR 220 public draft.
 Platform JSRs like JSR 270, Java SE 6 Mustang Release Con-
tents, are a special case of close interplay between standards and
innovation. An umbrella JSR builds on the sum of innovations
provided by the so-called point JSRs, and scripting features in Java
SE 6, including the scripting APIs and the JavaScript ScriptEn-
gine, will be presented (TS-1382).
 IBM and BEA, co-leads of JSR 235, Service Data Objects
(SDO), will present how developers will be able to simplify data
access and representation in service-oriented software by replacing
data access models with a uniform abstraction for creating, retriev-
ing, updating, and deleting business data used by service imple-
mentations (TS-3676). The SDO specification currently under
development standardizes data objects in terms of change histo-
ry, compound data objects, dynamic and generated APIs, meta-
data, support for XML and Web services, neutral representation
of business data, import/export from common formats, validation
and constraints, relationship integrity, and navigation.
 Java ME is where perhaps the most obvious advances fueled
by community-driven standardization and innovation is occur-
ring. Two spec leads from Nokia team up to present the recent-
ly finalized JSR 256, Mobile Sensor API (BOF-2810), which
defines basic sensor functionality for mobile devices and ex-
tends the usability and choice of sensors for Java ME applica-
tions. A perfect example of interplay between standardization
and innovation is JSR 248, Mobile Service Architecture (TS-
4936), developed by Nokia and Vodafone, that creates a mo-
bile service architecture and platform definition for high-volume
wireless handsets. JSR 232, Mobile Operational Management
(TS-3757), led by Motorola and Nokia, is the topic of an intro-
duction to this spec under development and the benefits it sets
out to pass on to developers. And co-leads Nokia and Motorola
of JSR 272, Mobile Broadcast Service API for Handheld Termi-
nals (TS-4693), will present the features of this set of APIs.
 These are just a handful of examples of the symbiotic nature
of innovation and standards. At the JavaOne conference you’ll
be able to see this system in action. Also visit the JCP.org (http://
JCP.org) to get the latest on innovating Java technology.

onno Kluyt is chair of the JCP (http://JCP.org).

Guest Opinion
by Onno Kluyt

http://www.javapro.com
http://JCP.org
http://JCP.org
http://JCP.org

Real-time data analytics
with a real-fast database.

Rapid integration platform
makes applications perform together.

Imagine being able to query a lightning-fast
operational database in real time.

Now you can, with our multidimensional database
for transaction processing and real-time analytics.

Only Caché combines robust objects and robust
SQL, thus eliminating object-relational mapping.
It requires little administration, delivers speed and
scalability on minimal hardware, and comes with a
rapid application development environment.

These innovations mean faster time-to-market,
lower cost of operations, and higher application
performance. We back these claims with this
money-back guarantee: Buy Caché for new
application development, and for up to one year you
can return your license for a full refund if you are
unhappy for any reason.*

Innovative database. Guaranteed performance.

Imagine being able to get your applications to
perform together as an ensemble. Easily.

Now you can, with our universal integration
platform.

Ensemble is the first fusion of an integration server,
data server, application server, and portal development
software – in a single, seamless product. This is the
complete ensemble of technologies needed for rapid
integration, fast development, and easy management.

These innovations mean all of your integration
projects will be completed on time and on budget,
with a simplified learning curve for your IT staff.
We back these claims with this money-back guarantee:
For up to one year after you purchase Ensemble, if you
are unhappy for any reason, we’ll refund 100% of your
license fee.*

Innovative integration. Guaranteed performance.

For a free copy of CACHÉ, or to request a free ENSEMBLE proof-of-concept project, visit www.InterSystems.com/Free8Q

*Read about our money-back guarantees at the web page shown above.
© 2005 InterSystems Corporation. All rights reserved. InterSystems Caché and InterSystems Ensemble are trademarks of InterSystems Corporation. 5-05 ComboInno8JaPr

Comboinno8JaPr.qxp 5/27/05 2:40 PM Page 1

http://intersystems.com/free8q
http://intersystems.com/free8q

C

M

Y

CM

MY

CY

CMY

K

netbeans_ad_fullpage4.pdf 23.4.2006 15:19:37

http://www.netbeans.org

	Cover
	Table of Contents
	Features
	Finding the Best Value in Java IDEs
	Cleaning a Complex
Java Code Base
	Get Creative on the
Java ME Platform

	Columns
	Object Enterprise: Java’s Desktop Comeback object enterprise Java’s Desktop Comeback
	Pro Shop: The Two Schools of Lazy Programming

	Departments
	Editor’s Note
	In Brief: Borland’s middleware boost for SOA and Java EE
	Java Pro Article Index
	Public Static: Guest Opinion

	Ad Index

