Encryption

Key concepts in this chapter are:

B Using hash digests for storing and verifying passwords
B Using private key encryption

B Writing a public key encryption routine

|

Modifying a database to store passwords and bank account numbers
in encrypted format

B Protecting password fields on forms

B Knowing where to use encryption in your own applications

If you read the Introduction, you’ll recall that this book is for Visual Basic
NET programmers new to security, not security experts new to Visual Basic
NET. This book unashamedly simplifies concepts and leaves out unnecessary
techno-babble with the goal of making security easier to understand and imple-
ment—without sacrificing accuracy. For many programmers, this simplified
look at security is all they will ever need, whereas others, after given a taste of
security, will want to know more. In a nutshell, this book is not the last word
in security; instead, it is the first book you should read on the subject.

What is encryption? Before discussing how to implement encryption with
Visual Basic .NET, you need to have an understanding of encryption in general.
Encryption is about keeping secrets safe by scrambling messages to make them
illegible. In encryption terms, the original message is known as plain text, the
scrambled message is called cipher text, the process of turning plain text into
cipher text is called encryption, and the process of turning cipher text back into
plain text is called decryption.

4

Part |

Development Techniques

Encryption isn’t just used in cyberspace or in mysterious government
work either. You can find examples of it in everyday activities such as baseball.
For example, in the game of baseball, the catcher commonly uses hand signals
to suggest to the pitcher the type of ball the pitcher should throw next. Curve-
balls, sinkers, sliders, and fastballs all have a different hand signal. As long as
the batter and others on the opposing team don’t understand the catcher’s hand
signals, their secret is safe. Figure 1-1 shows the process of encryption as it

applies to baseball.
| suggest you Two fingers I'm going to
throw a curveball pointing down throw a curveball
7 [e)
Decrypt

[e}

Encrypt

Figure 1-1 Encrypting and decrypting a secret message

Computers allow us to encrypt rich messages in real time, but the under-
lying principle is the same as in the simple baseball example. For encryption to
be effective, the sender and the recipient must be the only parties who know
how to encrypt and decrypt the messages. Microsoft Windows and the .NET
Framework provide robust algorithms for doing encryption, and we’ll use these
routines in this chapter. Unless you're an encryption expert, you shouldn’t try to
write your own encryption algorithm, for exactly the same reason that only avi-
ation engineers should build their own airplanes.

It's a common misconception that encryption algorithms and hash func-
tions must be secret to be secure. The encryption algorithms and hash functions
used in this book are commonly understood, and the associated source code is
distributed freely on the Internet. They are, however, still secure because they
are designed to be irreversible (in the case of hash functions) or they require
the user to supply a secret key (in the case of encryption algorithms). As long
as only the authorized parties know the secret key, the encrypted message is
safe from intruders. Encryption helps to ensure three things:

B Confidentiality Only the intended recipient will be able to
decrypt the message you send.

B Authentication Encrypted messages you receive have originated
from a trusted source.

Chapter 1 Encryption 5

B Integrity When you send or receive a message, it won't be tam-
pered with in transit.

Some cryptography mechanisms are one way; that is, they produce cipher
text that can’t be decrypted. A good example of a one-way cryptography is a
hash. A hash is a very large number (the hashes in this chapter are 160 bits in
size) mathematically generated from a plain-text message. Because the hash
contains no information about the original message, the original message can’t
be derived from the hash. “What use is cipher text that can’t be decrypted?” you
might ask. As youw’ll see soon, a hash is useful for verifying that someone knows
a secret without actually storing the secret.

In the examples in this chapter, you’ll learn how to create and use a hash
for verifying passwords. You’'ll also learn how to use private key encryption for
storing and retrieving information in a database. We’ll also begin building a
library of easy-to-use encryption functions that you can reuse in your Visual
Basic programs.

Practice Files

If you haven’t already installed the practice files, which you can download from
the book’s Web site at http://www.microsoft.com/mspress/books/6432.asp, now
would be a good time to do so. If you accept the default installation location,
the samples will be installed to the folder C:\Microsoft Press\VBNETSec,
although you’ll be given an opportunity to change the destination folder during
the installation process. The practice files are organized by version of Microsoft
Visual Basic, chapter, and exercise. The practice files for each chapter give a
starting point for the exercises in that chapter. Many chapters also have a fin-
ished version of the practice files so that you can see the results of the exercise
without actually performing the steps. To locate the practice file for a particular
exercise, look for the name of the exercise within the chapter folder. For exam-
ple, the Visual Basic .NET 2003 versions of the practice files for the following
section on using hash digests for encrypting database fields will be in the folder

C:\Microsoft Press\VBNETSEC\VB.NET 2003\CH@O1_Encryption\
EncryptDatabaseField\Start

In many of the exercises in this book, you’ll modify an employee manage-
ment system, adding security features to make the program more secure. The
employee management system is a sample program that adds, edits, and
removes employees for a fictional company. For background on the employee

6

Part |

Development Techniques

management system, see Appendix A. The system uses a Microsoft Access data-
base named EmployeeDatabase.mdb. The techniques you learn are equally rel-
evant to Microsoft SQL Server, Oracle, DB2, and other databases. You don’t
need Microsoft Access to use the practice files because the database drivers are
installed with Microsoft Visual Studio .NET. In some exercises, we modify the
database structure. These exercises are optional. If you don’t have Microsoft
Access installed, don’t worry: the practice files have been designed to work with
the database whether or not you make the changes to the database structure.

Hash Digests

As we mentioned earlier in this chapter, a hash is a type of one-way cryptogra-
phy. Some people refer to hashing as encryption; others feel it’s not strictly
encryption because the hash cannot be unencrypted. A hash is a very large
number, generated by scrambling and condensing the letters of a string. In this
chapter, you’ll use the SHA-1 algorithm. SHA-1 is an acronym for Secure Hash-
ing Algorithm. The “-1” refers to revision 1, which was developed in 1994. SHA-
1 takes a string as input and returns a 160-bit (20-byte) number. Because a
string is being condensed into a fixed-size number, the result is called a hash
digest, where digest indicates a shortened size, similar to Reader’s Digest con-
densed books. Hash digests are considered to be one-way cryptography
because it’s impossible to derive the original string from the hash. A hash digest
is like a person’s fingerprint. A fingerprint uniquely identifies an individual
without revealing anything about that person—you can’t determine someone’s
eye color, height, or gender from a fingerprint. Figure 1-2 shows the SHA-1
hash digests for various strings. Notice that even very similar strings have quite
different hash digests.

Original String SHA-1 Hash Digest

Hello World ~———— z7R8yBtZz0+eqead7UEYZzPVVFjw=
VB ——————— L1SHPQuzuGbMUpT4z0zTAdEZzfPE=
vb ———— e0cnhoZRmuoC/Ed5iRrW71x1CDw=
Vb ——— e3PaiF6tMmhPGUfGgLlnrfdV3T+1=
vB —— gzt6my3YTrzJiTiucvgBTgM6LtM=

Figure 1-2 SHA-1 hash digests

It's common, as shown in Figure 1-2, to display a hash as a base-64 encoded
28-character string. This is easier to read than a 48-digit (160-bit) number.

Chapter 1 Encryption 7

Hash digests are useful for verifying that someone knows a password,
without actually storing the password. Storing passwords unencrypted in the
database opens two security holes:

B If an intruder gains access to the database, he can use the informa-
tion to later log on to the system using someone else’s username and
password.

B Pecople often use the same password for different systems, so the sto-
len passwords might allow the intruder to break into other systems.

Because the password is used solely for authenticating the user, there’s no
reason to store the password in the database. Instead, a hash digest of the pass-
word can be stored. When the user logs on to the system, a hash digest from
the password she types in is created and compared with the hash digest stored
in the database. If an intruder somehow gained access to the password table, he
wouldn’t be able to use the hash digest to log on to the system because he
would need to know the unencrypted password, which isn’t stored anywhere.
In the following exercise, you'll change the employee management system to
validate logons using hash digests instead of passwords.!

Create a hash digest function

In this exercise, you'll write a function that returns SHA-1 hash digests. You’ll
then use this function to create hash digests for all the passwords in Employee-
Database.mdb and store the hash digests in a field named PasswordHash. This
field is already in the database, but it'’s currently unpopulated. The passwords
are currently stored unencrypted in the Password field.

1. Start Visual Studio .NET, and open the empty project
CHO1_Encryption\EncryptDatabaseField\Start\EncryptDatabase-
Field.sln. This project is empty of code, but it has been set up with
the database path, import statements, and a shared library module.

2. Open the module SecurityLibrary.vb in the Visual Basic .NET editor.
This module is empty: it's where you’ll put all your reusable security
routines for use in this and other projects. Add the following function
to the library:

Namespace Hash
Module Hash

1. Validating against hashes is a good mechanism to use for an application that opens a database directly.
For a client-server application or a Web application, this mechanism does not protect against “spoof-
ing” the server component—where an intruder who knows the hashes constructs a fake client appli-
cation that submits the hash to the server. However, if an intruder gains access to the list of passwords,
they can do less damage if the passwords are hashed.

8

Part |

Development Techniques

Function CreateHash(ByVal strSource As String) As String

Dim bytHash As Byte()
Dim uEncode As New UnicodeEncoding()
'Store the source string in a byte array

Dim bytSource() As Byte = uEncode.GetBytes(strSource)

Dim shal As New SHAl1CryptoServiceProvider()
'Create the hash
bytHash = shal.ComputeHash(bytSource)
'return as a base64 encoded string
Return Convert.ToBase64String(bytHash)
End Function
End Module
End Namespace

This function is all that is needed to create a hash. It converts a
string to an array of bytes and then creates a SHA-1 hash. The result
is returned as a 28-character string.

Open MainModule.vb. Youll now write a routine to store hash
digests for all the passwords in the database. Add the following code
to the module:

Sub Main()

EncryptField("Password", "PasswordHash™)
End Sub

Sub EncryptField(ByVal strSourceField As String, _

ByVal strDestinationField As String)

Dim strSQL, strUsername, strPlainText, strCipherText As String
strSQL = "Select Username, ™ & strSourceField & " from Employee”

Dim cnRead As New OleDbConnection(G_CONNECTIONSTRING)
Dim cnWrite As New OleDbConnection(G_CONNECTIONSTRING)
Dim cmdRead As New OleDbCommand(strSQL, cnRead)
Dim cmdWrite As New OTeDbCommand()
cmdWrite.Connection = cnWrite
Dim dr As OleDbDataReader
'Open two connections,
'one for reading and the other for writing
cnRead.Open()
cnWrite.Open()
dr = cmdRead.ExecuteReader()
'Loop through the table, reading strings
'encrypting and writing them back
While dr.Read
strUsername = dr.GetString(0)
strPlainText = dr.GetString(1)
strCipherText = Hash.CreateHash(strPTainText)

strSQL = "UPDATE Employee SET " & strDestinationField & " ="'" & _

Chapter 1 Encryption

strCipherText & "' WHERE Username ='" & strUsername & "'"
cmdWrite.CommandText = strSQL
cmdWrite.ExecuteNonQuery()
Console.WriteLine(LSet(strPTainText, 16) & strCipherText)
End While
Console.WriteLine(vbCrLf & "Press <Enter> to continue>")
Console.ReadLine()
End Sub

4. Now press F5 to run the project. It will populate the PasswordHash
field and display the results in the console window. The output
should look like this:

M| D:\WserData\Ed\Book\PracticeFiles\VB.NET 2002\CHO1_Encryption\FinishedakeHashibin\... 5y [m] ﬂ
B

§1dWSZGUB2eBxj rALrRWI r3bnE=
9ndpZag 19xi5 [2yK0/b01 pDBOdo=

LCallahan
ADodsworth pT251i AvJquk?5HNtaDkej n?k8=

Press <Enter> to continuel

Verify passwords using a hash digest

Now you will modify the employee management system to verify passwords

with the hash digests you just created.

1. In Visual Studio .NET, open the project CHO1l_Encryption\EMS\
Start\EMS.sln.

2. Open the class clsEmployee.vb; find the declaration
Private m_Password As String
and change it to
Private m_PasswordHash As String

3. In the Create function, find the line that reads
Me.m_Password = CStr(dr("Password"))
and change it to

Me.m_PasswordHash = CStr(dr("PasswordHash"))

10

Part |

Development Techniques

4.

In the IsValidPassword function, find the line that reads
If strPassword = Me.m_Password AndAlso Me.m_IsValidUser Then
and change it to read

If Hash.CreateHash(strPassword) = Me.m_PasswordHash _
AndAlso Me.m_IsValidUser Then

Open the form frmAddNew.vb, and double-click the Add button to
open the btnAdd_Click event handler. Change the first line of code
from

Dim strPassword As String Me.txtPassword.Text

to
Dim strPassword As String = Hash.CreateHash(Me.txtPassword.Text)
Still in the btnAdd_Click event, find the line of code that reads

strSQL = _
"INSERT INTO Employee (UserName, [Password], Fullname) " & _
"SELECT '" & strUsername & "' As Fieldl," & _
"'" & strPassword & "' As Field2," & _
"'" & strUsername & "' As Field3"

and change it to

strSQL = _
"INSERT INTO Employee (UserName, [PasswordHash], Fullname) " & _
"SELECT '" & strUsername & "' As Fieldl," & _
"'" & strPassword & "' As Field2," & _
"'" & strUsername & "' As Field3"

Press F5 to run the project. You can log on using the username
RKing with the password RKing, as shown in the following illustra-
tion. Congratulations—you are now checking passwords without
storing passwords! Even if an intruder gains access to the database,
the password hash digests can’t then be used to log on.

Employee Management System
P Enter username and password to login:

Usermame |F|King |

Paszword |F|King |

(] 8 || Cancel |

Chapter 1 Encryption 11

How Does a Hash Digest Work?

How does a hash digest work? If each unique string results in a unique
hash digest, is it possible to decrypt the hash digest and derive the original
string?

To answer these two questions, let’s create a simple hash algorithm.
We'll start by assigning every letter in the alphabet a unique number, so A
is equal to 1, B equal to 2, C equal to 3, and so on up to Z, which is equal
to 20. Next we'll use these values to create a hash by adding them together
for each character in a string. The string VB generates a hash of 24
because V is the 22nd letter in the alphabet and B is the second letter (22
+2=24).

Can the hash of 24 be reverse-engineered to derive the original
string? No. The hash doesn’t tell us the length, starting character, or any-
thing else about the original string. In this simple example, the strings VB,
BV, BMDACA, FEJAAA, and thousands of other combinations all give a
hash of 24. When different strings produce the same hash value, this is
known as a collision. A good hashing algorithm should produce unique
results and be collision-free. SHA-1 produces collision-free results, and it
scrambles and condenses the original string in such a way that it’s consid-
ered computationally infeasible to derive the original string.

Private Key Encryption

While hash digests are useful for one-way encryption, when you need to
decrypt the encrypted information, you need to use two-way encryption. The
most common two way-encryption technique is key-based encryption. A key is
simply a unique string that you pass together with a plain-text message to an
encryption algorithm, which returns the message encrypted as cipher text. The
cipher text bears no resemblance to the original message. To decrypt the cipher
text, you again pass the key with the cipher text to a decryption algorithm,
which returns the original plain-text message.

The most common type of key-based encryption is private key encryption,
also called symmetric, traditional, shared-secret, secret-key, or conventional
encryption. (Encryption is one of those areas in computing in which many
names mean the same thing.) Private key encryption relies on the sender and

12

Part |

Development Techniques

recipient both knowing the key. This implies that potential intruders do not
know the key and have no way to obtain the key. Private key encryption is
good for communicating information over the Internet or for storing sensitive
information in a database, registry, or file. Figure 1-3 shows private key encryp-
tion in action.

Plain Text Cipher Text Plain Text
Kat8uEKaRHwW+EN+042C/
Hello world 1a+XFzjbif)d Hello world

=20

ﬁ;f

Encrypt with key Decrypt with key
111222333444555666777888 111222333444555666777888

Figure 1-3 Private key encryption

Now you'll add functions for applying private key encryption to the secu-
rity library you created in the preceding exercise, and you’ll use private key
encryption to store and retrieve bank account information in the database. The
type of encryption you’ll use is Triple-DES—DES is an acronym for Data
Encryption Standard. Triple refers to how the encryption works—first the plain
text is encrypted; this encrypted result is encrypted again; and finally, the
encrypted-encrypted plain-text message is encrypted once more, resulting in
the plain-text message being encrypted three times and earning the moniker
Triple-DES. You get three encryptions for the price of one, and the result is a
robust 192-bit encryption.

Encrypt the BankAccount field with a private key

The employee management system stores bank account information for the
purpose of depositing the salaries of employees directly into their bank
accounts. Currently this information is being stored as plain text. In this exer-
cise, you’ll add private key encryption and decryption functions to your security
library, and you’ll use these functions to encrypt the BankAccount field.

Chapter 1 Encryption

Open the same EncryptDatabaseField program we used when
encrypting the password field earlier in this chapter. The project is
located at CHO1_Encryption\ EncryptDatabaseField\Start\Encrypt-
DatabaseField.sln. We will be changing the program to encrypt the
BankAccount field.

Add the following code to the end of SecurityLibrary.db:

Namespace PrivateKey
Module PrivateKey
Function Encrypt(ByVal strPlainText As String, _
ByVal strKey24 As String) As String
Dim crp As New TripleDESCryptoServiceProvider()
Dim uEncode As New UnicodeEncoding()
Dim aEncode As New ASCIIEncoding()
'Store plaintext as a byte array
Dim bytPlainText() As Byte = uEncode.GetBytes(strPlainText)
‘Create a memory stream for holding encrypted text
Dim stmCipherText As New MemoryStream()
'Private key
Dim s1t(@) As Byte
Dim pdb As New PasswordDeriveBytes(strKey24, sit)
Dim bytDerivedKey() As Byte = pdb.GetBytes(24)
crp.Key = bytDerivedKey
'‘Initialization vector is the encryption seed
crp.IV = pdb.GetBytes(8)
'Create a crypto-writer to encrypt a bytearray
'into a stream
Dim csEncrypted As New CryptoStream(stmCipherText, _
crp.CreateEncryptor(), CryptoStreamMode.Write)
csEncrypted.Write(bytPlainText, @, bytPlainText.Length)
csEncrypted.FlushFinalBlock()
'Return result as a Base64 encoded string
Return Convert.ToBase64String(stmCipherText.ToArray())
End Function
Function Decrypt(ByVal strCipherText As String, _
ByVal strKey24 As String) As String
Dim crp As New TripleDESCryptoServiceProvider()
Dim uEncode As New UnicodeEncoding()
Dim aEncode As New ASCIIEncoding()
'Store cipher text as a byte array
Dim bytCipherText() As Byte = _
Convert.FromBase64String(strCipherText)
Dim stmPTainText As New MemoryStream()
Dim stmCipherText As New MemoryStream(bytCipherText)

13

14

Part |

Development Techniques

'Private key

Dim s1t(0) As Byte

Dim pdb As New PasswordDeriveBytes(strKey24, sit)
Dim bytDerivedKey() As Byte = pdb.GetBytes(24)
crp.Key = bytDerivedKey

'Initialization vector
crp.IV = pdb.GetBytes(8)
'Create a crypto stream decoder to decode
'a cipher text stream into a plain text stream
Dim csDecrypted As New CryptoStream(stmCipherText
crp.CreateDecryptor(), CryptoStreamMode.Read)
Dim sw As New StreamWriter(stmPlainText)
Dim sr As New StreamReader(csDecrypted)
sw.Write(sr.ReadToEnd)
'Clean up afterwards
sw.Flush()
csDecrypted.Clear()
crp.Clear()
Return uEncode.GetString(stmPlainText.ToArray())
End Function
End Module
End Namespace

You can use these two functions in your code to encrypt and
decrypt messages. The key is named strKey24 because it must be 24
characters long.

Open the MainModule.vb file, and in Sub Main(), change the line
EncryptField("Password™, "PasswordHash")

to read

EncryptField("BankAccount™, "BankAccountEncrypted")

In Sub EncryptField(), find the line that reads

strCipherText = HashCreateHash(strPTainText)

and change it to the following:

strCipherText = PrivateKey.Encrypt(strPlainText, _
"111222333444555666777888")

Now press F5 to run the program. The BankAccountEncrypted field
will now contain the bank account information encrypted with the
key 111222333444555666777888, and you should see output similar
to what is shown here:

Store and retrieve account information using encryption

Chapter 1

= D:\Offline\book 10-20\Book\PracticeFiles\WB.NET 2002\CHO1_Encryption\EncryptDatabase..
nMUP7BiBYuDgl RzcTx1t3GgLgel

UCZIBBYQuant

an70/¥trUbpi
hv1T81KFH4BSQ21/4ZNC

Press <Enter> to continuel

2GH18nygLe jQuZTUD

Encryption

15

Next you'll change the employee management system to store and retrieve the

bank account number using private key encryption.

1.

In Visual Studio .NET, open the project CHO1l_Encryption\EMS\
Start\EMS.sln. Open MainModule.vb, and add the following line to

the Declarations section:

Public G_PRIVATEKEY As String = "111222333444555666777888"

This is the global variable you’ll use to store the private key.

Open the class cisEmployee, and find the declaration

Private m_BankAccount As String

Change it to

Private m_BankAccountEncrypted As String

In the property Get of BankAccount, change the line that reads

Return m_BankAccount

to

Return PrivateKey.Decrypt(m_BankAccountEncrypted, G_PRIVATEKEY)

In the property Set of BankAccount, change the line that reads

m_BankAccount =

to

Value

m_BankAccountEncrypted = PrivateKey.Encrypt(Value, G_PRIVATEKEY)

In the Create function, change the line that reads

Me.m_BankAccount

CStr(dr("BankAccount"))

16 Part | Development Techniques

to
Me.m_BankAccountEncrypted = CStr(dr("BankAccountEncrypted"))
In the function SaveToDatabase, change the lines that read

Dim strSQL As String = "UPDATE Employee SET " & _

"FirstName ="" & Me.FirstName & "'," & _
"LastName ="" & Me.LastName & "'," & _
"Fullname ="" & Me.FullName & "'," & _
"BankAccount ='" & Me.m_BankAccount & _

"' WHERE Username ='" & Me.Username & "'"

to

Dim strSQL As String = "UPDATE Employee SET " & _

"FirstName ='" & Me.FirstName & "'," & _

"LastName ="" & Me.LastName & "'," & _

"Fullname ='" & Me.FullName & "'," & _
"BankAccountEncrypted ='" & Me.m_BankAccountEncrypted & _
"' WHERE Username ='" & Me.Username & "'"

Now press F5 to run the application. Log on using the username
RKing and the password RKing. On the dashboard, click the View Or
Change Personal Information button. On the My Personal Informa-
tion form, you can change bank account information. Click OK to
save the account to the database in encrypted format, as shown here:

= My Personal Information E| |§|Pz|

My Personal Information

b Yiew or change personal information below:

Uszermarme |F|King |
First name |F|0bert |

Last name |King |

Full name |F|0bert King |
Bank Account

| (] 8 | | Cancel |

Chapter 1 Encryption 17

Keeping Private Keys Safe

The Triple-DES encryption algorithm we use accepts a 24-character string for
a key. The 24 characters are treated as a passphrase that is used to derive a
192-bit byte array, which is then used as the actual key. This is known as
192-bit encryption. The number of bits in the key determines the total com-
bination of possible keys—for example, a 192-bit key has 6.3 x 10°7 possible
values. A common method intruders use to try to crack encryption is a brute
force attack, which means trying every different key combination available
until they find the key that works. The more bits in the key, the longer it
takes for a brute force attack to find the key. An intruder using the latest
hardware would take a long time to crack a 192-bit key—supposing the
intruder can try 1,000,000,000,000 keys a second, it would take about
200,000,000,000,000,000,000,000,000,000,000,000,000 years to try every combi-
nation. Even if the intruder got lucky, and found the key after trying only
0.0000000001% of the available combinations, the task would still take trillions
of years.

Another method intruders use for cracking encryption is to find where the
key is stored and then simply read the key. How can you store the key to pro-
tect against this? The least secure method is to store the key unencrypted in a
file or in the registry accessible to everyone, since if an intruder gains access to
your machine, all he needs is notepad.exe to read the file or RegEdit.exe to
read the registry. Hard-coding the key in the application (as the employee man-
agement system currently does) is also not a good idea since if an intruder gets
a copy of your application, he could easily use a de-compiler or debugger to
find the key. A better method is to encrypt the key and store it in a file that is
protected by the file system so that only authorized users of the system can read
it. This immediately raises the questions of where to store the key you use to
encrypt the private key? Windows helps with this by providing methods for
encrypting and decrypting sensitive data by using logon credentials as a key.
When using these methods, there are several things to be aware of:

B Data encrypted by one user cannot be decrypted by another
user. If several people share the same computer, each person will
need to have her own separate copy of the encrypted data because
one person’s logon credentials can’t be used to decrypt data
encrypted with another person’s logon credentials.

B Directory Security. You can make this technique even more
secure by storing the encrypted data in a directory that only the cur-
rent user has access to. In the following exercise, you’ll store the

18 Part | Development Techniques

encrypted key in the Application Data directory, which is different
for each user.

B Installing. If you're using this technique to install a predefined
value such as a private key, consider how you will install the value
in the first place. One option is to provide a key-installer program
that can be run from the server to install the key. You should ensure
that only authorized users of the application have permission to view
or run the program that installs the key. Also, you should consider
removing access to it after the key has been installed.

While these techniques are great for storing private keys, they can be used for
any sensitive information such as connection strings and credit card information.

Encrypt the private key

In this exercise, you will encrypt the private key and store it in the application
directory. You will also change the employee management system to retrieve
the private key from the encrypted file.

1. Start Visual Basic .NET, and load the solution CHO1_Encryption\
InstallKey\Start\InstallKey.sln.

2. Open MainModule.vb, and insert the following code:

'Insert code below...
Public G_PRIVATEKEY As String = "111222333444555666777888"
Sub Main()
'"Encrypt the key and store it in the location
'c:\Documents And Settings\<username>\Application Data\emsKey
Settings.SaveEncrypted("EMSKey", G_PRIVATEKEY)
MsgBox("Done")
End Sub

3. Open SecurityLibrary.vb, and move to the end of the file. You are
about to add the necessary code to easily use the Windows Crypt-
ProtectData and CryptUnprotectData APIs. This is 120 lines of code,
so it will be easiest to simply cut and paste it in. In the same directory
as InstallKey.sln, you will find a text file named LoadAndSaveSet-
tings.txt. Open this file, and copy and paste the contents at the end
of SecurityLibrary.vb.

4. Press F5 to run the application. It will install a file named EMSKey.txt
in the Application Data directory, which is usually c:\Documents
And Settings\<username>\Application Data\EMSKey.txt.

Chapter 1 Encryption 19

5. Now that the key is installed, you need to change the employee
management system to use the encrypted key. In Visual Basic .NET,
open the solution CHO1_Encryption\ EMS\Start\EMS.sln.

6. Open MainModule.vb, find the line that reads

Public G_PRIVATEKEY As String "1122334455667788"

and change it to
Public G_PRIVATEKEY As String = Settings.LoadEncrypted("EMSKey")

7. Press F5 to run the application. Now the private key is being loaded
from an encrypted file.

One final note on private keys: In your own applications, you should cre-
ate a private key that is more complicated than the 111222333444555666777888
used in this example—private keys should be a random string of characters,
numbers, and punctuation.

Public Key Encryption

Public key encryption (also called asymmetric encryption) has an important dif-
ference from private key encryption. Public key encryption uses two different
keys: one key for encryption and another key for decryption. Why don’t they
simply call this two-key encryption and call private key encryption one-key
encryption? While it is well known that security experts like to invent jargon to
justify their high consultancy fees, there is also a logical reason for this naming,
which lies in the way the two types of encryption are used.

While private key encryption assumes that both the encrypting and
decrypting parties already know the private key, public key encryption provides
a method to securely issue a key to someone and have that individual send you
information that only you can decrypt. It works like this: Our system creates a
public/private key pair. We send the public key to someone who uses it to
encrypt a message. She sends the encrypted message to us, and we decrypt the
message with the private key. (Note: The private key is not the same as the key
used in private key encryption.) Even if an intruder gains possession of the pub-
lic key, he cannot use it to decrypt the encrypted message because only the pri-
vate key can decrypt the message, and this is never given away. In contrast with
private key encryption, the keys used in public key encryption are more than
simple strings. The key is actually a structure with eight fields: two of the fields
are used for encrypting with the public key, and six are used for decrypting with
the private key. The public key is obtained by extraction from the private key,
which is why the private key can be used for both encryption and decryption.

20 Part| Development Techniques

Figure 1-4 shows how public key encryption and decryption work, using the
example of a system requesting a credit card number from a user.

Web site User

. PrivateKey
Step 1: Web site creates

public private key pair

PublicKey
Step 2: Web site sends ——— > | PublicKey
the public key to the user
Step 3: User uses the public Credit card number = 1122334455667788
key to encrypt the data using
the RSA algorithm Encypt with public key PublicKey

Encrypted number = M9jcE2dQXvAJdn9gab3sWK

1ThFz8iqXykwM+cepj1YqnTJIM5UNPIXTy/1jJ8

nfmHr@pnm/ayuZFUTJhXX/Fix+tSWC7i+M/JQy

5L1/yhIIGrjf+o03U/fjv/Ww/BHEVXKEnksqxz
Step 4: User sends encrypted +—————— msn46YcRIPBSoCvJcXBtQToWnAHGGVqgs9Dk=
number to server

Encrypted number = M9jcE2dQXvAJdn9gab3sWK
11hFz8igXykwM+cepj1YgqnTIM5UNPIXTy/1jJ8
nfmHr@pnm/ayuZFUTJhXX/Fix+tSWC7i+M/JdQy
5L1/yhIIGrjf+o03U/fjv/Ww/BHEVXKEnksqgxz
msn46YcRIPOSoCvJcXBtQToWnAHGGYqgs9Dk=

Step 5: Server decrypts number
with the private key

Encrypted number = M9jcE2dQXvAdn9gab3sWK
11hFz8igXykwM+cepj1YqnTJIM5UNPIXTy/1jJ8
nfmHr@pnm/ayuZFUTJhXX/Fix+tSWC7i+M/JQy
5L1/yhIIGrjf+o03U/fjv/Ww/BHEVXKEnksqgxz
msn46YCcRIPOSoCvJcXBtQToWnAHGGVqgs9Dk=

PrivateKey

!

Credit card number = 1122334455667788

Figure 1-4 Public key encryption and decryption

Chapter 1 Encryption 21

Public key encryption is slower than private key encryption and cannot
process large amounts of data. The RSA algorithm (RSA refers to the initials of
the people who developed it: Ron Rivest, Adi Shamir, and Leonard Adleman)
can encrypt a message of only 116 bytes (58 unicode characters). A common
use for public key encryption is for securely passing a private key, which is
then used for encrypting and decrypting other information.

Add public key encryption to the security library
In this exercise, you will add public key encryption functions to your security
library.

1. In Visual Studio .NET, open the project CHO1_Encryption\EMS\
Start\EMS.slIn.

2. Open SecurityLibrary.vb. Add the following code:

Namespace PublicKey
Module PubTicKey

Function CreateKeyPair() As String
'Create a new random key pair
Dim rsa As New RSACryptoServiceProvider()
CreateKeyPair = rsa.ToXmlString(True)
rsa.Clear()

End Function

Function GetPublicKey(ByVal strPrivateKey As String) As String
'Extract the public key from the
'public/private key pair
Dim rsa As New RSACryptoServiceProvider()
rsa.FromXmlString(strPrivateKey)
Return rsa.ToXm1String(False)

End Function

Function Encrypt(ByVal strPTlainText As String, _

ByVal strPublicKey As String) As String

"Encrypt a string using the private or public key
Dim rsa As New RSACryptoServiceProvider()
Dim bytPlainText() As Byte
Dim bytCipherText() As Byte
Dim uEncode As New UnicodeEncoding()
rsa.FromXmlString(strPublicKey)
bytPlainText = uEncode.GetBytes(strPlainText)
bytCipherText = rsa.Encrypt(bytPlainText, False)
Encrypt = Convert.ToBase64String(bytCipherText)
rsa.Clear()

End Function

Function Decrypt(ByVal strCipherText As String, _

ByVal strPrivateKey As String) As String
'Decrypt a string using the private key

22 Part| Development Techniques

Dim rsa As New RSACryptoServiceProvider()

Dim bytPlainText() As Byte
Dim bytCipherText() As Byte

Dim uEncode As New UnicodeEncoding()

rsa.FromXm1String(strPrivateKey)

bytCipherText = Convert.FromBase64String(strCipherText)
bytPlainText = rsa.Decrypt(bytCipherText, False)
Decrypt = uEncode.GetString(bytPlainText)

rsa.Clear()

End Function
End Module
End Namespace

Export Restrictions on Encryption

In June 2002, the United States Bureau of Industry and Security eased
restrictions for companies that export software products containing
encryption. Software that uses private key encryption with keys of more
than 64 bits can be exported without a license to many destinations fol-
lowing a 30-day review period. For full details, see the Bureau of Industry
and Security encryption Web site at bttp://www.bxa.doc.gov/Encryption/.

Hiding Unnecessary Information

Now that you have encrypted the passwords and bank account information,
you should do two more encryption-related things to further secure the
employee management system: remove the unencrypted password field and
the unencrypted bank account field from the Employees table, and protect the

password entry field in the logon screen.

Remove the Password and BankAccount fields
The unencrypted Password and BankAccount fields are no longer needed in
the EmployeeDatabase.mdb database. In this exercise, you will remove these

two fields from the database.

This is an optional exercise. Don’t worry if you don’t have
Microsoft Access; the other exercises in this book will still work.

Chapter 1 Encryption 23

1. In Microsoft Access XP, open the database EmployeeDatabase.mdb.

2. In the Database window, select the table Employee and click Design
on the Database Window toolbar.

3. Select the Password field’s row selector, and click Delete Row on the
Microsoft Access toolbar. Microsoft Access will then ask you to con-
firm that you really want to delete the row and all the data it con-
tains. Click Yes.

4. Select the BankAccount field’s row selector, and again click Delete
Row on the Microsoft Access toolbar. Again, click Yes in the dialog
box that asks you to confirm the field deletion.

5. Click the Save button on the toolbar to save the table changes. The
new table design should look like the following illustration:

E Microsoft Access
File Edt Wew Insert Tools indow Help

E-Hx & o

& Employes : Table

Field hame Data Type Description
Usertiame Text
Firsthame Text
Lasthame Text
Fullname Text
FasswordHash Text
BankAccountEncrypted Text

Field Properties

General] Lookup |
Fisld izs

Farmat

Input Mask

Caption

Defaul Yalue The display layout for the

Volidation Fule F;eld‘ select a pre-defined

Tt armat or enter 3 custom
format, Press F1 far help

Required on formats.

Allow Zero Length

Indexed ho

Unicode Compression Vs

IME Mode ha Cantrel

IME Sentence Mads hone

Design view. F6 = Switch panss, F1 = Help.

Hide the password entry field

If someone is looking over your shoulder while you’re logging on to the
employee management system, that person might be able to read your pass-
word as you type it. Windows Forms has the capability of hiding the password
as you type it. The following exercise describes the steps necessary to hide the
password.

1. In Visual Studio .NET, open the project CHO1l_Encryption\EMS\
Start\EMS.sln.

24 Part |

2.
3.
4.

Development Techniques

Open the form frmLogin.vb in the Windows Forms designer.
In the form designer, select the password field xtPassword.

In the property browser, find the PasswordChar property, and
change the value to *.

After you complete these steps, the password entry field will
appear as a series of asterisks instead of text, as shown here:

Employee Management System
P Enter username and password to login:

Usermame |F|King |

Password | “““““ |

Encryption in the Real World

At the end of most chapters in this book, you’ll find a section like this one that
explores where you might use techniques learned in the chapter in your own
real-world projects. Encryption has a number of uses but two main purposes:

Securely storing sensitive information on a disk or in a database so
that it can be accessed only by an authorized person or software
program.

Scrambling information so it can be transported from one trusted sys-
tem to another trusted system over an insecure transport such as the
Internet. Some specific examples are listed here:

0 Authenticating passwords. This can be done using either a
hash digest or a private key. Hash digests are a good choice
when the password is used only for validating the login. If,
however, the password is used for connecting to a database,
private key encryption is the better method because the system
needs to use the unencrypted string.

Summary

Chapter 1 Encryption

Verifying the integrity of a file. Because a hash digest is a
unique signature, it can be used to verify that a piece of infor-
mation, such as a file, is unchanged. For example, you can send
an XML file through the Internet and then send the hash of the
file; in this way, the recipient can verify that the file wasn’t cor-
rupted during transmission.?

Storing and retrieving sensitive information in a file, reg-
istry, or database. Private key encryption is a good method
for two-way encryption of information when both the encrypt-
ing and decrypting parties know the key.

Transmitting secret information over the Internet. Private
key encryption is good for passing secret information over the
Internet, provided both parties already know the key. Public
key encryption can also be used, but it’s slower and subject to
size limitations.

Receiving private information, such as private user infor-
mation over an intranet, extranet, or the Internet. Public
key encryption is a great way to get information from someone
who doesn’t already possess a private key. The ultimate recipi-
ent of the information creates a key pair and sends the public
key to the sender of the information. The sender encrypts the
information and then submits it to the recipient, who uses the
private key to decrypt it.

25

In this chapter, we jumped right into encryption and created a library of func-
tions for creating hash digests as well as for encryption and decryption using
private and public keys, all with a single line of Visual Basic code. In addition,
we started securing the employee management system with minimal impact on
usability and programming time. This illustrates an important point: if security is
complicated to implement or use, people won’t implement or use it. The pur-
pose of this and future chapters is to show you techniques that are simple to
bolt onto your existing applications and that have minimal impact on usability.

2. Be aware that this is not a guarantee against tampering—an intruder could modify the file and then
create a hash of the modified file.

