
Attend
EA Summit
May 15-17
Key Biscayne

Winter Issue 2006, Vol. 4 No. 1Fawcette Technical Publications

Features

Scaling Over Time
Alex Krapf discusses the problems
surrounding “scaling over time”
and provides some practical
solutions for solving the version
control dilemma.

Combat Increasing IT Complexity
Explore how companies can
conquer issues associated with IT
complexity and achieve success in
their architecture initiatives.

Incremental Architecture
Discover an incremental
approach that aligns projects
with strategic goals.

If SOA Looks Hard,
You’re Looking at it Wrong
Deconstruct the way you think
about a service in service-oriented
architecture.

Down With Downtime
Implement automated business
application processing to gain
significant increases in efficiency
and productivity.

The Elephant in the Room
Is your enterprise architecture an
effective management discipline?
Mike Dunham explains how
governance is essential to EA
management.

Maximize
Service Reuse
Explore ways to maximize reuse
in your service-oriented
architecture

www.enterprise-architect.net

http://www.enterprise-architect.net
http://www.enterprise-architect.net/summit

Register by March 22 and save $300.
Call 800-848-5523 today

or visit us online at
www.enterprise-architect.net/summit

Enterprise Architect Summit and Enterprise Architect are trademarks of Fawcette Technical Publications, Inc. All other trademarks are property of their respective owners.

The Ritz-Carlton
Key Biscayne Resort,

Florida
May 15-17, 2006

Strategies and
Best Practices for
the Real World
Enterprise Architect Summit returns to Florida in May
for three informative days of keynotes, workshops,
and breakout sessions led by experts in the enterprise
architecture field. Arm your business to respond to
emerging IT challenges – register today.

Sessions Will Cover:
• Putting the A in SOA
• Solving Real-World Architecture Issues
• Building an Agile Enterprise
• Key Strategies to Implement Security

Policies
• Metadata: the Key to Understanding IT
• Joining Enterprises with the Global SOA

http://www.enterprise-architect.net/summit

 Monday, May 15
8 a.m.-6 p.m. Registration

8 a.m.-3 p.m. Enterprise Architect Classic Golf Tournament

Workshops

1-5 p.m. Best Practices:
Security Policy Development and Enforcement

Strategy:
IT Drivers for Business Process Management

6-8 p.m. Welcome Reception

Tuesday, May 16
9 a.m. Keynote

Best Practices Strategy

10:30 a.m. Putting the A in SOA Solving Real-World Architecture Issues

11:45 a.m. Best Practices for Database Connectivity in the Midst
of Infrastructure Diversity

The Enterprise Architecture Office and the
Ever-Increasing Organizational Need

12:45 p.m. Lunch

2 p.m. Keynote

3:15 p.m. The Rocky Road to Compliance Panel:
Key Strategies to Implement Security Policies

4:30 p.m. Building an Agile Enterprise Metadata: The Key to Understanding IT

6 p.m. Exhibitor Reception

Wednesday, May 17
9 a.m. Keynote

Best Practices Strategy

10:30 a.m. Model Driven Software Engineering Joining Enterprises with the Global SOA

11:45 a.m.
Panel:

Perspectives on Architecture Modeling
The Data-Centric Enterprise:

A Blueprint for Enterprise Architecture

12:45 p.m. Lunch

2 p.m. Managing Dependencies Across the Architecture Selecting SOA Infrastructure

3:15 p.m. Minimize Business-Disruption
Risk and Cost Through Architectural Modeling

SOA Operations and Governance to Move
Applications to the Network Architecture

4:30 p.m. Build an Enterprise Security Architecture SOA Models and Methodologies

Take Your Business to the Next Level-
View the preliminary list of sessions, workshops, and

events planned for May

� Enterprise Architect Winter 2006 www.enterprise-architect.net

covEr story

contents
Winter 2006, Vol. 4, No. 1

 Features

10 Scaling Over Time:
The Version Problem

 by Alex Krapf
	 What	challenges	do	you	face	when	managing	

a	system’s	changes?	Alex	Krapf	provides	some	
practical	solutions	for	solving	the	version	control	
dilemma.

14 Combat Increasing IT Complexity
	 by Firdaus Bhathena
	 Explore	how	companies	can	conquer	issues	

associated	with	IT	complexity	and	achieve	success	
in	their	architecture	initiatives	through	the	
appropriate	mix	of	people,	process,	and	technology.

18 Incremental Architecture:
Principles for the Real World

	 by chad riland and Josh Paterson
	 Look	at	the	effectiveness	of	enterprise	architecture	

and	discover	an	incremental	approach	that	aligns	
projects	with	strategic	goals.

4

DEPArtmEnts

 Editor ’s note
3 Moving Beyond SOA to the Web
 by Jim Fawcette

28 Index of Advertisers

22 If SOA Looks Hard,
You’re Looking at it Wrong

 by John sadd	
	 The	word	“service”	often	heralds	fear	and	loathing.	

No	more.	John	Sadd	provides	a	new	and	easy	
approach	to	deconstructing	SOAs,	ensuring	that	
they	truly	serve	you.

25 Down With Downtime
 by Dan mccall
	 By	implementing	automated	business	application	

processing	as	part	of	your	core	IT	framework,	you	can	
achieve	true	“straight-through	processing”	and	realize	
significant	increases	in	efficiency	and	productivity.

27 Governance:
The Elephant in the Room

 by mike Dunham
	 Is	your	enterprise	architecture	an	effective	

management	discipline?	Mike	Dunham	explains	
how	governance	is	essential	to	EA	management.

FTPOnline Blogs
Check	out	the	FTPOnline	blog	page	for	insights	from	FTP	
President	Jim	Fawcette,	contributor	Peter	Varhol,	and	other	
FTP	editors	as	they	sound	off	on	IT	issues.

Video: Architecting for Scalability
Amazon’s	Pat	Helland	outlined	what’s	neces-
sary	to	build	a	scalable	application	for	Software	
Architecture	Summit	attendees	in	San	Francisco	
last	month.	Plus,	he	provided	the	design	pat-

terns	you	must	follow	in	order	to	redeploy	without	writing	
new	code.

4 Maximize Reuse of
 Services Within Your SOA

 by theo Beack
	 Explore	how	you	can	maximize	reuse	in	your	

service-oriented	architecture.	Learn	how	to	
leverage	existing	infrastructure,	create	ap-
propriate	organizational	structures,	and	adopt	
collaborative	development	practices.

Video: Business Process Modeling
Modeling	and	execution	language,	combined	
with	service	components	and	service-oriented	
middleware,	make	it	possible	for	you	to	automate	
your	business	processes.	Ted	Buszkiewicz	exam-

ines	the	technology	that	makes	this	possible.

Video: Moving Beyond SOA
John	deVadoss	introduces	you	to	new	architec-
ture	that	moves	beyond	SOA	and	finds	a	way	to	
connect	cutting-edge	software	development	and	
existing	services	infrastructure.

visit Enterprise Architect online for exclusive interviews, extended content, and more.

G0 onlinE @ www.enterprise-architect.net

http://www.enterprise-architect.net
http://www.ftponline.com/weblogger/
http://www.ftponline.com/channels/arch/reports/sassf/2006/helland/
http://www.ftponline.com/channels/arch/reports/sassf/2006/buszkiewicz/
http://www.ftponline.com/channels/arch/reports/sassf/2006/devadoss/
http://www.enterprise-architect.net

�www.enterprise-architect.net Winter 2006 Enterprise Architect

Winter 2006

enterprisearchitect@fawcette.com

Jeff Hadfield, Vice President of Publishing

Editorial
Nina Goldschlager, Managing Editor
Lauren Dresnick, Associate Editor

Editorial Advisory Board
Janaki Akella, Chris Barlow, Toufic Boubez, Mike Ellsworth,

Dan Foody, Steve Gillmor, Boris Lublinsky, Richard M. Marshall,
James McGovern, John McDowall, Patrick Meader, Richard

Murphy, Tom Pardee, Ken Rutsky, Lee Sherman, Vinu Sundar-
esan, Gordon Van Huizen, and Peter Varhol

Art & Production
Michael Hollister, Vice President, Art & Production

Bruce Gardner, Senior Art Director
Brian Rogers, Art Director

Kathleen Sweeney Cygnarowicz, Associate Production Manager
Lyndon Lloyd, Senior Interactive

Art Director/Web Producer
Shane Lee, Associate Web Producer

Advertising Sales
Roy Kops, Advertising Director

Lisa Sidlow, Western Regional Sales Manager
Dennis Leavey, Eastern Regional Sales Manager

Susan LaCroix, Executive Assistant to the
Vice President of Publishing

Circulation
Karen Koenen, Senior Circulation Director

Fred Perry, Circulation Manager

Marketing
Susan Ogren, Marketing Manager

Margaret Horoszko, Senior Designer

Conferences
Tim Smith, Vice President, Conferences

Brent Sutton, Associate Conference Director
David Seymour, eAdvertising Manager

Katie McGillivray, Marketing and Editorial Planner
Will Hansen, Operations Planner

José Porcell, Customer Service Representative

Operations
John Sutton, Executive Vice President/Chief Financial Officer

Darlyn Phillips, Director of Finance
Betty Tsang-Hwah Wu, Staff Accountant,

Cash Management/Payroll
Elena Ostrovsky, Staff Accountant, Accounts Payable
Iain Neillands, Collections Analyst/Cash Management

Accountant
Tin Cao, System Administrator

Pamela Davis, Human Resources Manager

FTPOnline
Nina Goldschlager, Managing Editor/Business Unit Manager

Lauren Dresnick, Associate Editor

Fawcette Technical Publications
James E. Fawcette, President

John Sutton, Executive Vice President/
Chief Financial Officer

Aaron Weule, Vice President, Chief Information Officer
Michael Hollister, Vice President, Art & Production

Tim Smith, Vice President, Conferences
Jeff Hadfield, Vice President, Publishing

Wilson, Sonsini, Goodrich & Rosati, Corporate Counsel

Contact the Editors
enterprisearchitect@fawcette.com

Enterprise Architect Online
www.enterprise-architect.net

The online home of Enterprise Architect, with articles, expanded
features, and more.

Media Advertising
www.ftpmediakit.com

Enterprise Architect (ISSN: 1547-4569) is published by Fawcette Technical Publications Inc., 2600 South El
Camino Real, Suite 300, San Mateo, CA, USA, 94403. Tel. 650-378-7100; Fax. 650-570-6307. Customer Ser-
vice: For subscription orders, inquiries, or address changes, call (866) 387-5776; international inquiries call
(847) 559-7309; send a fax to (847) 291-4816; e-mail ea@omeda.com; or write to Enterprise Architect,
PO Box 3484, Northbrook, IL 60065-3484. ©Fawcette Technical Publications Inc., all rights reserved. All
contents of Enterprise Architect are copyright ©2004 by Fawcette Technical Publications Inc., unless
otherwise noted. “VBITS®,” “Interactive Developer®,” “Java Pro,” and “inquiry.com” are trademarks
of Fawcette Technical Publications Inc., a California Corporation, James E. Fawcette, President. “XML”
is a trademark of MIT and a product of the World Wide Web Consortium. “Java” is a trademark of Sun
Microsystems. Rather than put a trademark symbol in every occurrence of other trademarked names,
we state that we are using the names only in an editorial fashion with no intention of infringement of
the trademark. Although all reasonable attempts are made to ensure accuracy, the publisher does not
assume any liability for errors or omissions anywhere in the publication.

Seven years ago, this publishing company acquired a series
of Web conferences. Our thinking was that Web design
couldn’t remain a totally separate discipline from software

architecture. We thought the Web would become a development
platform and we’d leverage our strengths in IT-oriented publish-
ing to span both disciplines.

Well, it took a lot longer to materialize than we thought, but sud-
denly 2006 is becoming the year that the IT community decides it
must do more than focus solely on the server and must stop treating user interaction
with Web-based applications as merely a design issue of colors and interface elements.

Part of this is driven by competitive positioning. The community of everyone-
but-Microsoft originally pushed browsers delivering simple HTML as adequate for
every use. In true “if all you have is a hammer, everything looks like a nail” fashion,
IT vendors that failed to compete with Microsoft in selling PC software declared that
the PC was dead, that all you need is a browser. And for a while, that movement had
tremendous momentum.

But after a rapid rush to the browser, the user community recoiled, asking for all
the UI elements it had gotten used to on the PC—whether you derisively call them
“fat clients,” or in Microsoft-speak praise them as “smart clients.” I remember one
consultant quoting an IT client, “We paid $10 million for this application and I have
to tell people, ‘Be careful not to hit the Back button or hit Refresh.’”

In late 2004 to early 2005, some in the Microsoft ecosystem (although not Micro-
soft itself) went as far as proclaiming that “HTML is dead,” because browser devel-
opment had basically stopped.

Adam Bosworth, now at Google but formerly of BEA, Crossgain, and Microsoft,
was one of the early visionaries to discuss how a rich user experience could be deliv-
ered through the browser, and extensive efforts at www.eclipse.org were put behind
tools that downloaded and ran in the browser.

The materialization of Ajax (Asynchronous JavaScript and XML), RSS, Ruby on
Rails, Wikis, instant messaging, and bots is making the Web emerge as a development
platform. Even if, like me, you have to hold your nose at the hype of Web 2.0, the mon-
iker is valuable in that it offers a single term to encompass all these technologies.

The next step is to bridge the rich Web with SOA, to deliver applications that are
robust and scalable but also usable.

In his opening keynote for our Software Architecture Summit, John deVadoss, di-
rector of architecture strategy at Microsoft, said that “there is something fundamen-
tally happening… and if Web 2.0 is one end, then SOA [service-oriented architec-
ture] is the other.”

As deVadoss described in an eWeek article by Darryl K. Taft, “The consumer edge
is the peer-to-peer, Web 2.0 world and the enterprise edge is the SOA, ESB (enter-
prise service bus) model. In addition, the consumer edge is an asynchronous com-
munications model based on the REST (Representational State Transfer) scheme,
and the enterprise edge is based on the Simple Object Access Protocol scheme.

“‘REST is a dominant model on the consumer side, and SOAP is the model on the
enterprise side,’ deVadoss said.

“‘As architects we have to think very hard about what’s happening on the consumer
edge, this Web 2.0 edge… We could wait, but I believe this is the cusp,’ deVadoss said.

“‘These edges are bridging. It’s time we put the user back into SOA.’”

Moving Beyond SOA to the Web

Editor’s Note

by Jim Fawcette
President, FTP

http://www.enterprise-architect.net
mailto:enterprisearchitect@fawcette.com
mailto:enterprisearchitect@fawcette.com
http://www.enterprise-architect.net
http://www.ftpmediakit.com
http://www.eclipse.org/
http://www.ftponline.com/reports/wdwsf/2006/veen/
http://www.ftponline.com/channels/arch/reports/sassf/2006/devadoss/
http://www.eweek.com/article2/0,1895,1918120,00.asp

Service Reuse

� Enterprise Architect Winter 2006 www.enterprise-architect.net

Service-oriented architecture (SOA) is one of
today’s hottest topics. No matter where you
go, or which customers you engage, the same

topic is foremost in their minds. People want to
know how to use or build an SOA to (a) solve
some of the most pressing business problems, (b)
create more integrated business solutions, and (c)
reduce the cost of building and maintaining exist-
ing IT infrastructure and applications.

Much has been written on the value of SOA and how it
will help organizations meet all the aforementioned objec-
tives. How to design and build a solid SOA is another com-
mon topic, and it appears that everyone has an opinion on
what constitutes a “service.” IT architects love to discuss the
best approach for designing an SOA. Yet, it appears that rel-
atively little has been written about one of the most impor-
tant aspects of SOA: how to foster reuse of existing services.

In this article, I will explore one of the prime reasons we
are using SOAs to solve the most crucial integration and
business problems, namely the reuse of existing applica-
tions, business processes, and infrastructure. Many organi-
zations struggle to reach wide adoption of services within
their SOAs, despite creating them with reuse in mind. This
article explores the ways in which practitioners of SOA

Leverage existing infrastructure, create appropriate organizational
structures, and adopt collaborative development practices.

Maximize Reuse of
Services Within Your SOA

by Theo Beack

Theo Beack is Chief SOA Architect at Software AG North America. For the

past nine years, Theo has focused almost exclusively on integration technolo-

gies and has extended his skills to become an expert in service-oriented archi-

tecture, XML integration, Web services, enterprise information integration,

and semantic integration.

http://www.enterprise-architect.net

Service Reuse

�www.enterprise-architect.net Winter 2006 Enterprise Architect

can maximize the adoption and re-
use of services by leveraging the ex-
isting infrastructure, creating appro-
priate organizational structures, and
adopting collaborative development
practices.

SOA Assumptions
When reading SOA-related articles
or conversing about SOA, the ma-
jority of people often make the same
basic assumptions:

• You don’t need to rip and replace
existing systems.

• SOA and the use of Web services
standards help ease the pain of in-
tegration.

• SOA allows the reuse of existing ap-
plications (home-grown and pack-
aged).

Everyone seems to agree that reuse is
one of the prime reasons for SOA’s
widespread use and success. Few
question what “reuse” really means,
or how it can be achieved.

Before continuing, you should
consider two sets of questions. First:
What does reuse really mean in the
context of SOA? Does reuse imply the
reuse only of newly created Web ser-
vices? Does it also include the reuse of
existing applications? Does it include
the reuse of existing programming
and technology best practices, and/or
software development guidelines?

Second: How does one achieve re-
use? Many organizations that have
embarked on the SOA path have real-
ized that achieving true reuse is not as
simple as creating Web services and
making them available for use. Many
different factors seem to wreak havoc
on service use within an enterprise.

Understanding the nature of re-
use within the context of SOA, and
how one can generate the adoption
of services, is an important step to-
ward achieving one of the important
promises of SOA.

Communication

Services

Services

Existing
Applications Se

rv
ic

es

Organization

Guidelines &
 Policies

Best
Practices

S
e
rvice

s

Architecture

Services &
Metada

Repository

Figure 1. When engaged in planning and designing

an SOA, establish a culture of reuse within your

organization by focusing on these areas.

Services Adoption FrameworkWhat Is Reuse?
Reuse can take many differ-
ent forms as described earli-
er, but my simple definition
of the term is the ability of
various people or service
consumers to use the exact
same service, component,
procedure, guideline, or
process repeatedly to fulfill
a given task. From this defi-
nition it is clear that reus-
ability extends beyond the
mere reuse of Web services
or existing applications (ex-
posed as Web services). It
also implies other focus ar-
eas and disciplines that are
crucial to building a culture
of collaboration—thereby
providing the means to create a truly
reusable approach based on the prin-
ciples of SOA.

When engaged in planning and
designing an SOA, establish a culture
of reuse within your organization by
focusing on these areas, which I call
the “Services Adoption Framework”
(see Figure 1):

• Best practices.
• Guidelines and policies.
• Architecture blueprints.
• Organizational structure.
• Communication.
• Services and metadata repository.

Reuse of services is often more com-
plicated in practice than in theory.
Many factors can stall reuse, such
as lack of organizational support;
lack of guidelines and best practices;
interoperability; lack of standards;
services discovery, and poor com-
munication. Next, I’ll address each
of these issues in more detail.

The first factor that frequently stalls
reuse is a lack of organizational sup-
port. It is important to have appro-
priate support from both developers
and management when implement-

ing an SOA. The biggest challenge is
often a cultural challenge rather than
a technical challenge.

Implementing an SOA implies
change—sometimes a lot of change—
and people deal with change in differ-
ent ways. To some extent, most peo-
ple are resistant to change, especially
when they have not been included in
a decision that directly impacts them,
or when they do not agree with an ap-
proach or decision (even if they have
been consulted in the decision-mak-
ing process).

Firm support from all levels with-
in the IT organization is necessary to
implement an SOA successfully and
reach appropriate levels of reuse.
Management support is most crucial
because managers drive the IT strat-
egy, fund IT initiatives, and provide
backing when important decisions
have to be made.

IT architects, development man-
agers, and developers play an impor-
tant role as well. Without their solid
architectural direction, some of the
other issues discussed in this article
have the potential to become major
obstacles. Likewise, without the sup-
port and participation from the de-

http://www.enterprise-architect.net

� Enterprise Architect Winter 2006 www.enterprise-architect.net

Service Reuse

velopment teams, an SOA initiative
is doomed. When the development
teams are committed to the strate-
gy and follow the established guide-
lines and best practices, you can be
assured that your organization will
be much nearer to achieving reuse
of the SOA approach.

The second hurdle to reuse is the
lack of guidelines and best practices.
Many SOA implementations floun-
der without focus or amid conflicting
agendas. By first establishing pragmat-
ic best practices and programming
guidelines, you can create a clear SOA
discipline. Most programmers learn
to code by example, so the most ef-

fective way of helping programmers
adopt Web services and SOA is by pro-
viding them with practical examples
and guidance on how to create and
consume Web services. Simultaneous-
ly, you must steer programmers away
from the most common mistakes and
bad programming techniques, which
can lead to all kinds of inefficiencies
and interoperability issues.

Interoperability, the third hurdle
I’ll address, is one of the main prob-
lem areas preventing consumers from
easily interacting with service produc-
ers. Often a consumer can interact
with a Web service that uses the Re-
mote Procedure Call (RPC) binding

style, yet it cannot interact with a sim-
ilar Web service that exposes itself us-
ing a Document/Literal binding style.
Other times a consumer can’t deal
with complex data types that are cre-
ated by exposing a legacy application.

By establishing programming
guidelines and best practices and fol-
lowing recognized architectural blue-
prints, developers can prevent these
interoperability issues from occurring.
Also, anticipating such issues allows
architectural teams to put a frame-
work in place that addresses these in-
compatibilities when they arise.

Fourth, a lack of standards can lead
to competing approaches for creat-

Figure 2. An example service design specification should address these aspects of the service.

Service Design Spec

http://www.enterprise-architect.net

Come visit the Journal’s new home

at www.ArchitectureJournal.net.

The new site contains a full library of

articles from previous Journal issues

in addition to upcoming highlights

of our next issue. Browse the content

today and post comments and let-

ters directly to the editor!

Now live at www.ArchitectureJournal.net!

http://www.ArchitectureJournal.net
www.ArchitectureJournal.net

� Enterprise Architect Winter 2006 www.enterprise-architect.net

Service Reuse

ing, exposing, and consuming servic-
es. Web services are not mandatory
when creating an SOA. Many develop-
ers prefer to use XML or XML RPC, or
even a Representational State Transfer
(REST) style of Web services.

Different standards can lead to
many practical issues when imple-
menting an SOA. It will serve an SOA
team well to establish relevant stan-
dards and adhere to them. This can
be enforced through the use of a ser-
vices repository, which can perform
a compliance test against the WS-I
Basic Profile (for example) to ensure
that all published services comply
with relevant specifications.

A fifth reuse hurdle is services dis-
covery. Many organizations have no
effective means of determining which
services exist and how to access them.
This will remain a problem area until
you have an approach to manage ser-
vices and provide a central location to
store metadata and artifacts related to
the SOA services.

Finally, poor communication can
hinder reuse. Does everyone with-
in your organization know where
to look for services? If not, how will
they locate the services they need?
How do you make changes to ex-
isting services, and even more im-
portantly, who are your service con-
sumers? If you don’t know who your
consumers are, how will you be able
to notify them of the potential im-
pact of changes?

How to Get Maximum Reuse
When implementing an SOA, you are
faced with the question of where to
begin. You might be tempted to start
building Web services immediately,
and many organizations take this
route. This approach might work if
the scope of your project is only to
create a number of Web services. But
when designing and implementing
an SOA, diving right in is not the
best approach.

The initial methods used to create,
deploy, and consume Web services
usually establish a pattern of behav-
ior that might be difficult to change
later. Establish practical guidelines
and best practices first. Experience
is the best teacher, and it is through
trial and error that you can deter-
mine what works and what doesn’t,
or the best way of solving a partic-
ular problem. If you don’t have the
necessary resources or experience,
it is worth the effort (and expense)
to obtain help from someone with
proven experience planning and
building SOAs.

Next, define the architectural
roadmap, or blueprints. Blueprints
usually are extremely useful in guid-
ing development teams because they
address specific design areas within
applications. Your blueprints might
include any of these and more:

• Common security model.
• Service orchestration model.
• Metadata management.
• Process integration mode.
• Web services compliance model.

Too often, development teams have to
reinvent the wheel to solve a particular
problem. By solving problems once
and documenting their solutions in
architectural blueprints or best-prac-
tices guidelines, you achieve a certain
level of reuse. Repeatability takes
many different forms, and blueprints
can have a positive effect on how ser-
vices are created and used within the
established SOA infrastructure.

Reuse Through a Services Design
Approach
When creating services, it is impor-
tant to start with a services design
specification. Starting here allows
you to identify which services will be
needed, what their interfaces should
look like, what the scope of each
service will be, and the granularity

of each service. Often, services are
created without considering these
aspects of the service. The extent to
which you consider all aspects of a
service has a direct impact on how
useful it will be to potential service
consumers.

By following a services design pro-
cess, you can evaluate the requirements
for different services and how they will
be used. A thorough evaluation results
in a balanced view of the different ser-
vices for consumers’ unique require-
ments. A good services design process
yields a highly reusable set of services.
An example service design specifica-
tion should address the aspects of the
service shown in Figure 2.

When taking the first steps toward
an SOA, you usually start with the fa-
miliar. A large percentage of IT or-
ganizations have legacy systems that
form the core of their mission-critical
applications. This is usually the start-
ing point when building an SOA.

Ask yourself how to reuse these
systems or identify which parts to
expose. First, determine which parts
of a particular application will prove
the most value when exposed as ser-
vices. Next, ask what type of infor-
mation is needed by other parts of
the organization and what function-
ality would solve the most pressing
request for information.

Then determine the different ap-
proaches you can follow to expose
the identified functions as servic-
es. Generally, you can integrate with
legacy systems in one of three ways:
on the Session level, the Transaction
level, or the Data level. By exposing
these legacy applications as servic-
es through one of these approach-
es, you can reuse existing application
functionality in new applications.

Session integration is the ability
to intercept and interpret the screen
information that is passed back and
forth between a client and the server,
such as z/OS, AS/400, Unix, and so

http://www.enterprise-architect.net

�www.enterprise-architect.net Winter 2006 Enterprise Architect

Service Reuse

on. The terminal session (or screen
information) can be packaged us-
ing different protocols, such as 3270,
vt100, and 5250. These protocols de-
scribe the data related to the user in-
terface and how it should be inter-
preted and rendered by the receiving
application (terminal emulator).
With session integration, it is pos-
sible to intercept the terminal emu-
lation protocol data and render it in
nontraditional ways; for example, the
3270 session data can be rendered as
XML or as a Web service. This can be
done without the requirement to re-
engineer or modify the legacy appli-
cation in any way.

Transaction integration refers to a
style of integration in which existing
legacy transactions, such as BATCH
programs or online CICS transac-
tions, can be accessed from distrib-
uted platforms. External applications
should be able to call these transac-
tions without having to know any of
the implementation details. These leg-
acy transactions need to be wrapped
in such a way that they are callable as
Web services without disrupting the
original state of the application.

Data integration is the ability to
provide a standard level of connec-
tivity (typically ODBC or JDBC) to
disparate data sources. This func-
tionality is important for legacy da-
tabases that do not support SQL or
provide ODBC connectivity native-
ly. The ability to expose these data
sources as Web services enables data
to be accessed in new ways and for
new purposes.

Role of Services Repository
Many organizations start their SOA
initiatives by creating ad hoc Web
services. The existence of these Web
services is usually known only by se-
lect developers, and the information
related to these Web services is usu-
ally shared in an informal way, such
as e-mail. This approach usually

works with a small number of Web
services and consumers. Managing
the artifacts related to the Web ser-
vices (WSDLs, XML Schemas, XSLT)
is not a pressing need, and usually
an informal agreement exists about
how to deal with upcoming changes
in the service contracts.

However, this approach breaks
down when adoption expands to
dozens or hundreds of services in the
organization. Suddenly the organi-
zation is faced with new problems:

• Where do you go to determine
which services currently exist with-
in the organization?

• How do you determine whether
the service contract that you have
located is the most recent version?

• How do you determine who are the
consumers of a particular service?

• How do you determine the poten-
tial impact of a change to a services
contract?

• How are new services documented
and where do you publish a newly
created service?

These considerations have a direct
impact on the reusability of the ex-
isting services. A services repository
can play a prominent role in deter-
mining the answer to these questions
and the success of SOA projects.
Organizations have found that in
order to properly manage services
within their SOA infrastructure,
they must have a central services re-
pository where all the services can be
published and documented.

The services repository provides
standardized interfaces, such as
UDDI, through which service pro-
ducers can publish their services.
Repositories also allow service pro-
ducers to document their services by
providing additional metadata that
help consumers find appropriate
services through different classifica-
tion and search mechanisms. Con-

sumers can be assured that whenever
they bind to a service, they will do so
with the latest service contract. Like-
wise, service producers now have the
ability to track how their services are
used and by whom.

Implementation of a service re-
pository greatly increases the com-
munication between the service pro-
ducer and consumers, as well as the
development teams. It is the central
mechanism from which the various
development teams can obtain the
latest information regarding a neces-
sary service. Most IDEs today provide
UDDI support or plug-ins that allow
developers to browse the services re-
pository without having to leave their
IDE environment. This ease of use in-
spires “integration” between the vari-
ous parties involved in the SOA.

This article has only begun the dis-
cussion of reuse within SOAs. Many
of you likely have unique insights
and different perspectives that would
turn this topic into a lively debate on
the merits of reuse, how to cultivate
it, and what it really means. Feel free
to e-mail me your thoughts.

Finally, planning is a crucial part
of success. I have encountered sev-
eral situations where organizations
were highly successful in their us-
age and adoption of Web services,
but failed to prepare for success—to
such an extent that their success cre-
ated unique problems that hindered
further growth and maturity within
their SOA implementations. Above
all, it is the proper planning, disci-
plined approach, and determined
execution that lead to a successful
and reusable SOA implementation.

Read this article online:
Maximize Reuse of Services Within Your SOA
Read these related articles on
FTPOnline:
Code Reuse in the Enterprise
Top 5 Asset Reuse Best Practices For SOAs

GO OnlinE www.enterprise-architect.net

http://www.enterprise-architect.net
mailto:theo.beack@softwareagusa.com
mailto:theo.beack@softwareagusa.com
http://www.ftponline.com/ea/magazine/winter2006/features/tbeack/
http://www.ftponline.com/ea/magazine/summer/online/stack_07_15_03/
http://www.ftponline.com/reports/vslivesf/2005/carlson/
http://www.enterprise-architect.net

10 Enterprise Architect Winter 2006 www.enterprise-architect.net

Scal ing & Versioning

A
lot of scientific papers and articles have been written about scalabil-
ity. The focus has almost invariably been on the problem of scaling
over resources or usage patterns, such as scaling over a number of

processors or scaling over a number of requests. The problem of scal-
ing over time, however, has largely been ignored.

By “scaling over time,” I’m referring to managing a system’s changes
over time. Today, you usually scale over time by using a version control
tool. You typically have the ability to revisit a snapshot of your entire
codebase at a certain point in time. You can also look at a former ver-
sion of any element in your codebase, normally at file granularity. So-
phisticated version control systems might also allow you to deal with
the elements of your system in terms of a change set, essentially com-
bining changes to related elements into one conceptual change.

Version control systems are obviously an important part of your de-
velopment infrastructure. Their features and capabilities have a large
influence on your development process. Regardless of their feature set,
they are all based on one unspoken premise: Versioning is a concept ex-
ternal to your code.

In today’s development process, the idea of a version is introduced
after you have written your code. The different versions of code that
you use are essentially labeled snapshots in time. A later version of an
element will not contain any information about the earlier version;
all such change-related information exists only outside your code, as
metadata in the version control system.

If you were to look at the evolution of a type T in a system, you
might see something like Table 1. In version 1.0 of this product, I used
the original version of type T. It remained unchanged until version 2.0,
when I modified the type, and it became type T’. Then I immediately
realized that I had to make another change, and it morphed into type
T” with version 2.1. I didn’t modify the type further throughout the re-
maining versions of the product.

Please note that in this example I have not made assumptions about the
backward compatibility of any of the changes. The change from type T to
T’ might have been backward-compatible, while the change from type T’
to T” might have been incompatible. The important thing to understand
is this: Type T might undergo an evolution that is largely independent of
the release numbers or version control labels. What’s more, type T might
not correspond with an element in the version control system. It might be
a small part of a file, or on the other hand, it might span several files.

See how to solve the problems
surrounding management of a
system’s changes over time.

Scaling Over Time:
The Version Problem

by Alex Krapf

Read this article online:
Scaling Over Time: The Version Problem
Read these related articles on FTPOnline:
Avoid Dead-End SOAs
Event Triggering XSLT Magic
Deal With Multiple Object Versions

GO OnlinE www.enterprise-architect.net

Alexander Krapf is president and cofounder of CodeMesh

Inc. Krapf has more than 15 years of experience in soft-

ware engineering, product development, and project man-

agement in the United States and Europe. Krapf has also

worked for IBM, Thomson Financial Services, Hitachi,

Veeder-Root, and Document Directions Inc.

http://www.enterprise-architect.net
http://www.ftponline.com/ea/magazine/winter2006/features/akrapf/
http://www.ftponline.com/ea/magazine/fall2004/columns/soainsights/
http://www.ftponline.com/javapro/2003_08/online/yboglaev_08_08_03
http://www.ftponline.com/vsm/2003_12/magazine/features/reynolds/
http://www.enterprise-architect.net

11www.enterprise-architect.net Winter 2006 Enterprise Architect

Scal ing & Versioning

Traditionally, I have used the re-
lease number of a product to version
an entire set of types, whether or not
they had changed. I bundled a snap-
shot of the system into a deployment
unit that might have a version num-
ber associated with it, such as a jar file
or a shared library. I typically regard
releases as black boxes and do not an-
ticipate that implementation types
of different product versions will co-
exist. Consequently, I often use the
same, unchanged type name to repre-
sent different versions of a type. The
assumption is they will never have to
coexist in one context because they
represent unrelated points in time.

Developers are increasingly run-
ning afoul of this core assumption.
Yes, you might have discrete releases
of software that never have to coexist,
but type T might be a public API used
by clients that have their own release
schedule. It might be a persistent type,
instances of which might be written
out by version 1.0 of a product and
(attempted to be) read by version 3.1.
How does your version control sys-
tem help you with these problems?
The answer is: It does not help at all.

The Application Concept
Most IT professionals tend to equate
“application” with the product’s cur-
rent version or maybe, if you’re the
unfortunate maintenance team mem-
ber, the product’s previous version.
You do not usually consider way-back
versions or not-yet-conceived future
versions. You can typically get away
with this misconception because cus-
tomers suffer from the same miscon-
ception and run a single version of a
product on their systems. They might
not be aware of why they are doing
this, but it has to do with the difficul-

ties and costs associated with getting
rid of the old version and deploying
the new one.

Why is a product upgrade so hard?
Why can’t different versions of a
product coexist peacefully? I would
posit that it has to do with our broken
notion of version management—a
problem that’s costing IT profession-
als and customers real money.

The difficulty stems from the fact
that you don’t treat the sum total of
all versions of a product as the ap-
plication. A new version will essen-
tially be a different product that no
longer includes the old version of
the product. Any exposed interfaces
that have changed could potential-
ly break customers’ applications; any
changed implementation details that
deal with persisted data could poten-
tially break customers’ applications.
This is virtually no problem if you’re
dealing with a monolithic, self-con-
tained application, but it becomes an
increasingly bigger problem if you’re
dealing with published APIs, persis-
tent data, third-party libraries, and so
on. It is a huge problem when you’re
looking at service-oriented architec-
tures (SOAs), which are essentially
published application interfaces.

Consider applications that require
you to store, maintain, and keep ac-
cessible some information for several
decades. Such applications might, for
example, be from problem domains
such as pharmaceutical research, cor-
porate governance (Sarbanes-Oxley),
or intelligence. These problem do-
mains will not allow you to punt on
the issue of scalability over time.

What Can You Do?
It’s not that developers and admin-
istrators are all incompetent; it’s that

the current tool set does not support
the notion of change very well.

Let’s look at a simple example. I’m
using Java as an example because of
its concise syntax, but this can easily
be generalized to any other language
or SOAs. I’ll start with an interface
Foo that publishes one method:

interface Foo
{
 public void doSomething();
}

Over time, you realize that it would
make sense to introduce an addi-
tional method in the interface:

interface Foo
{
 public void doSomething();
 public void
doSomethingElse();
}

A lot of people would say that mere-
ly adding a method to an interface is a
compatible change. Far from it! Imag-
ine that you have many implemen-
tations of the interface. After your
change, all implementations of the
interface will have to be updated with
the additional doSomethingElse()
method. If all implementations are
not updated, your application will
not load anymore. Additionally, some
of the existing implementations
might not need the new method, but
the compiler will force you to add the
method implementation anyway.

You might counter that this was
the wrong way to version your in-
terface. An interface should nev-
er be modified once it has been cre-
ated; instead, it should be extended
through inheritance. So you might
propose this design instead:

interface Foo2 extends Foo
{
 public void

Release # 1.0 1.1 1.2 2.0 2.1 2.2 2.3 3.0 3.1

Type T T T T’ T” T” T” T” T”

Table 1. The evolution of type T over a number of releases

http://www.enterprise-architect.net

12 Enterprise Architect Winter 2006 www.enterprise-architect.net

Scal ing & Versioning

doSomethingElse();
}

You certainly solved one problem:
You don’t have to modify any exist-
ing implementations of the inter-
face. Implementations of Foo and
Foo2 can coexist peacefully. But what
about existing users of the Foo inter-
face? You might have a factory meth-
od that originally created an instance
of a type implementing Foo:

public Foo createFoo(String
arg1, int arg2);

Should this function return Foo in-
stances or Foo2 instances in the fu-
ture, or should it return Foo2 in-
stances through a return type of Foo?
Should you introduce another facto-
ry method, such as this one?

public Foo2 createFoo2(String
arg1, int arg2);

Will methods that used to take a Foo
as an argument now require a Foo2,
or not? If a Foo2 is required, should
they enforce this through their pa-
rameter declaration?

Also, it’s silly that you have to use
the inheritance mechanism to ex-
press a new version of the same con-
cept. It has always bothered me that
I have to give up the “perfect” name
for a type, simply to version it. But
beyond personal preferences, this is-
sue also causes real and expensive
problems in current applications. So
far, I’ve just been talking about types
in general. It becomes much worse
when you consider the domain of
application integration. The whole
point of integration is the publish-
ing and consuming of interfaces and
data that is generated by another en-
tity. How many versions of applica-
tions, APIs, and data objects do you
think you’ll encounter over 20 or
100 years?

The State of the Art
The state of the art is … not very ar-
tistic. Mostly, there are programming
guidelines, naming policies, extensi-
bility patterns, and best practices,
but there is little or no support in
the technologies in use today. Some
programming languages include the
concept of an API version; some ar-
chitectures include the concept of a
service version. Java has a serial ver-
sion UID that can provide an indica-
tion of the compatibility of data or
API types, but nothing on the mar-
ket today offers:

• Versioning as a first-class language
feature.

• Tool support for type versioning.
• Tool support for detecting and deal-

ing with version problems.

This example is not a proposal for a
Java language extension; I simply in-
tended to illustrate what versioning
support as a language feature might
look like and what it has to offer:

versioned interface Foo:2
{
 public void doSomething():1-2;
 public void
doSomethingElse():2;
}

This interface declaration essential-
ly tells us that interface Foo is a ver-
sioned interface and that it exists
in two versions (Foo:1 and Foo:2).
It also tells us that the first method
is present in both versions, whereas
the second method is only present
in version Foo:2. This method is al-
ready much nicer than having to use
two different types because you keep
the declarations together and have
an immediate understanding of how
the type evolved over time.

Now you can create implementa-
tions of both versions of the inter-
face, for example:

public class FooImpl
implements Foo:1
{
 public void doSomething()
{
Util.doSomething();
}
}

public class FooImpl2 extends
FooImpl implements Foo:2
{
 public void doSomethingElse()
{
Util.doSomethingElse();
}
}

Notice that you probably don’t want
to version everything in the system.
Here I chose to version the interface
but not the implementing classes. So
far, this approach is not much differ-
ent from just using a naming poli-
cy, but imagine that you could over-
load methods based on the versions
of their parameters. You don’t have
to be explicit in terms of version, but
you can choose to be. You could do
this to indicate that you will support
any version in the implementation of
the method:

public class FooUser
{
 public int calculate(Foo f)
 {
 versionswitch(f)
 {
 case 1:
 return 1;
 case 2:
 return 2;
 default:
 return 2;
 }
 }
}

Or you could overload the method
based on the version of the argument:

http://www.enterprise-architect.net

13www.enterprise-architect.net Winter 2006 Enterprise Architect

Scal ing & Versioning

public class FooUser
{
 public int calculate(Foo:1 f)
 {
 return 1;
 }

 public int calculate(Foo:2 f)
 {
 throw new
VersionNotSupportedException(
f);
 }
}

So what’s the big deal here? Imag-
ine that the compiler might perform
these steps:

• Enforce that every declared version
of a type is handled either through
an overloaded method or through
a version switch.

• Enforce that you either declare ver-
sion incompatibility or provide a
compatibility path between ver-
sioned APIs.

• Enforce that there are conver-
sion operators between different
versions of a versioned serializ-
able type.

• Inform you of all the changes you
need to make to your code if you
were to version a certain type. All
you would need to do is version
the type and try to recompile.

Wouldn’t it be nice to write this
code, try to compile it, and receive
a compile-time error because you
are not handling the later version
of the interface?

public class FooUser
{
 public int calculate(Foo:1 f
)
 {
 return 1;
 }
}

 Error: FooUser.java, line 1:
method calculate(Foo) does not
support Foo:2

Service-Oriented Architectures and
Versioning
Please don’t be distracted by the fu-
turistic and unlikely extension to the
Java language used in my examples.
The same problems exist to an even
greater extent in SOAs. In a service-
oriented architecture, you will pub-
lish only interfaces, and you will use
only serializable data types. Both cat-
egories of items will force you to deal
with the versioning problem sooner
or later.

It is a sad fact that version-
ing support is as poor in current
SOAs as it is in programming lan-
guages, even though you need it
even more. In a traditional pro-
gramming language, you’re creat-
ing an implementation that is usu-
ally tightly coupled internally. You
control the types that are used, the
versions of the third-party librar-
ies that you bundle, the packag-
ing, the deployment, and so on. In
a true SOA, on the other hand, you
are going to build applications that
are stitched together from services
that you might not have developed
and that are not under your devel-
opment or deployment control.

Imagine another group creating
a new version of a service that your
application is consuming. The new
version might offer great new func-
tionality, but it might also be total-
ly or subtly incompatible with your
application. The other group might
be a good corporate citizen and
simply add a new version of the ser-
vice, but this raises other trouble-
some questions:

• The other group might prefer to
have the new version have the “per-
fect” name. Now you will have to
change all your applications.

• How long do they have to keep
old service versions around? How
can you know for sure that no one
needs the old version anymore?

• How do you inform service con-
sumers of newer versions?

• Can you afford to keep dozens of
different service versions (each po-
tentially backed by serious infra-
structure) around forever?

• How can service consumers tell
which versions are “compatible”?

• What does service version compat-
ibility even mean?

• Where are the tools that enforce
consistency in orchestrated service
frameworks?

• How many different versions of se-
rializable data types named “Pa-
tientData” do you plan to support?
Concurrently? In one application?

In the past, few applications had to
have a lifecycle that spanned decades.
Tools are equipped to scale over a
few years, maybe up to a decade,
but eventually applications accumu-
late so much “cruftieness” through
namespace pollution, unenforceable
naming and versioning policies, and
so on that a rewrite and the loss of
compatibility are taken for granted.

In the future, this is not going to
be an option. The government has
already proposed or enacted leg-
islation that forces corporations to
keep data available and usable for-
ever. You will be in desperate need
of formal versioning support in the
tools you’re using. The current best
practices for writing maintainable
software will not be good enough,
simply because they don’t scale
over time.

Our technology vendors will have
to step up and add versioning sup-
port to languages and technology
specifications, otherwise developers
are doomed to fail before they even
get started with the second version
of their product.

http://www.enterprise-architect.net

14 Enterprise Architect Winter 2006 www.enterprise-architect.net

The Role of an EA

Over the last decade, the role of an enterprise architect (EA) has
evolved from a focus on consolidation of technologies, to applica-
tion and data integration, and most recently, to business alignment

and support of business strategy. The latest iteration of the EA role calls
for an increased focus on architecture planning to ensure that IT is in a
position to effectively respond to ever-changing business needs.

As most of us have learned, the best architecture planning efforts are
tied to the baseline of what you have in your environment today. Fur-
ther, the foundation of any successful re-architecture initiative is a fully
accurate picture of the systems, applications, and other infrastructure
components in your environment, and how they collectively function
to deliver IT services to the enterprise. When these enterprise linkages
and interactions are documented and widely understood, the EA per-
forms a powerful role in business enablement.

This sounds relatively straightforward, but several factors can make
it difficult to get an accurate view of this information when it’s needed
and to leverage it to support important business decisions.

The first factor is increased complexity. As IT organizations con-
tinue to move from monolithic, legacy applications toward distrib-
uted business applications, strategic and operational teams alike are
struggling with infrastructure that is increasing in scope, scale, and
complexity (see Figure 1). Nothing runs on “a box” anymore; dis-
tributed application infrastructures are characterized by an integrat-
ed and customized collection of many smaller software components,
with dependencies on common “building blocks” such as databas-
es, Web servers, and application servers. Complexity is further com-
pounded by mergers and acquisitions and decades of layered technol-
ogy purchases.

IT complexity has a major impact on availability, manageability, and
operations costs. Complex IT environments are inherently expensive
to operate, more difficult to manage, and can be unpredictable when
change is introduced. However, complexity cannot be eliminated in a
dynamic and innovative environment, so the goal needs to be to man-
age it through making appropriate investments in architecture, inter-
nal culture, organization, and technology.

The good news is that investment in enterprise architecture has
emerged as a core strategy for leading organizations seeking to rein in
complexity within their IT environments and create a common lan-
guage across management disciplines.

Achieve success in your architecture
initiatives through the appropriate
mix of people, process, and
technology.

Combat
by Firdaus Bhathena

Read this article online:
Combat Increasing IT Complexity
Read these related articles on
FTPOnline:
Strategies for Operational Risk Management
Component Asset Management
Harness Technology Architecture

GO OnlinE www.enterprise-architect.net

Firdaus Bhathena cofounded Relicore in November of

2000 and served as the company’s president and CEO

for its first four years. In his current role, he is respon-

sible for defining and driving Relicore’s market, product,

and technology strategies. Prior to Relicore, Firdaus

cofounded WebLine Communications, a company re-

sponsible for introducing Web-based, enterprise-class

customer interaction software to the international call

center market.

Increasing IT Complexity

http://www.enterprise-architect.net
http://www.ftponline.com/ea/magazine/winter2006/features/fbhathena/
http://www.ftponline.com/ea/magazine/fall2004/features/vrajput/
http://www.ftponline.com/ea/magazine/summer2004/columns/architectstoolbox/
http://www.ftponline.com/ea/magazine/fall2004/columns/earealist/
http://www.enterprise-architect.net

15www.enterprise-architect.net Winter 2006 Enterprise Architect

The Role of an EA

Beware the Rate of Change
The second factor that can make
it difficult to get an accurate view
of your environment is the rate of
change. Operational changes to in-
frastructure—new application roll-
outs and upgrades, configuration
changes, hardware changes, hot
fixes, security patches, and so on—
occur continuously. Larger change
projects such as data center migra-
tions, server consolidations, and in-
frastructure assimilation of acquired
companies are also routine activi-
ties for leading companies today.
Change is a well-known complexity
multiplier, and as you’re all aware,
the pace is on the increase, with no
signs of decrease in sight. Without
an understanding of what’s in the
environment and how elements are
interdependent upon one another,

any change to the architecture is
fraught with risk.

Scattered information is a third fac-
tor complicating a clear view of your
environment. IT architecture and man-
agement information tends to be scat-
tered throughout a company and to re-
side on whiteboards, in notebooks, and
in the heads of enterprise architects,
system and network administrators,
and other critical IT personnel. On the
positive front, EA tools are emerging to
combat this challenge by storing rel-
evant information in a repository and
providing capabilities to assemble and
present the data in a variety of ways.

A fourth and final factor to account
for: technology advancements such as
virtualization and provisioning. As ev-
ery aspect of enterprise architecture
and computing has grown more com-
plex, the flexibility and intelligence

that virtualization and provisioning
add to the management mix has made
these technologies increasingly attrac-
tive. Virtualization reduces technology
limitations and provisioning reduces
capacity constraints. Both virtualiza-
tion and provisioning increase the rate
of change, which contributes to in-
creased complexity.

Given these challenges, how can
you get a fully accurate picture of the
systems, applications, and other in-
frastructure components in the envi-
ronment? You also need to know how
they support the delivery of IT servic-
es to the enterprise—knowledge that
is central to nearly every EA initiative.
Here are some suggestions.

How to Get the Big Picture
First, foster and promote collabora-
tion. The EA’s goal is to select and

Point-of-Sale

E-mail

IDC estimates that 78% of downtime is caused
by manual changes within the infrastructure.

Order
Processing

Service

Figure 1. Increasing IT complexity can hinder EA success.

iT Complexity and EA Success

http://www.enterprise-architect.net

16 Enterprise Architect Winter 2006 www.enterprise-architect.net

The Role of an EA

implement the right investments in
standards, procedures, and technolo-
gies to support the organization’s
business goals. This requires team-
work and collaboration with all
groups within IT as well as key busi-
ness personnel to ensure that the EA
has a clear understanding of business
needs, and that the business respects
the role of the EA. Armed with this
knowledge, for example, the EA can
investigate the appropriate technolo-
gies to support business needs, gain
buy-in on technology standardiza-
tion, and work with the appropriate
groups to resolve or rationalize ex-
ceptions to standards and maintain
insight into the big picture of their
architecture environment.

Second, implement structure
through framework and process
adoption. Complexity can be reduced
(although not eliminated) with struc-

ture. A structured environment is built
around standards and conventions
for all components of the infrastruc-
ture, and many frameworks and pro-
cess methodologies exist for providing
structure. While there are no common
definitions, standards, processes, or
tools for managing enterprise archi-
tecture, EA frameworks that can pro-
vide structure include the Zachman
Framework, the Open Group Archi-
tecture Framework, and the US Feder-
al Enterprise Architecture Framework.

Widely used process methodolo-
gies include Control Objectives for
Information and Related Technolo-
gy (COBIT), which provides a ref-
erence framework for management,
users, and IT audit, control, and se-
curity practitioners and covers all
IT activities; Six Sigma, which is a
broadly applied, disciplined, data-
driven approach and methodology

Federated CMDB

CMDB CMDB CMDB CMDB

Mainframe

Networks

CMDB

...

Storage

Relationships Servers Infrastructure
Software

Middleware Databases OS/Patch

Figure 2. Learn how you can enable a CMDB.

Enabling a CMDB

for eliminating defects; and IT Infra-
structure Library (ITIL), which is a
widely accepted and cohesive set of
IT best practices focused on service
management that continues to gain
traction within companies seeking
to improve their change manage-
ment efforts.

Third, leverage technologies that
give you the big-picture view of your
environment. To manage the com-
plexity of IT, organizations must begin
by understanding their architecture
and the interrelationships and depen-
dencies that exist within the environ-
ment. In the past, many of us have at-
tempted to create a map, or blueprint,
of elements in our IT infrastructure
by maintaining multiple rudimenta-
ry data stores such as spreadsheets,
Visio diagrams, or Microsoft Access
databases containing data gathered
through manual efforts. This is an ef-

http://www.enterprise-architect.net

The Role of an EA

fort begging for automation—a man-
ual approach simply cannot provide
sufficient information due to the size,
complexity, and amount of chang-
es occurring within IT, or deliver ful-
ly accurate information at any given
point in time.

 One company reported that man-
ually mapping out just a single criti-
cal business application took five staff
members several weeks, and due to
the dynamic nature of their environ-
ment, the data was out-of-date be-
fore the project was completed. This
was a source of great frustration be-
cause they needed this information
to support a host of strategic initia-
tives and operational tasks.

You can address this challenge
with technologies such as automat-
ed application and server-depen-
dency mapping solutions that pro-
vide information about hierarchical
and peer-to-peer relationships ex-

isting among infrastructure compo-
nents. The best tools in this category
completely eliminate the manual ef-
fort traditionally associated with this
process by automatically discovering
infrastructure components, dynam-

ically mapping their dependencies,
and tracking changes in real time as
they occur. The result is an automat-
ically generated, dynamically updat-
ed picture of the complex server and
applications within the IT infra-
structure.

The information from these tools
provides the foundation for strategic
initiatives such as audit and compli-
ance, disaster recovery, business conti-
nuity, and data center migrations, plus

operational activities such as problem
resolution and change impact analy-
sis that require realtime information.
Additionally, these tools can provide
a critical feed of realtime, fully accu-
rate application and server informa-
tion into an enterprise configuration
management database (CMDB) and
maintain synchronization between
live configurations and records stored
in the CMDB (see Figure 2), or serve
as a feeder into other EA tools used to
create blueprints of business, systems,
and technical architecture.

At the end of the day, an accurate
understanding of your systems, ap-
plications, and other infrastructure
components and how they function
collectively to deliver enterprise ser-
vices is essential to the EA’s ability to
realize business benefits such as cost
reduction and technology standard-
ization, process improvement, and
strategic differentiation.

First and foremost,
promote collaboration.

Thousands of articles and code samples are available from

our library of FTP magazines: Windows Server System Magazine/.NET Magazine,

Visual Studio Magazine/Visual Basic Programmer’s Journal, Java Pro, and

XML & Web Services Magazine.

The original just keeps getting better.
Join at: www.ftponline.com/members
Register today!

Visual Studio and Windows Server System are trademarks of Microsoft Corporation. Visual Studio and
Windows Server System are used by Fawcette Technical Publications, Inc. under license from Microsoft.
Java is a trademark of Sun Microsystems. Java Pro is used by Fawcette Technical Publications, Inc. under
license from Sun Microsystems.

www.ftponline.com/archives

Article ArchivesFree

17www.enterprise-architect.net Winter 2006 Enterprise Architect

http://www.enterprise-architect.net
http://www.ftponline.com/members
http://www.ftponline.com/archives

18 Enterprise Architect Winter 2006 www.enterprise-architect.net

Incremental Architecture

How can enterprise architect teams successfully establish meaning-
ful enterprise architecture while meeting management demands
to cut costs and deliver solutions more rapidly?

 As solution architects, we are continuously faced with the business
drivers to cut costs, deliver solutions more rapidly, and respond to cus-
tomer needs with more flexibility. In light of this fact, we must devel-
op a practical, focused strategy that will allow us to meet goals toward
furthering enterprise architecture (EA) initiatives (i.e., business align-
ment, standardization, reuse of existing IT assets, and sharing com-
mon system development methods), as well as meeting the enduring
demands of business units and upper management.
 The ultimate goal is to design more agile and responsive enterprise
systems that provide the value our business partners demand, in addi-
tion to the integration flexibility for which architects and developers
have been striving. To reach this goal, we must avoid two common pit-
falls of EA endeavors: not showing clear business value and being per-
ceived by the development organization as overhead or bureaucracy.
 We can remedy those concerns and achieve this vision by applying
standards and practices incrementally over time. Show value proj-
ect by project and expand the EA influence to one solution, one ser-
vice, and one person at a time. In a rapidly changing business envi-
ronment of tactical decision making, it is often easier to justify small
EA efforts that show immediate value than to get buy-in and funding
for large-scale EA projects that many perceive as the “ivory tower.”
Project-based initiatives can be used as the starting point for any
company’s long-term EA vision, and form the basis for reusable stan-
dards and best practices.

Why Enterprise Architectures Fail
Many attempted EAs fail because they wait to resolve too many details
before setting a specific direction. They try to take the Big Bang ap-
proach, or assume that there will be less risk and better long-term re-
sults if all of the details are gathered up front. However, this doesn’t
work in today’s tactically driven enterprise, where the time and re-
sources needed for an all-encompassing approach are difficult to ob-
tain. In many cases, an immediate decision is better. Otherwise, there
may be no decision at all.
 In fact, an architect must frequently present a solution prior to
knowing all of the details of the problem. This formula is often diffi-

Learn how you can establish
meaningful enterprise architecture,
cut costs, and deliver solutions
more rapidly.

Incremental Architecture:
Principles for the Real World

by Chad Riland and Josh Paterson

Chad Riland is the Manager of Architecture and Design

and Josh Paterson is an Application Architect for

Calpine Corporation. Calpine Corporation was recently

ranked by Information Week as the most innovative us-

ers of information technology among energy and utility

companies and fifth across all categories of companies.

You can e-mail Chad at chadriland@gmail.com and

Josh at Josh_Paterson@hotmail.com.

Read this article online:
Incremental Architecture: Principles for the Real World
Read these related articles:
Lightweight Enterprise Architectures
Changing the Rules of Systems Architecture
Bridge the CIO/CEO Communication Gap
The Mobile Enterprise Challenge

Go onlInE www.enterprise-architect.net

http://www.enterprise-architect.net
mailto:chadriland@gmail.com
mailto:Josh_Paterson@hotmail.com
http://www.ftponline.com/ea/magazine/winter2006/features/jpatersoncriland/
http://print.google.com/print?hl=en&id=v0v88Gv1FIMC&dq=Why+Enterprise+Architectures+Fail&prev=http://www.google.com/search%3Fhl%3Den%26q%3DWhy%2BEnterprise%2BArchitectures%2BFail&lpg=PA144&pg=PA145&sig=GZSHod81zU_-c7JO7ODPGcmnYKE
http://www.ftponline.com/channels/arch/reports/easbarc/2005/video/
http://www.ftponline.com/ea/magazine/fall2005/features/sewell/
http://www.ftponline.com/channels/arch/reports/easbarc/2005/video/
http://www.enterprise-architect.net

19www.enterprise-architect.net Winter 2006 Enterprise Architect

Incremental Architecture

cult for technical or analytical think-
ers to follow. The career path of an
architect is typically one where he or
she has moved up through the tech-
nical ranks—first developing some
basic software systems; graduating
to more complex systems where he
or she had to understand and ap-
ply design methodologies; and after
showing successful results, moving
into an architecture position. This
progression can perpetuate the view
that EA is all about technology (i.e.,
technical expertise, standards, and
picking the best technologies). If this
attitude is left unchecked, it can re-
sult in disputes within different fac-
tions of the organization over specif-
ic technologies.
 Another issue may reside in indi-
viduals within the organization who
come from a strictly technology back-
ground because individuals with this
type of background tend to lack lead-
ership and management skills. These
individuals may attempt to control
others with their rank and authority;
or, on the other hand, they may not
attempt to manage at all and simply
continue to focus on technology. They
may attempt to enforce rules without
getting agreement from the develop-
ment team and business sponsors. In
these cases, others will hesitate to in-
clude architects on project teams.
 EA failure also has to do with how
the organization perceives the archi-
tecture team. After half a decade in
the ’90s of the double-digit IT bud-
get expansion, corporate IT growth
has dramatically slowed down. IT
is being asked to deliver the same
amount of new capabilities with de-
creasing budgets. If an EA team (and
IT in general) is not conscientious
about the influence of budget con-
straints on their environment, and
not developing new ways to thrive in
that environment, a perception will
evolve in the business units that EA
teams may not meet needs.

 In addition, an EA team cannot
expect to obtain funding for strict-
ly architectural projects like models,
frameworks, or methodology. Nor
can they wait for upper management
support and exposure for those activ-
ities. It is very difficult to quantify val-
ue for these types of initiatives. They
often meet with resistance from ex-
ecutives that have to sign off on the
budget because many times these ex-
ecutives must justify the projects with
positive customer response.
 Next on the list is overzealous
evangelism. You’ve all heard the evan-
gelists touting lofty objectives, ab-
stract benefits, and future value with-
out a clear plan for progressing from
where you are right now to the uto-
pia of an established EA. Advocating
“the corporate good” is a great way
to get people jazzed about strategy,
but without a clearly defined execu-
tion plan, it amounts to nothing. The
other side of this coin is the “build it
and they will come” mentality. It may
work for a successful sports franchise
to build a new stadium and attract a
myriad of fans, but it will not work
for the establishment of an EA.
 Architecture teams will not gain
allies by simply building models and
providing pages of documentation
to other teams. The consumers of
this information have project time-
lines to meet, code to write, business
meetings to attend, and so on. With-
out direct participation and buy-in
from these “consuming” teams, the
response is frequently apathy: “Sure,
just put it on the pile, and I’ll read it
when I get to it.”

The Incremental (Results-oriented)
Approach
Incremental architecture is focused
on results and value. The value of a
common architecture is realized in
the tactical application of strategic
technologies. It is evolutionary prog-
ress instead of revolutionary prog-

ress. Architects need to implement
architectural strategy through exist-
ing tactical projects. They should de-
vote a substantial amount of their
time to project teams that are well
aligned with the business. This en-
ables the expansion of architectur-
al progress one solution, one service,
and one person at a time.
 The keys to success can be broken
down into three elements: leadership,
communication, and standardization.
Incremental architecture is a concept
that is valuable beyond corporate In-
formation Services (IS) shops. For ex-
ample, this article was created and fi-
nalized based on the principles of
incremental architecture. It started
with a vision and continued to evolve
that vision internally at Calpine and
externally at publication venues. It
then progressed into a framework
for the article’s content, approach,
and message standardization for rel-
evance. Ultimately, the original vision
was accomplished with tactical prog-
ress over time.

leadership
Good architecture is a people chal-
lenge, not a technology challenge.
Frameworks, methodology, and
modeling are not productive in and
of themselves—architecture must
be action-oriented. The focus must
be on creating value, changing be-
havior, processes, and executing the
larger strategy.
 People want to have a clear pic-
ture and roadmap—a plan that has a
defined path of execution. Establish-
ing a clearly defined and reproduc-
ible System Development Life Cy-
cle (SDLC) process is a key step in
the roadmap. This process provides
our architecture and design team
with important collaboration touch
points among the majority of IS ini-
tiatives in the portfolio. The SDLC
gives the team an opportunity to re-
view and revise an individual project

http://www.enterprise-architect.net

20 Enterprise Architect Winter 2006 www.enterprise-architect.net

Incremental Architecture

plan, ensuring that it satisfies long-
term and strategic goals. The SDLC
also involves the team in the day-to-
day operational activities of the busi-
ness—no more ivory tower!
 Over 50 percent of architects’ time
should be allocated to project-based
work. This will allow architects to
share the overall corporate vision,
interact with multiple team mem-
bers (business analysts, developers,
and so on), and prove their worth on
tactical efforts. Many strategic objec-
tives as well as various EA initiatives
(modeling, framework development,
pattern documentation, and so on)
can be achieved incrementally by
showing that they apply to a particu-
lar project.
 For example, architecture team
involvement in projects with various
reporting needs across numerous
business units call for a near-term,
common approach to reporting. On
the architectural vision side, enter-
prise reporting and other business
intelligence (BI) strategies align with
strategic business goals. The tactical
project requirements are a perfect
match. They drive momentum for
increasing reporting and BI maturity
for competitive advantage, while also
meeting individual project goals.

Communication
The ability to build relationships
and establish alliances across the or-
ganization should not be understat-
ed. Great care and effort must be put
forth to reach individuals outside the
typical technological arena of an ar-
chitecture team. To be successful at
increasing EA awareness, you have to
find creative ways to streamline the
communication process.
 There are a few main factors for
successful communication in the ar-
chitectural arena that go beyond the
usual communication theory course.
Remembering these principles will
help you make your point:

• Relevance.
• Practicality.
• Addressing key stakeholders.
• Delivering the right message.
• Collaboration.
• Trial and error.

Information overload is common-
place within today’s workforce. Two
creative ways that Calpine has had
success in communicating vision and
strategies are through the communi-
cation mediums we call “whiteboards”
and “roundtables.” Our whiteboards
are short video-based presentations
that explain specific areas of tech-
nology, standards, projects, or vi-
sion. Podcasting is becoming in-
creasingly popular, and whiteboard
presentations are a spin on the pod-
cast concept.
 It is much easier for someone to
digest information from a video pre-
sentation than it is to pore over pag-
es of documentation. It is also more
efficient for the architect to commu-
nicate thoughts in this medium than
to write them down on paper. You
can take the whiteboard concept a
step further if you require certain in-
dividuals to watch the video by in-
corporating it into a learning man-
agement system’s courseware. After
watching the video, these individu-
als are more likely to be successful at
their jobs.
 Also, you should never be above
marketing your team’s agenda and
goals. A creative example of this is
placing a one-minute, team market-
ing section at the beginning of com-
munication videos, similar to the way
online news Web sites create their
videos. Remember, in a whiteboard
communication strategy, communi-
cation is one-way, not collaborative.
Allow for necessary collaboration be-
forehand on any initiative described
or defined in a whiteboard, and de-
scribe the parties involved in helping
the work progress.

 Roundtables are gatherings of key
stakeholders in a particular technol-
ogy or project. They can be either
technology-focused with a goal of
extracting project ideas or project-
focused with a goal of extracting
technology implementation ideas.
Numerous positive things come
out of roundtables. Innovation is
sparked by encouraging moderated
communication about a topic be-
tween individuals who don’t nor-
mally talk to each other. Architec-
tural strategies, new project ideas,
system improvements, and espe-
cially cross-team communication
are other byproducts.
 These events don’t take much
time, and the return on investment
for time spent is enormous. These
are true collaborative gatherings.
Individual idea exchange and con-
tribution should be encouraged and
be part of the rules that are estab-
lished up front. Collaborative de-
cisions do not make the IS com-
munity feel that they are receiving
directions from above. Instead, they
engage creative IT talent in develop-
ing the resulting strategies.
 An architect has an exceptional-
ly challenging job. He or she must
align with the business and un-
derstand objectives to have a clear
grounding in the conceptual under-
pinnings of many different technol-
ogies. Fundamentally, an architect
must be a leader and communica-
tor who is capable of bridging the
gap between technologies, custom-
ers, and business goals by turning
strategy into tactical reality.
 The incremental architecture ap-
proach adds additional value to indi-
vidual projects because they now are
aligned with strategic technical goals
instead of purely tactical goals for the
business. Leadership and commu-
nication are marked as cornerstone
components for the success of the in-
cremental architecture approach.

http://www.enterprise-architect.net

As a software architect, both
business needs and technology demands
affect your decisions. You have to make
strategic architecture decisions based on
what’s achievable today—with an eye to future
growth and change.

That’s where FTP Online’s Software
Architecture Insight helps you. Twice a month,
this must-have e-mail newsletter gives you
both technical perspective and actionable
advice for building applications and enterprise
solutions. You’ll learn about important
topics like:

 • real-world SOA
 • proven middle-tier strategies
 • best practices
 • modeling business processes
 • architecting for scalability
 • migration strategies
 • much more!

www.ftponline.com/channels/arch/

Put some Insight into your Software Architecture

Free newsletter:
Sign up today!

http://www.ftponline.com/channels/arch/

SOA

22 Enterprise Architect Winter 2006 www.enterprise-architect.net

The playwright Moliere’s creation Monsieur Jourdan was astonished
one day to come to the realization that he had been speaking prose
all his life without realizing it. Similarly, people in the software in-

dustry often attach weighty meanings to what should be simple words
and concepts. In the process, the simplicity is lost and the words intim-
idate you rather than support you.

Today IT professionals are laboring under what seems to be a re-
quirement to express all business applications using a service-orient-
ed architecture (SOA). When you hear the word “service,” all the sim-
ple meanings seem to disappear (such as, something that serves you),
and only the weight and burden remain. To say “service” somehow au-
tomatically means using Web services for the communication between
all the parts of your applications, let alone with all the other applica-
tions that it must talk to in order to survive and prosper.

This assumption brings with it a list of groan-inducing three- and
four-letter acronyms—SOAP, WSDL, SSL, SAML—along with a host
of burgeoning standards that have to be lumped together as WS-*—
read “WS splat,” as you’re splattered by the implications of juggling Se-
curity, Routing, Reliability, Eventing, Addressing, and more without
dropping anything on the floor.

Services were supposed to make it easier for you to build successful
applications that handle business needs. But do you even remember the
business needs after you’re done struggling with all the technology re-
quirements?

I’d like to suggest that, as with Moliere’s ironic observation that a
highfalutin word can really be applied to commonplace things, you
should think about the services of a service-oriented architecture as,
well, serving you in your business needs, not making your life more
complicated. And, like all the mundane everyday statements that can
be given a greater cachet by labeling them as prose, the right expression
of the solutions to your business problems can turn into services and
even fit into a true SOA if you think about the simplicity of the busi-
ness task at hand and let the technology serve you without getting in
the way. Here are some examples of what I mean.

The first step that’s been recommended for years—decades, may-
be, at this point—is to turn the spaghetti code of a typical older appli-
cation into something more flexible and forward-looking. You can do
that by separating your user interface from your business logic. Take

If SOA Looks Hard,

by John Sadd

John Sadd has been with Progress Software for 18 years,

working in many capacities in product development

and the company’s Applied Technology group. Now

an Engineering Fellow and Evangelist for the Progress

OpenEdge product, he has written a half dozen books

on OpenEdge products and given many presentations

around the world.

You’re Looking at it Wrong

Read this article online:
If SOA Looks Hard, You’re Looking at it Wrong
Read these related articles on FTPOnline:
Stories From the Field: Adoption of SOA and
Web Services
How SOA Can Benefit From Active EA Models

Get Acquainted With SOA and Indigo

GO OnlinE www.enterprise-architect.net

Deconstruct the way you think
about a service in service-oriented
architecture.

http://www.enterprise-architect.net
http://www.ftponline.com/ea/magazine/winter2006/features/jsadd/
http://www.ftponline.com/channels/arch/reports/easbarc/2005/video/
http://www.ftponline.com/channels/arch/reports/easbarc/2005/video/
http://www.ftponline.com/channels/arch/reports/easbarc/2005/video/
http://www.ftponline.com/vsm/2005_11/magazine/columns/gettingstarted/
http://www.enterprise-architect.net

SOA

23www.enterprise-architect.net Winter 2006 Enterprise Architect

the logic that captures your business
rules and remove it from the code
that puts up the old green-screen in-
terface or somebody’s proprietary
client/server GUI. Now you’re on the
path to keeping the value of the busi-
ness rules intact when the UI fash-
ions change. What’s the alternative
to nicely separated duties between
the logic and the UI? Well, as people
kept saying with a quiet smile at an
architecture conference I recently at-
tended, “Thank the Lord for screen-
scraping tools.”

With a proper separation of
roles, you won’t have to scrap your
core business value and code your
application again during the next
industry “revolution.” You’ll be
set up to access your data and do-
main logic from a variety of inter-
faces. You’ll even be able to let parts
of your application that don’t have
a UI retrieve data by using the same
API calls your nicely separated code
now uses. You’ll also be on the way
to letting other applications ap-
proach your data by publishing the
API for them, which will make your
code look a lot like—gasp, could it
be?—a service.

Here’s another example. What’s
one of the most common elements
of a bloated application, one that
has grown and grown over the years
without much coding discipline?
What do harried programmers do
whenever they need a function that
resembles or duplicates something
already in the application?

The Dangers of Copy-and-Paste
They copy and paste somebody else’s
code—or maybe their own code—
into a new procedure and make the
necessary changes to adhere to the
spec. Of course, they could factor
out all the code parts that apply to
both cases, or a growing number of
cases, taking care not to break the

code they started with. Then they
could parameterize the variations.
But most developers don’t have time
to do that.

You know where this scenar-
io leads. Many applications have so
much repeated and copied code that
the similarity among resulting pro-
cedures is the closest thing these ap-
plications have to an architecture. A
lead developer on a large ERP appli-
cation once admitted to me that she
had identified 157 different places in
an application where a price calcula-
tion is performed.

What’s the well-architected so-
lution to this kind of problem? You
must discourage the copying of code
into a new procedure because it’s the
handiest solution. Instead, you need
an architecture that gathers in one
place all the logic that supports a re-
lated set of data. So whenever pro-
grammers need to make a change or
an addition to the logic, they can go
to one place to do it. Also, any other
part of the application that needs to
use or update the data knows where
to get it. And if you provide a suffi-
cient set of calls into that one proce-
dure, then it can satisfy all requests
in a consistent way.

When you develop in this way,
the reduction in the amount of
your application code can be stag-
gering. Even other applications that
will someday need to access data
from your application can use a sim-

Think about the services
of an SOA as serving you
in your business needs,

not making your life more
complicated.

ilar interface to retrieve it. And then
your application is perilously close
to becoming… well, you’re getting
the picture now.

Single-Machine Days long Gone
Make sure all code that belongs to-
gether under all circumstances runs
as a unit, and that all other code that
might want to talk to it runs in some
independently-defined unit, with-
out any dependencies between the
two units. If you don’t, you’ll be sor-
ry when you discover that for a con-
figuration you never considered, the
two code units have to run on two
different machines.

Separating out the UI is only the
beginning. If you make sure every
business object that manages a ratio-
nal chunk of data can run indepen-
dently of every other business object,
you’re on the right track. And when
someone tells you that one of those
chunks contains information nec-
essary to somebody on some oth-
er corner of the planet, you can re-
spond with a confident smile, and
not a shiver of dread.

Here’s another example: One of
the big hot buttons in application
development is “workflow.” Devel-
opers, especially those designing and
building applications for a larger au-
dience, realize that requirements dif-
fer and change depending on how all
the steps in a business process need
to take place. Just when you thought
you were done coding, you are in-
formed that Susie—and Susie has
clout—insists on entering the stock
code before the customer ID, rather
than the other way around, as it was
originally spec’d.

You might panic at first. Enter-
ing the stock code requires running
a whole business object that vali-
dates the stock code for the coun-
try of origin, assesses its availability,
and so on. Entering the customer ID

http://www.enterprise-architect.net

requires accessing another similarly
complex object. But wait! You coded
each of those business objects so that
you didn’t need to concern yourself
with where they run, if they’re both
in the same place, or whether the
caller is a UI or a batch program. So
it turns out you can easily accommo-
date Susie’s wishes.

In a more serious scenario, your
highly complex multistep ordering
and pricing algorithm—remember
the 157 price calculations you re-
placed with one—now has to be ap-
plied in a country you didn’t con-
sider during development, but one
where your company must now do
business to survive. It won’t work to
tell your prospective new customers,
“Well, that’s not how we do things in
our country.” All your pricing work
needs an overhaul so that step five
can execute in front of step four and
step seven can be replaced by a new
step that reflects the tax require-
ments of the new customers.

But because you coded the busi-
ness object that manages each step
independently, you won’t have data
dependencies or ordering depen-
dencies between objects. With your
nicely behaved code, you can re-
verse step four and step five and
replace step seven without the rest
of your application being the wis-
er, or having anything to complain
about. It’s the most natural thing
in the world for you to express all
your business objects as, well, you
know… services.

Armed with such civilized code,
SOAP and WSDL can hold no ter-
rors for you. You want the output
as XML? Nothing simpler. It just
becomes another call in a well-de-
fined API. Your boss wants to be
able to resell the pricing algorithm
without the rest of the ordering
code? No problem. They’ll never
miss each other.

Jason Bloomberg at ZapThink
reminds us that “you can’t get SOA
from software, because SOA con-
sists of best practices.” Bingo. You
have to create an architecture that
sets you up for success when the
world changes, regardless of what
technologies they throw at you.
New technologies should just be
new wrinkles in an already familiar
and comfortable suit, no more dis-

tressing than Susie’s special data-
entry requirements. You can’t let
technology dictate how you think
about the basic job you’re working
to solve—solving your company’s
business problems and letting your-
self and your company succeed in a
changing world.

Does this mean that SOA is sim-
ple? No, not automatically. After all,
there’s been enough sloppy code
written to demonstrate that writing
poorly architected applications is
easier than writing good ones. But
with the right motivations in place,
architects and developers should
have what is needed to build ap-
plications with a solid architecture,
which makes everybody’s job eas-
ier in the long run. Anyone who’s
had to code that 158th pricing algo-
rithm variation will know exactly
what I mean.

So a good “architecture” becomes
its own reward. And as for the “ser-
vice-oriented” part of it? Well, every-
body thinks of their business logic
as a set of services, don’t they? It just
makes life so much easier.

You have to create an
architecture that sets you
up for success when the

world changes.

SOA

24 Enterprise Architect Winter 2006 www.enterprise-architect.net

One Source for
All Your Technical

Information

Newly Expanded,
Easily Accessible

Go there today:

www.ftponline.com

2006 Fawcette Technical publications, Inc. All product names
herein are the properties of their respective owners.

ChANNEls
To better serve your needs, FTPOnline has
been restructured around seven channels:
Architecture, Java, .NET Development,
Windows IT, ASP.NET, Database and Security.
More channels to come!

spECiAl REpoRts
Get comprehensive information on subjects
critical to all IT professionals, such as
Security, Service-Oriented Architecture, and
Operations Management.

WEbCAsts
Watch and listen to industry experts discuss
hot IT topics.

WhitE pApERs
Download white papers that examine
evolving technologies.

Rss FEEd
Get quick updates on the latest blogs and
articles published at FTPOnline.

MAgAziNEs
Filled with downloadable code, interviews
with industry visionaries, in-depth tutorials,
overviews of implementation and manage-
ment strategies, article archives, and more!

NEWslEttERs
Free e-mail newsletters in your area of
interest, delivered right to your inbox.

http://www.enterprise-architect.net
http://www.ftponline.com

25www.enterprise-architect.net Winter 2006 Enterprise Architect

Business Application Processing

From mergers and acquisitions to new compliance mandates to
service-oriented initiatives, the evolution of business is adding a
new layer of complexity to the modern work environment, but it

also promises rewards of increased efficiency and simplicity. Business
application processing has become the new factory floor, and innova-
tors within IT departments are poised to become the Henry Fords of
today’s enterprise environment.

Maintaining competitiveness requires the agility to respond imme-
diately to change. End users’ expectations of business processes are ap-
proaching that of the telephone, with users demanding always-on, quality
service. Too often, however, IT departments are stuck reacting to existing
business demands instead of proactively pioneering solutions for future
needs. There are many excuses for reactive IT departments, but business
application processing no longer needs to be one of them.

By implementing automated business application processing as part
of the core IT framework, management can achieve true “straight-
through processing” and realize significant increases in efficiency and
productivity. Gains are recognized through:

• Quicker application deployments.
• Fast, reliable integration for multiple applications.
• Accelerated delivery of information to decision makers.
• Higher application service levels.
• Flexible workload balancing.
• Scalable and repeatable business processes.
• Reduced manual intervention and processing latency.
• Lower production and maintenance costs.
• Automated distribution of critical reports and data.

Business Resides in the Batch
According to Milind Govekar, research vice president of Gartner Inc.,
“Batch integration forms 70 percent of a company’s integration re-
quirements. To drive business, batch processing must progress from
simple date- and time-based processing to event-based processing
across a variety of business applications and operating systems.”

Tools such as batch schedulers have been superseded by sophisticat-
ed automation tools that can drive business processes enterprise-wide.
IT staff can design and define the business process at a simple object
level, which can then be assembled into intricate process flows that in-

By implementing automated business
application processing, you can
realize significant increases in
efficiency and productivity.

Down With Downtime
by Dan McCall

Read this article online:
Down With Downtime
Read these related articles on FTPOnline:
Windows Server 2003 Maintenance Made Easy
Achieve 99.999% Uptime
Unifying Data, Documents, and Processes

GO OnlinE www.enterprise-architect.net

Dan McCall has served as vice president, COO, and

director of AppWorx Corporation since 1994. McCall

also has management experience in the petroleum, real

estate, and banking industries.

http://www.enterprise-architect.net
http://www.ftponline.com/ea/magazine/winter2006/features/dmccall/
http://www.ftponline.com/wss/2004_12/magazine/features/kgardinier/
http://www.ftponline.com/wss/2004_11/magazine/features/nruest/
http://www.ftponline.com/ea/magazine/summer2004/features/blublinsky/
http://www.enterprise-architect.net

26 Enterprise Architect Winter 2006 www.enterprise-architect.net

Business Application Processing

corporate if-then logic and dynami-
cally supplied parameters to facilitate
straight-through processing. These
job streams mirror the way business
analysts and corporate governors
have mapped the business process.
Business services are initiated auto-
matically, executed across multiple
applications and over disparate plat-
forms, with no manual intervention.

When considered as an essential
part of the infrastructure and imple-
mented in the development phase,
automated business application pro-
cessing allows CIOs and IT manag-
ers to focus staff on proactive tasks
instead of reactionary pain points.
Much of the manual scripting and
maintenance that was required to
complete a business process has been
eliminated. Now, instead of hun-
dreds—or even thousands—of cus-
tom scripts, individual processes are
defined at the object level. If a new ap-
plication comes online or workflows
change, you can assemble new process
chains by adding new objects to your
repository using a Java-based, drag-
and-drop interface. Should existing
objects need to be changed, IT staff
can edit a master object definition to
make the change cascade through all
instances, instead of manually recod-
ing hundreds of scripts.

The adage “we’re only human” ac-
counts for the fact that people some-
times make mistakes. Sure, it’s natural,
but that doesn’t mean it needs to im-
pede the speed of your business oper-
ations. Recovering from human error
introduced during business applica-
tion processing can be catastrophic in
the near-realtime model of modern
business. With little time available for
rollbacks and recovery processes, it’s
necessary for organizations to seek
further automation and integration
of business applications.

Automation delivers assurance
that your business processes are be-

ing executed exactly as you have
defined them, on time, every time.
Centralized automation tools moni-
tor each process, recording vital in-
formation and reporting any issues
to operations staff. This watchful eye
over your applications relieves IT
staff from the babysitting role that
once was required to ensure success-
ful execution.

Above and Beyond
In recognizing the need for a cen-
tralized, enterprise-wide application
processing solution, IT architects
add a layer of enterprise software
over the entire application landscape.
These tools provide communication,
control, and management of job
processing between and among each
and every application, even home-
grown or legacy applications.

As a noninvasive solution, the
software allows for quick deploy-
ment and integration into any sys-
tem. Best-of-breed automation tools
can access live application data and
use that ever-changing information
to initiate batch processes, pass dy-
namic parameters, check for job
processing conditions, and perform
automatic recovery routines custom
made to fit your particular business
requirements.

From a single hub, business pro-
cesses throughout the organization
can be assigned priorities, and so-
phisticated process monitoring will
shift job executions based on incom-
ing needs and data. This flexibility in
your processing environment assists
with workload balancing and helps
meet and exceed application Service-
Level Agreements (SLAs).

A central software solution also of-
fers the advantage of detailed log files
and custom report generation. Each
business process run is logged into
a single repository, creating an eas-
ily audited account of your business

activities. Reports can be generated
based on your needs and automated
for delivery in a number of formats,
speeding up distribution of mission-
critical information throughout the
organization. Advanced reporting ca-
pabilities can assist with compliance
efforts necessitated by legislation,
such as the Sarbanes-Oxley Act. These
reports show what processes were run
and when, as well as who ran them.

Modern enterprise is always evolv-
ing. New technologies and shifts in
architectural practices are ongoing
challenges for all IT managers. Fast-
er performance, impeccable accuracy,
and steadfast reliability—on a limited
budget—are their goals. In an environ-
ment of uncertainty, one thing remains
absolute: Bulletproof business applica-
tion processing is elemental to the at-
tainment of corporate objectives.

Incorporating an enterprise auto-
mation methodology into your infra-
structure positions your business to
react to change proactively instead of
succumbing to reactive, point-solution
changes that require large investments
of IT time to solve. Imagine complex
processes executed using live data and
requiring no manual intervention or
custom scripting. Imagine flexible
workload balancing, comprehensive
reporting, and consistently exceeded
SLAs, while reducing maintenance
and overhead costs.

Plenty of talk circulates about
aligning IT with business, and new
industry buzzwords appear every day.
Batch scheduling has long been the
silent workhorse of the IT enterprise,
but today’s solutions have evolved
to become hybrid providers of en-
terprise application integration and
business process management. Maybe
it’s time to prepare your factory floor
for an agile future by reexamining the
execution and efficiency of business
application processing in your orga-
nization. Go on, be a visionary.

http://www.enterprise-architect.net

27www.enterprise-architect.net Winter 2006 Enterprise Architect

EA as a Management Discipline

For enterprise architecture (EA) to be effective as a management
discipline, it must be agile and flexible in addressing a multi-
tude of issues. It must be able to identify and develop enterprise

solutions within the confines of external institutional boundaries.
It must harmonize and integrate the artifacts it develops with those
of related management disciplines, such as capital planning and in-
vestment control, strategic planning, performance management, and
security. At appropriate times, it needs to be a strategy tool and, at
others, a tactical device.

However, the most important component of EA is frequently over-
looked—the importance of stakeholder relationships and ensuring that
the stakeholders are integral players in the design and implementation
of enterprise solutions. EA boils down to the management of stakehold-
er relationships in order to effectively advance enterprise solutions.
 The essential component and the one that is most often neglected is
governance—establishing the rules of engagement to “lubricate” these
processes. Governance is the “elephant in the room,” or the obvious
ingredient that no one wants to discuss, much less take on. It is es-
sential to the successful transformation of theoretical EA concepts into
measurable results. All too often, EA does not transcend the conceptual
level, and as a result, practitioners are unable to translate the concepts
into day-to-day requirements and deliverables. Including key stake-
holders in the process—from concept to tangible result—is crucial to
the success of EA.
 In the absence of a universally accepted definition, business manag-
ers often define EA in terms of solutions to their current tactical needs.
Like any other management discipline, they view EA as a tool to solve
their business needs and characterize it in terms of the management
disciplines with which they are most familiar. The result is multiple
interpretations of the meaning and purpose of EA. Until EA matures,
multiple definitions will persist.
 The absence of a universal definition hinders the discipline from
advancing and potential breakthrough performance from occurring.
The key to defining EA is to develop a definition that is broad enough
to incorporate governance and theoretical EA concepts, while focusing
on delivery of tangible, measurable results. Hence, I propose the fol-
lowing: Enterprise architecture is about relationship management.
 EA is about managing two types of relationships: artifact and stake-
holder relationships. In order to identify and develop effective en-

The often unspoken EA issue: Is
a new streamlined definition or
governance necessary for effective
management discipline?

Governance:
The Elephant in the Room

by Mike Dunham

Mike Dunham is Chief Enterprise Architect at Thomas

& Herbert Consulting LLC.

Read this article online:
Governance: The Elephant in the Room
Read these related articles on
FTPOnline:
Align Java Technologies With Business Results
Bridge the CIO/CEO Communication Gap
Risk Management—From Adversity to Advantage

GO OnlinE www.enterprise-architect.net

http://www.enterprise-architect.net
http://www.ftponline.com/ea/magazine/winter2006/features/mdunham
http://www.ftponline.com/javapro/2004_10/magazine/features/pvarhol
http://www.ftponline.com/ea/magazine/fall2005/features/sewell
http://www.ftponline.com/channels/arch/2005_08/bcurtis/
http://www.enterprise-architect.net

28 Enterprise Architect Winter 2006 www.enterprise-architect.net

EA as a Management Discipline

terprise solutions, it is important
to understand the relationship be-
tween those artifacts generated by
the technical architecture and those
produced by the business architec-
ture. This is the traditional concept
of EA embraced by most practitio-
ners. This component of EA comes
in many flavors and shades, from the
technical architecture through data
and service architectures. Artifact re-
lationships, however, represent only
25 percent of EA.
 Not surprisingly, the owners of
the technical and business artifacts
are among the stakeholders. These
key stakeholder relationships are
where the “rubber meets the road,”
and they represent 75 percent of the
discipline. In addition, for an enter-
prise initiative to be successful, the
business managers who have a stake
in the new initiative must become
fully involved in developing the rules
of engagement that will govern im-

plementation of the initiative. All of
these activities fall under the general
term “governance.”
 Strong stakeholder involvement
and effective management of the
stakeholder relationship will tend to
eliminate traditional barriers to suc-
cessful implementation of enterprise
solutions, such as:

• Failure to develop strong business
cases that provide incentives for
stakeholders to participate.

• A history of major systems failure
in connection with implementa-
tion of past enterprise solutions.

• Poorly documented artifacts that
hinder stakeholder implementation.

• Resistance to new initiatives that
are perceived as disruptive to
standard operating procedures.

• Risks involved in incorporating a
new enterprise solution that might
expose the organization to failure
in achieving its mission.

Architecture Journal ... 7
www.architecturejournal.net

Article Archives ... 17
www.ftponline.com/archives

Enterprise Architect Summit ... C2, 1
www.enterprise-architect.net/summit

FTPOnline ... 24, C3
www.ftponline.com

Software Architecture Insight .. 21
www.ftponline.com/channels/arch/

Special Reports ... C4
www.ftponline.com/special

Ad index

• Managers who feel that they are
losing control of their operations
or fear being dependent upon
other organizational entities to
provide mission-critical services
through a new enterprise solution.

Faced with such issues, manag-
ers will inevitably find ways to avoid
implementing a new enterprise solu-
tion. Governance processes provide
the lubricant to help key stakehold-
ers address the friction points and
assist them in successfully managing
the new initiatives. Again, it is the
elephant in the room. It is the is-
sue that many EA practitioners pass
along for someone else to handle, or
they assume the issues will somehow
take care of themselves.
 Based on this definition of EA,
initiatives become more than the
identification of potential solutions.
Once identified, an enterprise gov-
ernance body must be developed
and nurtured to ensure that rules
for data and resource exchanges are
appropriately managed. EA gover-
nance must ensure that unambigu-
ous dispute resolution procedures
are in place to handle the inevitable
disagreements that will arise:

• How are services delivered?
• Who delivers them?
• Who pays for them?

Rather than trying to define EA in
all its complexity, it may help to
start with this simple definition and
let individual practitioners leverage
it to their own needs. Perhaps by
using this simpler definition, prac-
titioners can avoid arguments as to
whose view of EA is more relevant
and stop the ongoing debate on
whether EA is about configuration
management, portfolio manage-
ment, data normalization, or none
of the above.

http://www.enterprise-architect.net
http://www.architecturejournal.net
http://www.ftponline.com/archives
http://www.enterprise-architect.net/summit
http://www.ftponline.com
http://www.ftponline.com/channels/arch/
http://www.ftponline.com/special

One Source for All Your Technical Information

5

Newly Expanded,
Easily Accessible

ChANNEls
To better serve your
needs, FTPOnline has
been restructured
around seven channels:
Architecture, Java, .NET
Development, Windows
IT, ASP.NET, Database
and Security. More
channels to come!

spECiAl
REpoRts
Get comprehensive
information on
subjects critical to all
IT professionals, such
as Security, Service-
Oriented Architec-
ture, and Operations
Management.

NEwslEttERs
Free e-mail
newsletters in your
area of interest,
delivered right to
your inbox.

whitE
pApERs
Download white
papers that
examine evolving
technologies.

wEbCAsts
Watch and listen
to industry experts
discuss hot IT topics.

4

3

2

1
Rss FEEd
Get quick updates
on the latest blogs
and articles
published at
FTPOnline.

MAgAziNEs
Filled with down-
loadable code, inter-
views with industry
visionaries, in-depth
tutorials, overviews
of implementation
and management
strategies, article
archives, and more!

Go there today:

www.ftponline.com

6

7

2006 Fawcette Technical publications, Inc.
All product names herein are the properties of their respective owners.

http://www.ftponline.com

Middleware & SOA
Code Quality

SOA Knowledge Center
Presenting in-depth special reports on critical topics important to all

IT professionals. Check out these and our other must-read
technical articles, tips, and market trends.

Go to: www.ftponline.com/special

Middleware & SOA
•Advanced BPEL concepts
•Alignment of IT and business

Code Quality
•Performance analysis for Web Services
• Stress-test Web forms and services
• Write unit tests

SOA Knowledge Center
• Competitive advantages
• Planning the transition

And Don’t Miss Our Reports On:
• J2EE
• Security
• ESB Essentials
• Storage & Disaster Recovery
• Exchange
• Testing & Performance
• Lifecycle Management
• Operations Management

© 2006 Fawcette Technical Publications, Inc.

FTPOnline Special Reports:

✓✓ ✓✓

✓✓ ✓✓

✓✓ ✓✓

http://www.ftponline.com/special

	Cover
	Table Of Contents
	Editor's Note: Moving Beyond SOA to the Web
	Maximize Reuse of Services Within Your SOA
	Scaling Over Time: The Version Problem
	Combat Increasing IT Complexity
	Incremental Architecture: Principles for the Real World
	If SOA Looks Hard, You’re Looking at it Wrong
	Down With Downtime
	Governance: The Elephant in the Room

