Tablet PC Platform SDK:
Tablet Input

The previous chapter illustrated how the Tablet PC platform is divided into
three logical pieces: tablet input, ink data management, and ink recognition.
This chapter will take a close look at the tablet input piece of the platform from
an architectural as well as a programmatic standpoint.

We'll begin by learning about how physical pen strokes become useful
input to both tablet-aware and tablet-unaware applications. Then we’ll see how to
use the Tablet PC Platform SDK to enumerate, introspect, and—most important—
capture input from tablet devices. At the end of the chapter, some best practice
methods to help yield the best Tablet PC user experience will be discussed.

Sample Applications

Various sample applications with source code are provided to demonstrate the
practical application of concepts as they are presented. Each application was
designed to focus only on what’s necessary to illustrate relevant material—other
aspects of the applications were intentionally kept minimal for clarity’s sake.
Considerable effort has been put into testing the applications and making sure
that they follow correct usage of the Tablet PC Platform SDK, though in the
spirit of software design it’s always possible for a bug to creep in. You certainly
don’t have to be prepared to call the fire department if you copy and paste code
from this book into your own application, but please don’t call “Mr. T’s House
of SmackDown!” if an unexpected “feature” crops up during a demo of your
app to your boss.

95

96

Part Il The Tablet PC Platform SDK

Capturing Input from the Pen

Before we cover how to write applications that receive pen input from the tab-
let digitizer, let’s take a look at the software that enables us to harness the
power of the pen.

This section can be considered optional reading because one
doesn’t really need to know the internals of tablet input to get inking in
an application. You can therefore skip ahead to the section titled “Plat-
form SDK Support for Tablet Input” if you're not interested in how things
work, though we do hope you stick around here because we think it’s
interesting stuff.

The Tablet PC’s tablet input subsystem refers to the logical pieces of soft-
ware that transfer and transform the data generated from a tablet digitizer into
the input an application can make use of. Exactly what kind of input is it that
an application can make use of? Chapter 2 gives us a good idea of the experience
we want to provide for a Tablet PC user, so let’s see whether we can come up with
some requirements here that might help us better understand the functions of the
input subsystem.

Requirement #1—Mouse Emulation

As you know by now, all tablet-unaware Microsoft Windows XP—compatible
applications are fully supported under Windows XP Tablet PC Edition—the pen
behaves like a mouse in these cases. It also happens that mouse input is valuable
to tablet-aware applications—standard Windows behaviors, controls, and the like
are already driven by the mouse, so it’s convenient to be able to leverage this
functionality for the pen. And of course, it’s likely that a physical mouse device
will be used to drive the application because many Tablet PCs will have inte-
grated mouse hardware such as a touch pad or mini-trackball.

We predict that someday all mouse input handling in Windows
will also become tablet input—enabled. This will pave the way for pen-
specific behaviors in all areas of the Windows user interface.

Chapter 4 Tablet PC Platform SDK: Tablet Input 97

Because most applications rely heavily on mouse input, our first requirement
of the input subsystem is that it be able to map pen input to mouse input—a
process we'll refer to as mouse emulation. Both left-mouse and right-mouse
buttons should be supported for compatibility.

Requirement #2—Digital Ink

Tablet-enabled applications often accept user input in the form of digital ink,
which can be added to a document or recognized into a command. Capturing
ink from the pen is one of the most important aspects of realizing an electronic
paper paradigm. As such, digital ink must mirror physical ink as closely as possible
to provide the most natural and unobtrusive end-user experience. From a user’s
perspective, ink should “just work” on a Tablet PC and be practically indistin-
guishable in behavior from physical ink. We can therefore impose the following
sub-requirements on a system that’s used to capture digital ink:

B Performance Ink should appear to be flowing directly out of the
tip of the pen in real time and never lagging behind. This requires
that the time between sampling the position of the pen and rendering
ink on screen be imperceptible to an average user.

B Accuracy Ink should follow the exact path of the pen as the pen
moves. This requires that the frequency and resolution at which data
is captured should result in the digital ink appearing to be smooth in
shape to an average user. And as you’ll see later, using data captured
at higher frequency and resolution also helps improve handwriting
and gesture recognition results.

B Robust data capture Ink should reflect as much of the physical
handling that the pen is subjected to as possible. This requires that
not only the pen position be sampled, but that support for sampling
of pen tip pressure, the angle between the pen and tablet surface,
the rotation of the pen body, and the like should also be provided.

In the initial version of the Tablet PC Platform, normal pressure is the only
property besides X and Y position that the rendering of ink can reflect. How-
ever, future versions of the Tablet PC Platform will likely take more properties
into account.

It is entirely possible for you to custom draw ink if you wish to have more
properties taken into account, as we’ll learn in Chapter 5. In the majority of
cases, we think x, y, and pressure yield incredible results.

98 Part Il The Tablet PC Platform SDK

Requirement #3—Pen-Based Actions

Pen-specific actions like press-and-hold, using the top-of-pen eraser, and pressing
pen buttons can become powerful means to streamline the user model of a tablet-
aware application. In addition, employing pen input for means other than digital
ink is useful because pen-specific properties can enhance existing user interface
behaviors. For example, pen rotation could be used to rotate a selection while it’s
being dragged, or pen pressure could be used to determine how large an erasing
area should be used for an eraser tool. Distinguishing between the user tapping
the pen and the user dragging it is therefore important functionality.

Pen-specific actions should not be confused with ink-based
gestures such as scratchout, up arrow, and “curlique”. Pen actions—
which are formally known as system gestures—don’t use ink and don’t
define any application behavior. They are on a par with mouse actions
such as click and drag.

Although the tablet hardware’s device driver can easily report top-of-pen
use (called pen inversion) and pen button presses, detecting press-and-hold and
associated actions such as tap and drag is a nontrivial algorithm that arguably falls
outside the driver’s scope; this algorithm is best centralized so that any tablet
device can use it.

Summing Up the Requirements

We have now specified that the input system must be able to transform raw pen
movement into mouse input (supporting left-mouse and right-mouse button
emulation), provide realistic digital ink, and detect higher-level pen-based
actions (press-and-hold, pen inversion, pen button presses, and tap versus drag).
The Tablet PC Platform’s tablet input subsystem (which we’ll start referring to as
“the TIS” for brevity) provides all this and more.

Anatomy of the Tablet PC’s Tablet Input Subsystem

An architectural view of the TIS is outlined in Figures 4-1 and 4-2. There are two
main configurations under which the subsystem runs: the first is with Windows
XP Tablet PC Edition, and the second is with a Windows 2000-based or Windows
XP-based operating system with the Tablet PC runtime libraries installed.

Chapter 4 Tablet PC Platform SDK: Tablet Input 99

We'll be focusing primarily on the subsystem as it runs on Windows XP
Tablet PC Edition because it’s a superset of the Tablet PC runtime. But don’t
worry; any differences between the two configurations will be pointed out as
they arise.

Figure 4-1

running on Windows XP Tablet PC Edition

The Tablet PC tablet input subsystem architecture, shown

A
Har.d\./v.are venQor S Mouse
Digitizer device
AN
Digitizer input data
A
Optional - Hardware
vendor’s HID miniport N
. Mouse input
driver (if device doesn’t Mouse input data data (i se‘:ial Kernel
in fi if USB
support HID in firmware) (if USB mouse) o PS/2 mouse) mode
AN
Digitizer input data /
N
Windows’
Hidclass.sys
_________ IZ200 NN RS
HID data : HID data HID data
/ [} \ \ v
i Data from
Tablet PC’s 1 Tablet PC’s hook Windows’
Pen.dll ! Wisptis.exe Mouse User32.dll
I : I behavior I
Mouse behavior : Tablet input events Mouse messages
1 Mouse messages +
Windows’ : InkOb;j.dlI / Tablet-unaware User
User32.dll | Tablet-aware application mode
1 application
I 1
Mouse behavior 1
1
1
Tablet PC’s :
Tabtip.exe |
1
&k ” I
Logon secu::e ! User’s desktop session
desktop session ! 3
1

100 Part Il The Tablet PC Platform SDK

r 8
Har_d\fv_are venqor s Mouse
Digitizer device
N
Digitizer input data
N
Optional - Hardware
vendor’s HID miniport ;
: Mouse input
driver (if device doesn’t Mouse input data data (if se?ial Kernel
in fi if USB
support HID in firmware) (i mouse) or PS/2 mouse) mode
AN
Digitizer input data /
A
Windows’
Hidclass.sys
HID data HID data
+— Data from hook — .
Tablet PC’s Windows’
Wisptis. 2.dll
isplsexe 1 Mouse behavior —»| Users2.d
User
. I I mode
Tablet input events Mouse messages
Mouse messages l
InkObj..dll / Tablet-unaware
Tablet-aware application
application d

Figure 4-2 The Tablet PC tablet input subsystem architecture, shown
running as the Tablet PC runtime libraries on a Windows-based operating
system

Tablet Hardware

In Chapter 1, the essence of a Tablet PC was identified as a portable PC com-
bined with a digitizer integrated with the screen, driven by Windows XP Tablet
PC Edition. A digitizer (sometimes ambiguously referred to as just a tablet) in the
Tablet PC Platform’s view is a device that provides user input to a computer via
a pointer on a flat rectangular surface. The device is able to sample the X and Y
position of the pointer at regular time intervals and determine whether the pointer
is active—typically, this means whether the pointer is touching the tablet’s
surface. In most cases, the pointer is a pen stylus, although the Tablet PC Platform
also recognizes a mouse as a tablet device. Indeed, a mouse is an example of a
tablet device—it reports X and Y position as well as whether the pointer is active.

Chapter 4 Tablet PC Platform SDK: Tablet Input 101

Placing the pointer tip on the digitizer surface is called making
the pointer active. A synonym for active is down.

Chock-full of HID-y Goodness

Before the days of Tablet PC, a low-level standard already existed that directly
facilitated getting input from a tablet device. Known as HID (short for Human
Interface Device), the specification was initially developed to standardize
communication to USB hardware such as keyboards, mice, joysticks, tablets, and
just about any other device we can use to generate input for using a computer.
The tablet input subsystem exclusively leverages HID devices for tablet input,
and as such, the digitizers on Tablet PCs (even ones integrated with the video
display) are either USB-based and HID-compliant via firmware or come supplied
with a miniport driver emulating a HID interface.

At the time of this writing, the full HID specification can be
found at the USB Implementers Forum Web site, at http://www.usb.org/
developers/hidpage.html, under the heading “Device Class Definition
for Human Interface Devices (HID)”

WinTab

Some alert readers may be aware of another standard tablet input API called
WinTab (bttp./www pointing.com/WINTAB.HTM). It was discovered during
the development of the TIS that using WinTab would prove problematic—
WinTab’s API design puts all responsibility for functional conformance on
the shoulders of the driver’s implementers (third parties). Some already
released WinTab drivers’ behavior deviated slightly from the spec, so it
became difficult or impossible for the TIS to support WinTab in a generic
way. Contrast this with the HID model in which the device or device
driver has to specify only supported functionality (named usages) and
Windows takes care of the API nuances. It was therefore decided that HID
devices were the better way to go.

102 Part Il The Tablet PC Platform SDK

The HID driver, like most other Windows XP drivers, runs at the kernel
level, constantly acquiring data from the tablet device and packaging it into HID
format if it needs to. This allows the TIS to read input data from the device in
a generic fashion.

The Center of the TIS Universe: Wisptis.exe

Arguably the most interesting piece in both Figures 4-1 and 4-2 is a process
called Wisptis.exe because it’'s pretty much the heart and soul of the TIS. It acts
like a hub between the HID driver of tablet hardware and applications, and it
turns out to be responsible for realizing most of the requirements of the input
system we defined earlier in the chapter. The Wisptis process performs the
retrieval of input from the tablet devices, mouse emulation, detection of pen-
based actions, and the dispatching of events to tablet-aware applications.

Why Wisptis.exe?

Wisptis.exe refers to “WISP TIS.” WISP (Windows Ink Services for Pen)
was the former name for the Tablet PC Platform, and TIS—well, hopefully
at this point in the chapter you know what that means.

Multiple tablet devices may be installed and used at the same
time, a feature fully supported by the TIS. This is actually quite a com-
mon occurrence because, as we now know, the mouse is considered
a tablet device, so if your Tablet PC has an integrated touchpad or is
ever docked in a desktop scenario, or if you've attached an external
tablet to your desktop machine, from the TIS perspective there will be
at least two tablet devices installed.

Getting Input from the Driver
Input is received from the digitizer via the HID driver and from the mouse via
a low-level mouse hook. Data received from the digitizer is used for performing
mouse emulation and detecting pen-based actions.

It’s interesting to note that even though the mouse is viewed as a tablet
device and a USB mouse uses a HID driver to communicate with Windows, the

Chapter 4 Tablet PC Platform SDK: Tablet Input 103

TIS does not get mouse data from the HID driver. Why? There are a couple of
reasons. First, the mouse might not be USB-based (serial and PS/2 mice are still
common) and a generic solution to reading mouse input is desirable; second,
User32.dll opens the mouse driver exclusively, making it impossible for the TIS
to get at the mouse directly. That’s why the TIS gets the mouse input data from
User32.dll via a low-level hook.

You might be thinking that a cleaner architectural model would be to inte-
grate tablet support directly into User32.dll, and we’d tend to agree with you.
However, a design goal of the TIS (and a practical one at that) was to merely
augment the existing OS as much as possible, rather than “invade” it with new
code. Additionally, we’ll soon see that User32’s existing message-based input
architecture doesn’t lend itself too well to tablet input.

Performing Mouse Emulation

The mouse cursor is controlled by the pen through one of two sets of map-
pings. The first set is used when the press-and-hold option (see Chapter 2) is
disabled. Table 4-1 lists which pen actions will result in what mouse actions.

Table 4-1 A Simple Mapping of Pen Actions to Mouse
Actions to Perform Mouse Emulation

User Pen Action

Resulting Mouse Action

In-air pen movement

Pen touches digitizer with no barrel
buttons pressed

Pen touches digitizer with barrel
button pressed

Pen moves across digitizer’s surface

Pen lifted from digitizer

Mouse movement with no buttons pressed, typically
matching the pen tip location but using a hover filter

Mouse left button pressed
Mouse right button pressed

Mouse movement with left or right button pressed,
depends on which mouse button was determined to be
pressed upon pen’s contact with digitizer; movement
matches pen tip location exactly

Mouse left or right button released, depends on which
mouse button was determined to be pressed upon pen’s
contact with digitizer

This works pretty well in practice, with one small exception. Getting Tool-
Tips to pop up can be pretty tough because the mouse cursor has to be com-
pletely still when hovering over, say, a toolbar button. Most people have a
slight sway to the pen when they try to hold it still, so getting the mouse cursor
to be motionless will typically require too much effort. Thus, a requirement for

104 Part Il The Tablet PC Platform SDK

a hover filter is imposed, whose purpose is to ignore small changes in pen
movement while the pen is in the air. Chapter 2 covers the hovering problem in
more detail.

The second set of mappings is used when the press-and-hold option is
enabled; observe that Table 4-2 is a little more complex than Table 4-1.

Table 4-2 The Mapping of Higher-Level Pen Actions to Mouse Actions
to Perform Mouse Emulation when Press-and-Hold Is Active

Pen Action Mouse Action

In-air pen movement Mouse movement with no buttons pressed, typi-
cally matching the pen tip location but using a
hover filter

Pen taps the digitizer Mouse left button pressed, mouse left button
released

Pen held down on the digitizer within press- Mouse right button pressed, mouse right button

and-hold time window and then pen lifted released

Pen held down on the digitizer and pen Mouse left button pressed

starts to move

Pen held down on the digitizer within press- Mouse right button pressed
and-hold time window and pen starts to move

Pen held down on the digitizer beyond press- Mouse left button pressed
and-hold time-out

Pen moves across digitizer’s surface while Mouse movement with left or right button

held down pressed, depends on which mouse button was
determined to be pressed upon pen’s contact with
digitizer; movement matches pen tip location
exactly

Pen lifted from digitizer Mouse left or right button released, depends on
which mouse button was determined to be
pressed upon pen’s contact with digitizer

Notice how we need to trigger mouse actions on pen actions such as
press-and-hold, tap, and drag. This is because when the pen initially touches
the digitizer, the fact that press-and-hold is enabled means we don’t yet know
whether the user wants to perform a left button or a right button operation. You
might think that the left mouse button can always get pressed on pen down, and
when a press-and-hold occurs the left button would get released immediately,
followed by a right button down, but that won’t work well at all. Consider the
following example: using everyone’s favorite accessory, Notepad, select some
text and right click it with the mouse. Notice how the selection stays intact and

Chapter 4 Tablet PC Platform SDK: Tablet Input 105

a context menu appears. If we use the “pen touching the digitizer always causes
a left button down” method, whenever the user performs a press-and-hold it
will cause a mouse left click followed by a right button down. Try doing those
actions with the selection in Notepad. You'll see that the selection gets dismissed
on the left click, and the right click displays the context menu with different items
enabled—definitely not desirable behavior.

Detecting press-and-hold, tap versus drag, and hover filtering brings us to
the next bit of functionality Wisptis.exe provides: detection of pen-based actions.

Detecting Pen-Based Actions

One of the things that makes a Tablet PC so appealing is its emphasis on natural
computing—that is, taking human physiology into account for its input model.
It’s more natural for most people to use a pen than a mouse, as was discussed
in Chapter 2.

Contrasting the pen with the mouse brings up an interesting difference:
pens tend to be much “noisier” with their data. That’s not really the correct
term, as it implies low accuracy of data capture, but what’s being referred to is
how a pen generates much more subtle variance in movement than a mouse
does because of the human factor. A mouse is normally at rest and gets inter-
rupted from that state when we move it, whereas a pen that’s held is at the
mercy of our central nervous system’s accuracy. To improve the Tablet PC user
experience, therefore, it's a good idea for certain pen input to be filtered a little.

Consider this author's observation: the difficulty of making
ToolTips appear is exponentially proportional to the amount of caffeine
ingested.

Figure 4-3 is a state diagram of how the detection of pen-based actions
occurs. The boxes represent events that should be both mapped to mouse input
and sent to tablet-aware applications.

106

Part Il The Tablet PC Platform SDK

Start

P Hover
Get input en _, (filtering if
hovers
needed)

it

Pen down

Start press-
and-hold timer

Get input Timer fires—»

Pen moved beyond Pen moved beyond

tap threshold Pen lifted tap threshold Pen liited
Drag Hold-drag
T B
Start P start Hold-tap
Get input Get input
r Pen lifted Pen lifted
Drag Drag Hold-drag Hold-drag
continue end continue end

Figure 4-3 A high-level state diagram illustrating how pen-based
actions are detected

The precise algorithms for determining pen hovering and tap versus drag
won’t be covered here because they’re a little out of this book’s scope.

Dispatching Events

It's not helpful if Wisptis.exe can determine all sorts of useful pen and mouse
input but can’t tell anybody about it. Luckily for us, the last key function
Wisptis.exe performs is client notification of input events for both mouse and
tablet input.

Mouse input is easy enough to send to applications because User32.dll
provides a convenient function named Sendinput to automate mouse action.
Tablet input, on the other hand, needs a more efficient mechanism because
there’s typically so much data to send. Remember that in order to have great
ink, the frequency of data sampling must be high and pen handling such as

Chapter 4 Tablet PC Platform SDK: Tablet Input 107

pressure and tilt should be captured if possible. Both of these variables raise
the required data throughput of tablet input data across processes substantially.
The Windows mouse message architecture would not be able to efficiently han-
dle the data throughput requirements of tablet input because of both the high
amount of data per message and its sampling frequency. Realistically behaving
ink needs to be responsive and accurate; therefore, another mechanism must
be used.

Wisptis.exe communicates tablet input events to a tablet-aware application
using RPC (remote procedure) calls and a shared-memory queue. A DLL running
in the app’s process space, InkODbj.dll, receives notifications from Wisptis.exe that
events are occurring, reads them from the shared-memory queue, and dispatches
them to the appropriate handler in the tablet-aware app. Figure 4-4 illustrates the
communication of data between Wisptis.exe and a tablet-aware application.

RPC notifications 5
Wisptis.exe | inkoj.qi | Teblet-aware
application
I b
Tablet input
events —
o T T

iQueue of tablet input data

Figure 4-4 Wisptis.exe communicates tablet input data to a tablet-
aware application through a queue to avoid losing any data.

Although tablet-unaware applications receive mouse events, it’s interesting
to note that tablet-aware applications receive both mouse events and tablet
input events. The reason for this is simple: backward compatibility. Many existing
Windows technologies rely only on mouse messages—OLE drag and drop,
windowless controls, and even setting the mouse cursor properly all require
mouse input. We’'ll cover some interesting side effects of receiving two sets of
events later in the chapter.

Making Sense of It All
Wisptis.exe sure does a lot of stuff, doesn’t it? To help illustrate what’s going on,
the following pseudocode highlights the main functionality of Wisptis.exe.

// WISPTIS.EXE Pseudocode
while (true)
{
foreach (tablet in globalTabletList)
{
// First, get raw pen input (down, move, up)

(continued)

108 Part Il The Tablet PC Platform SDK

input = GetInputDataFromHID(tablet);
if (no input retrieved)
continue;

// See if the input is for a tablet—aware app. If
// it is, dispatch it to the app's instance of Ink0Obj.d11.
app = GetTargetedApplication(input);
if (app is tablet-aware)
DispatchInputEventToQueue(app, input);

// Now see if a higher—level action can be detected
penAction = GetPenBasedAction(input, pressAndHoldMode);
if (no penAction detected yet)

continue;

// See if action is for a tablet—aware app. If
// it is, dispatch it to the app's instance of InkObj.d11.
if (app is tablet—aware)

DispatchInputEventToQueue(app, penAction);

// Map pen action to mouse action. User32.d11 will do

// the "hard stuff" as far as targeting windows, posting
// messages to queues, etc.

mouseAction = MapPenActionToMouseAction(penAction);
DispatchMouseEvents(mouseAction);

In essence, the data that is retrieved from the HID driver is used to determine
whether the targeted application is tablet aware. If the application is tablet
aware, the data is dispatched to it. The data is then processed by some code to
detect pen-based actions, and if an action is detected the pen action is then dis-
patched to the targeted tablet-aware application, if there is one. Finally, the cor-
responding mouse behavior is performed.

Winlogon Desktop Support

The following applies only to Windows XP Tablet PC Edition. Notice how the dia-
gram in Figure 4-1 is divided into left and right portions—this logical division
represents the Winlogon “secure” desktop and the Application desktop. The Win-
logon desktop is the one you see at the Windows XP login screen; it operates at
a high security level. When the Winlogon desktop is active (for example, the
user is logging in or is unlocking his or her machine), the Tablet PC Input Panel
(TIP) can be used to enter credentials. Because the Wisptis.exe process executes
only in a user’s session, mouse emulation is then needed to be able to use the

Chapter 4 Tablet PC Platform SDK: Tablet Input 109

TIP. A small DLL file, named TpgwlInot.dll, executes in the Winlogon.exe process
and performs that mouse emulation, though only with basic functionality—no
pen-based actions are detected. Tpgwlnot.dll also launches Wisptis.exe when a
user first logs on and restarts it if needed (for example, Wisptis.exe terminates
because the user ends the process or an exception occurs).

What About Ink?

So far, everything we’ve covered in the Tablet PC’s TIS has met the requirements
of the input system we defined, except for one thing: real-time ink! Some of the
pieces are there—such as good data capture and throughput—but rendering and
storing the strokes in memory aren’t. The Tablet PC Platform supports this,
though not as part of the TIS. Instead, that functionality lies in the domain of ink
data management, mostly the subject of the next two chapters.

Now that we conceptually understand what the tablet input subsystem
does, let’s actually use it to do something, shall we? It’s time to write some code!

Platform SDK Support for Tablet Input

There are two key classes in the Tablet PC managed API that facilitate tablet
input—the InkCollector class and the InkOveriay class. You may also recall that
the Tablet PC Platform SDK provides some controls that perform tablet input as
well; they will be the subject of Chapter 8. For the time being, we’ll focus on
tablet input at the class level.

Getting Ink from a Tablet

Real-time inking is arguably the most desirable functionality in a Tablet PC
application. After all, that’s one of the key differentiators between a Tablet PC and
a traditional PC, and it turns out to be one of the most nontrivial to implement.
The designers of the Tablet PC Platform realize this, and they have turned a
non-trivial task into a trivial one by packaging real-time inking functionality into
the InkCollector and InkOuverlay classes.

Say Hello to the /nkCollector

We'll start off by looking at InkCollector—a class whose primary purpose is to
provide real-time ink input to an application. InkCollector objects use a Windows
Forms—based window as an ink canvas—a rectangular region in which pen
input will be captured. This window is commonly referred to as the /nkCollector’s
host window.

110

Part Il The Tablet PC Platform SDK

The InkCollector class can provide an application with useful events such
as system gesture detection and ink gesture recognition if desired. It also
remembers the ink that the user has drawn, so repaints of the host window pre-
serve any ink that was previously drawn. The bonus here is that the InkCollector
class is extremely easy to use, as you'll see in this first sample application.

Recall that only Windows XP Tablet PC Edition ships “out of
the box” with ink recognition capability.

Sample Application: “HelloIlnkCollector”

Let’s dive right into learning about using InkCollector by looking at some code.
This sample shows the most straightforward use of the InkCollector class in an
application: a form is created and an InkCollector instance is attached to the
window. Digital ink can then be drawn on the form, as shown in Figure 4-5,
using the tablet hardware installed in the system, including the mouse.

™ HellolnkCollector

R0 id
Y

Figure 4-5 Greetings from the HelloInkCollector sample application

Perhaps what’s most surprising about the HelloInkCollector application is
that the key functionality is only two lines of code! Check it out:

Chapter 4 Tablet PC Platform SDK: Tablet Input

HellolnkCollector.cs
R iy,

/1!
/1!
!/
!/
/!
/!
/1l
/1!
/1!

HelloInkCollector.cs

(c) 2002 Microsoft Press
by Rob Jarrett

This program demonstrates the simplest usage of the InkCollector
class.

[IILITETTTET T T L T i i i i i rrirrrrrrrrrry

using System;

using System.Drawing;

using System.Windows.Forms;
using Microsoft.Ink;

public class frmMain : Form

{

private InkCollector inkCollector;

// Entry point of the program
[STAThread]
static void Main()

{

Application.Run(new frmMain());

pubTic frmMain()

{

// Set up the form which will be the host window for an
// InkCollector instance

ClientSize = new Size(400, 250);

Text = "HelloInkCollector";

// Create a new InkCollector, using the form for the host
// window
inkCollector = new InkCollector(Handle);

// We're now set to go, so turn on ink collection
inkCollector.Enabled = true;

111

112 Part Il The Tablet PC Platform SDK

You'll notice how the Visual Studio .NET forms designer was not used to
create the user interface for the application—this was done purposefully. All
the sample applications are like this, for two reasons: it simplifies things for
those who wish to manually type in the code, and it keeps the code succinct
(hopefully) in its meaning.

After creating a form, the HelloInkCollector application includes the
form’s handle property in the InkCollector constructor—this tells InkCollector
we want the form to be the host window:

// Create a new InkCollector, using the form for the host
// window
inkCollector = new InkCollector(Handle);

Once the InkCollector object has been created, inking functionality can be
activated by setting the Enabled property to true.
// We're now set to go, so turn on ink collection
inkCollector.Enabled = true;

At this point, the user is free to ink on the form using any installed tablet
device. When the form is invalidated the ink will repaint automatically, and if
you try to draw ink off the edge of the form, the ink will be clipped to the
form’s boundaries. Not bad for a couple of lines of code!

The HellolnkCollector sample uses an entire form’s client area for
the ink canvas. If a smaller area in the form is desired, there are three
ways to accomplish this: the first method is to use a child window on the
form as the host window (which is what the rest of the samples in this
chapter do), the second method is to specify to InkCollector an input rect-
angle within the host window via the SetWindowinputRectangle API, and
the third is to set the InkCollector’s Margin X and Margin Y properties.

Now that we have a basic application that provides inking functionality up
and running, let’s see how easy it is to get some editing functionality running.

When Ink Is Not Enough

The InkCollector class is great at providing real-time ink, but oftentimes you’ll
want to give your users the ability to select, manipulate, and erase the ink
they've drawn. InkCollector doesn’t have any support for this, but it’s definitely
possible to augment InkCollector and write all that functionality yourself. How-
ever, that would be a rather time-consuming task, and quite a wasteful one—

Chapter 4 Tablet PC Platform SDK: Tablet Input 113

especially if only standard ink interaction behavior was desired! Tablet PC
developers everywhere would be reinventing the wheel, which isn’t exactly an
indicator of a great software platform. Fortunately, the Tablet PC Platform SDK
provides a class named InkOverlay that implements common ink-interaction
behaviors—it supports selecting, moving, resizing, and erasing ink, as well as
all the real-time inking capability that InkCollector has.

InkOverlay is a proper superset of the InkCollector—an
instance of InkCollector can be replaced by an instance of InkOverlay
and it will always function identically.

The Ink Gontrols: InkPicture and InkEdit

In addition to the InkCollector and InkOveriay classes, the Tablet PC Platform
provides two controls that are capable of accepting input: InkPicture and
InkEdit. They are both Windows Forms controls and are designed to make
forms-based ink capture easier. We'll discuss them in detail in Chapter 8.

InkOverlay has a property named EditingMode that indicates the input
behavior (or input mode) that should be currently active. The property is of
the type InkOverlayEditingMode. Table 4-3 lists its members and the resulting
behaviors.

Table 4-3 The Members of InkOverlayEditingMode and Their Meanings

Member Editing Behavior

Ink Real-time inking mode—ink is drawn wherever the pen touches in the input area.
InkOveriay will act just like InkCollector.

Select Selection mode—tapping or lassoing ink selects it, and tapping on white space
dismisses the selection. The selection can be moved or resized.

Delete Eraser mode—ink is erased whenever encountered by the pen. The erase granu-

larity is either at the stroke level or the point level, determined by /nkOuverlay’s
EraseMode property.

114 Part Il The Tablet PC Platform SDK

Sample Application: HellolnkOverlay

Demonstrating most of the extra functionality that InkOuverlay has over Ink-
Collector is quite easy. This next sample application is similar to HelloInkCollector
except it uses a panel control as the host window, adds a ComboBox to change
the EditingMode, and adds a push button to change ink color. You could also
use a panel as the host window and include the ability to change ink color in
HelloInkCollector because inking functionality is identical between InkCollector
and InkOverlay. For the first sample to be as brief as possible we opted not to
include them. Figure 4-6 shows what HelloInkOverlay looks like in action.

HelloInkOverlay

class is (QOOL,

Colar

Figure 4-6 The InkOverlay class provides everything InkCollector does
and also has selection and erasing abilities.

HellolnkOverlay.cs

[ILTTILTTEL T DT LT i i i i i r7i077111777
//

// HelloInkOverlay.cs

//

// (c) 2002 Microsoft Press

// by Rob Jarrett

//

// This program demonstrates basic usage of the InkOverlay class.

//

[ILTTILTTL T T LTI LT i i i 7771077111777

using System;

using System.Drawing;

using System.Reflection;
using System.Windows.Forms;
using Microsoft.Ink;

public class frmMain : Form

private Panel
private Button

Chapter 4 Tablet PC Platform SDK: Tablet Input 115

pnlInput;
btnColor;

private ComboBox cbxEditMode;
private InkOverlay inkOverlay;

// Entry point of the program

[STAThread]

static void Main()

{
Application

.Run(new frmMain());

// Main form setup

public frmMain(
{

)

SuspendlLayout();

// Create and place all of our controls

pnlInput =

new Panel();

pnlInput.BackColor = Color.White;
pnlInput.BorderStyle = BorderStyle.Fixed3D;
pnlInput.Location = new Point(8, 8);
pnlInput.Size = new Size(352, 192);

btnColor =

new Button();

btnColor.Location = new Point(8, 204);

btnColor.Size = new Size(60, 20);

btnColor.Text = "Color";

btnColor.Click += new System.EventHandler(btnColor_Click);

cbxEditMode
cbxEditMode
cbxEditMode
cbxEditMode
cbxEditMode

= new ComboBox();

.DropDownStyle = ComboBoxStyle.DropDownlList;
.Location = new Point(76, 204);

.Size = new Size(72, 20);
.SelectedIndexChanged +=

new System.EventHandler(cbxEditMode_SelIndexChg);

// Configure the form itself

ClientSize

= new Size(368, 236);

Controls.AddRange(new Control[] { pnllInput,

btnColor,
cbxEditMode});

FormBorderStyle = FormBorderStyle.FixedDialog;

MaximizeBox

= false;

Text = "HelloInkOverlay";

ResumelLayout(false);

(continued)

116 Part Il The Tablet PC Platform SDK

HellolnkOverlay.cs (continued)

// Fil1l up the editing mode combobox

foreach (InkOverlayEditingMode m in
InkOverlayEditingMode.GetValues(
typeof(InkOverlayEditingMode)))

cbxEditMode.Items.Add(m);

// Create a new InkOverlay, using pnlInput for the
// collection area
inkOverlay = new InkOverlay(pnlInput.Handle);

// Set eraser mode to be point—level rather than stroke—Tlevel
//inkOverlay.EraserMode = InkOverlayEraserMode.PointErase;
//inkOverlay.EraserWidth = 200;

// Select the current editing mode in the combobox
cbxEditMode.SelectedItem = inkOverlay.EditingMode;

// We're now set to go, so turn on tablet input

inkOverlay.Enabled = true;

// Handle the click of the color button
private void btnColor_Click(object sender, System.EventArgs e)

{
// Create and display the common color dialog, using the
// current ink color as its initial selection
ColorDialog digColor = new ColorDialog();
dlgColor.Color = inkOverlay.DefaultDrawingAttributes.Color;
if (digColor.ShowDialog(this) == DialogResult.0K)
{
// Set the current ink color to the selection chosen in
// the dialog
inkOverlay.DefaultDrawingAttributes.Color = digColor.Color;
}
}

// Handle the selection change of the editing mode combobox
private void cbxEditMode_SelIndexChg(object sender,
System.EventArgs e)

{
// Set the current editing mode to the selection chosen
// in the combobox
inkOverlay.EditingMode =
(InkOverlayEditingMode)cbxEditMode.SelectedItem;
}

Chapter 4 Tablet PC Platform SDK: Tablet Input 117

That’s a fair bit longer of a listing than HelloInkCollector, isn’t it? There
isn’t much more Tablet Input API usage, though—you’ll notice that most of the
extra code deals with the child controls on the form. Let’s take a closer look at
the interesting parts of the sample.

After creating the child controls, placing them on the form, and filling up
the ComboBox using C#’s awesome reflective abilities, an InkOuveriay object is
created, specifying the panel control as the host window:

// Create a new InkOverlay, using pnlInput for the
// collection area
inkOverlay = new InkOverlay(pnlInput.Handle);

That’s a bit different from using the entire form as the host window, but
InkCollector and InkOveriay can handle this situation nicely (pardon the pun).
Ink will be clipped to the edge of the control, and the user won’t be able to start
inking outside the control’s boundaries. By using the 3-D border effect and
white background on the panel control we get a nice visual representation of
where the user can and cannot ink.

Next the selection in the ComboBox is updated using the EditingMode
property of InkOverlay, and then tablet input is enabled.

// Select the current editing mode in the combobox
cbxEditMode.SelectedItem = inkOverlay.EditingMode;

// We're now set to go, so turn on tablet input
inkOverlay.Enabled = true;

This code snippet changes the color of the ink using the common color
dialog:

// Handle the click of the color button
private void btnColor_Click(object sender, System.EventArgs e)
{
// Create and display the common color dialog, using the
// current ink color as its initial selection
ColorDialog digColor = new ColorDialog();
dlgColor.Color = inkOverlay.DefaultDrawingAttributes.Color;
if (d1gColor.ShowDialog(this) == DialogResult.O0K)

{

// Set the current ink color to the selection chosen in

// the dialog

inkOverlay.DefaultDrawingAttributes.Color = digColor.Color;
}

InkCollector and InkOverlay objects keep a set of ink rendering properties
around named default drawing attributes. These are characteristics such as

118

Part Il The Tablet PC Platform SDK

color, thickness, and pen tip style that are encapsulated by a class named
DrawingAttributes. InkCollector uses a property of type DrawingAttributes to
maintain the default drawing attributes, named DefaultDrawingAttributes.

Subsequent strokes created in the ImkCollector will take on the new
color set from the dialog. More detailed coverage of drawing attributes and
ink rendering will be covered in the next chapter.

Lastly, when the EditingMode ComboBox selection is changed, the editing
mode of the InkOveriay instance is updated.

// Handle the selection change of the editing mode combobox
private void cbxEditMode_SelIndexChg(object sender,
System.EventArgs e)
{
// Set the current editing mode to the selection chosen
// in the combobox
inkOverlay.EditingMode =
(InkOverlayEditingMode)cbxEditMode.SelectedItem;

When you run the HelloInkOverlay application, it will quickly become
apparent just how much functionality /nkOuverlay has. You can draw ink, select
the ink, move it, resize it, and erase it—all from a small program.

Changing the Eraser Mode
The Delete mode can be either stroke-based or point-based, referring to the
granularity of ink that is removed when the stroke is touched. Stroke-based
erasure will delete the entire stroke when it’s hit, and point-based erasure
chops out ink from a stroke when it’s hit (much like a real eraser does). The
property EraserMode in the InkOuverlay class indicates which form of erasing
should be performed. It is of type InkOverlayEraserMode, which is an enumer-
ation with two members: StrokeErase and PointErase. The default value of the
EraserMode property is InkOverlayEraserMode.StrokeErase. Point-based erase
has an eraser size—essentially the amount of ink to erase from within a
stroke—that is specified by the EraserWidth property on an InkOuverlay object.
Try uncommenting the code just after the InkOverlay object is created to
play around with the point-level erase functionality:

// Create a new InkOverlay, using pnlInput for the
// collection area
inkOverlay = new InkOverlay(pnlInput.Handle);

// Set eraser mode to be point—level rather than stroke-level
inkOverlay.EraserMode = InkOverlayEraserMode.PointErase;
inkOverlay.EraserWidth = 200;

Chapter 4 Tablet PC Platform SDK: Tablet Input 119

The eraser width is specified in 100ths of a millimeter, otherwise known as
HIMETRIC units—the coordinate measurement used for all ink in the Tablet PC
Platform.

The InkControl Class in the BuildingTabletApps Library

Included on the CD-ROM of this book is the BuildingTabletApps library, con-
taining numerous helper classes and functions you are free to leverage in your
own applications. The functionality of HelloInkOverlay is encapsulated in the
InkControl class, used in upcoming chapters’ sample applications to provide a
“quick and dirty” editing UI, avoiding the replication of HelloInkOverlay’s code
in every case.

InkOverlay’s Attach Mode
Another advantage the InkOveriay class has over InkCollector is the ability to
attach to the host window in two ways. By default, InkCollector and InkOuverlay
objects will use the actual host window as the canvas to collect and draw ink
on. Depending on the behavior of the host window, though, it is possible for
redraw problems to occur.

For example, a host window might draw on itself when an event other
than paint occurs, which could result in ink being obscured until the next paint
event occurs. Another example is if a control is specified as the host window
when the host window belongs to another process (perhaps an OCX is used
that is implemented in a separate .exe). In this case, ink collection will fail
because the InkCollector and InkOverlay require the host window to belong to
the same process as they do.

To solve these problems, the InkOuveriay class can use a window of its own
to collect and render ink. Setting the AttachMode property of an InkOveriay to
InkOverlayAttachMode.InFront results in a transparent window being used
instead of the host window. The default value of the A#tachMode property is
InkOverlayAttachMode.Bebind, the other value in the InkOverlayAttachMode
enumeration.

The InkOverlay class is a great way for your application to get common
ink behavior. However, it can’t fully provide the ink experience that the Tablet PC
can in an application like Windows Journal. A brief summary of the functionality
that the InkOverilay class doesn’t provide you is listed here:

B Using the top-of-pen as an eraser

B Press-and-hold (or right-click and right-drag) in ink mode to mode-
lessly switch to select mode

B An insert/remove space mode

120 Part Il The Tablet PC Platform SDK

B Showing selection feedback in real time (for instance, as the lasso is
being drawn, ink becomes selected or deselected immediately as it is
enclosed or excluded by the lasso)

B Using a scratchout gesture to delete strokes

Luckily, that’s a pretty short list. And these deficiencies are addressed by
sample applications in this book. The first two items are covered in this chap-
ter; the next two are covered in the next chapter, and the last is covered in
Chapter 7.

It's not really fair to do a full-out feature comparison of InkOverlay
and Windows Journal because Journal was written as an end-to-end
application. However, there is a quantifiable set of features that
defines an inking experience, and it's that set that is being used to
compare the two pieces of software.

If the InkOverlay class is a superset of InkCollector with com-
monly used functionality, you might ask why InkCollector even exists.
That’s a good question! The most reasonable answer we can come up
with is this: InkCollector is useful if you want to customize tablet input
behavior and when little or none of InkOverlay’s functionality is
desired—that makes a cleaner basis to start from. Otherwise, you might
as well always use InkOverlay and get its extra functionality for free.

Now that we’ve seen the surface of tablet input functionality that the Tablet
PC Platform provides, let’s move on to studying tablet input events of InkCollector
and InkOverlay. To keep things simple, we’ll return to using InkCollector as
the subject for tablet input capture; later on the extra events InkOuveriay has
will be discussed.

Chapter 4 Tablet PC Platform SDK: Tablet Input 121

InkCollector Events

The default behavior of InkCollector and InkOverlay is cool—but what if you
wanted to extend or alter that behavior, or perform certain custom actions for
your own application’s needs? For example, you might want your application to

B Be notified whenever an ink stroke is drawn so that the stroke can
be serialized and sent over a network connection to another
machine, perhaps as part of a collaborative whiteboard application.

B Be notified when a press-and-hold system gesture occurs so that an
object can be selected.

B Prevent inking entirely but still receive “raw” tablet input events so
that direct-manipulation editing operations can be performed.

Applying the term raw to tablet input refers to the sim-
plest form of events that occur when a pen interacts with a
digitizer: hover, pen down, pen move, and pen up.

InkCollector and InkOuverlay expose an extensive set of event notifications
that can be used to trigger other functionality or alter default behavior. These
events can be grouped into various categories of notifications to better under-
stand their purpose.

Ink Stroke Events

This first class of events occurs as a result of digital ink being created. An ink
stroke can cause either the Stroke event or Gesture event to fire when it’s cre-
ated—by default, InkCollector and InkOuveriay do not try to recognize strokes as
gestures, so the Stroke event always is fired when a stroke is created. InkCollector
and InkOveriay have a property named CollectionMode (of type Collection-
Mode) that indicates how gesture recognition should take place—collect ink
only and not recognize gestures (the default value of InkOnly), collect ink and
recognize ink as gestures if possible (InkAndGesture), or recognize ink as ges-
tures only (GestureOnly). The Stroke and Gesture events are shown in Table 4-4.

122

Part Il The Tablet PC Platform SDK

Table 4-4 Stroke and Gesture Events

Event Name Event Arguments Class Description
Stroke InkCollectorStrokeEventArgs An ink stroke was just created.
Gesture InkCollectorGestureEventArgs An ink stroke was just created and was recog-

nized as a gesture.

When either the Stroke or Gesture event fires, the corresponding Event-
Args-based object has a property named Cancel that allows the ink stroke to be
thrown away or added to the InkCollector or InkOverlay's Ink object. By
default, the Stroke event has this property set to false (to mean always save the
stroke unless code in the event handler says otherwise), as does the Gesture
event (to mean always throw the stroke away and fire the stroke event unless
code in the event handler says otherwise).

Pen Movement Events

The next category of events occurs as a result of discrete physical actions with
the cursor. A cursor in the Tablet PC Platform sense simply refers to a pen or a
mouse. Take a look at the pen movement events in Table 4-5. You can see how
the names of these events map easily to their descriptions.

Table 4-5 The Pen Movement Events

Event Name Event Arguments Class Description

CursorlnRange InkCollectorCursorinRangeEventArgs The cursor has come within

proximity of the digitizer
device or hovered into the ink
canvas’s space.

NewlInAirPackets InkCollectorNewInAirPacketsEventArgs An update of the cursor state
when it is hovering.

CursorButtonDown InkCollectorCursorButtonDownEventArgs A button on the cursor has
been pressed.

CursorDown InkCollectorCursorDownEventArgs The cursor tip has touched the
surface of the digitizer.

NewPackets InkCollectorNewPacketsEventArgs An update of the cursor state
when it is on the digitizer’s
surface.

SystemGesture InkCollectorSystemGestureEventArgs A system gesture (pen-based

action) has occurred.

Chapter 4 Tablet PC Platform SDK: Tablet Input 123

Table 4-5 The Pen Movement Events (continued)

Event Name Event Arguments Class Description

CursorButtonUp InkCollectorCursorButtonUpEventArgs A button on the cursor has

been released.

CursorOutOfRange InkCollectorCursorOutOfRangeEventArgs The cursor has left the prox-

imity of the digitizer or hov-
ered out of the ink canvas’s
space.

The CursorlnRange and CursorOutOfRange events indicate the cursor is
coming in or out of physical range with the ink canvas area—this can mean either
horizontally (within the x and y plane) or vertically (if the tablet hardware
supports this). The CursorDown, CursorButtonDown, and CursorButtonUp
events refer to the cursor tip going down or pen buttons being pressed or
released.

The NewPackets and NewiInAirPackets events signal that the current cursor
state has been updated. They will be further discussed later in this chapter.

The SystemGesture event is one of the most useful events in this list because
it refers to the fact that a system gesture (referred to as a pen-based action earlier
in the chapter) has been recognized. The InkCollectorSystemGestureEventArgs
object given to the event handler specifies which system gesture was recog-
nized through its Id property—a value in the SystemGesture enumeration. System
gestures are useful when implementing your own editing behaviors.

Members of the SystemGesture enumeration include Tap, Drag,
RightTap, RightDrag, and DoubleTap.

Mouse Trigger Events

Mouse events are typically sent alongside tablet input events. The mouse trigger
events of the InkCollector class, described in Table 4-6, are used to prevent
those mouse events from being fired.

124 Part Il The Tablet PC Platform SDK

Table 4-6 Mouse Trigger Events

Event Name Event Arguments Class Description

DoubleClick System.ComponentModel.CancelEventArgs A DoubleClick event is about to
be fired.

MouseDown CancelMouseEventArgs A MouseDown event is about to
be fired.

MouseMove CancelMouseEventArgs A MouseMove event is about to
be fired.

MouseUp CancelMouseEventArgs A MouseUp event is about to be
fired.

MouseWheel CancelMouseEventArgs A MouseWheel event is about to
be fired.

Each event’s EventArg-based parameter has a Cancel property that is ini-
tially set to false. If the event handler sets the value to true, the corresponding
mouse event will not fire.

Tablet Hardware Events
The class of events pertaining to tablet hardware occurs when a tablet device is
either added or removed from the system. These events are listed in Table 4-7.

Table 4-7 Tablet Hardware Events

Event Name Event Arguments Class Description

TabletAdded InkCollectorTabletAddedEventArgs A new digitizer device has been
added to the system.

TabletRemoved InkCollectorTabletRemovedEventArgs A digitizer device has been removed.

The InkCollectorTabletRemovedEventArgs class’s property
Tabletld is the index into the Tablets collection of the Tablet object
being removed. The Tablets collection is introduced in the upcoming
section, “Getting Introspective”

Chapter 4 Tablet PC Platform SDK: Tablet Input 125

Rendering Events (/nkOverlay Only)

The InkOverlay class provides two events related to rendering—the Painting
event, which indicates that the InkOveriay object is about to draw itself, and
the Painted event, which indicates that drawing is complete. This is shown in
Table 4-8.

Table 4-8 InkOverlay Rendering Events

Event Name Event Arguments Class Description
Painting InkOverlayPaintingEventArgs The InkOverlay is about to paint itself.
Painted System. Windows. Forms.PaintEventArgs ~ The InkOverlay is finished painting

itself.

The Painting event proves useful if you’d ever want to alter any properties
of the Graphic object being drawn to, adjust the clipping rectangle, or cancel
rendering from happening altogether. The Painted event allows you to aug-
ment the rendering of the InkOveriay with any drawing of your own—for
example, when implementing some tagging functionality an application would
draw its tag icons in an event handler for the Painted event.

Ink Editing Events (/nkOverlay Only)
The events in this ink editing category, described in Table 4-9, are fairly inter-
esting because they can be used to somewhat alter the /nkOveriay’s behavior.

Table 4-9 Ink Editing Events

Event Name Event Arguments Class Description

SelectionChanging InkOverlaySelectionChangingFEventArgs The selection is about to change.

SelectionChanged System.EventArgs The selection has changed.

SelectionMoving InkOverlaySelectionMovingEventArgs The selection is in the process of
moving.

SelectionMoved InkOverlaySelectionMovedEventArgs The selection has been moved.

SelectionResizing InkOverlaySelectionResizingEventArgs The selection is in the process of
being resized.

SelectionResized InkOverlaySelectionResizedEventArgs The selection has been resized.

StrokesDeleting InkOverlayStrokesDeletingEventArgs One or more strokes is about to
be deleted.

StrokesDeleted System.EventArgs One or more strokes has been

deleted.

126

Part Il The Tablet PC Platform SDK

The events with the suffix “ing” permit their impending behavior to be
changed (or even canceled) by setting relevant data in the EventArgs-based
object given to an event handler. SelectionChanging event’s EventArgs object
makes available for inspection and modification the collection of strokes that is
to become selected, SelectionMoving makes available for inspection and modi-
fication the rectangle of the in-progress move location, SelectionResizing makes
available for inspection and modification the rectangle of the in-progress resize
amount, and StrokesDeleting makes available for inspection and modification
the collection of strokes to be deleted.

Exposing data such as this enables an application to implement function-
ality such as read-only ink, unselectable ink, or even remotely automated user
interface interaction.

Sample Application: InputWatcher

After all this talking about events, it would be great to get a better idea of
exactly what InkCollector events get fired, when, and in what order. This next
sample application lets you see just that—the events from an InkCollector
object are monitored. The sample allows you to turn on those events you want
to see logged, and when events fire their results are logged to a window. You
can also change the collection mode of the InkCollector to observe the effect it
has. The application is shown in Figure 4-7.

InputWatcher, g|§|g|
Clear | | GestureOnly j

™ CursorButtorDown A
™ CurzorButtonllp

. &0
/\\-\\% \ 0.5\{/ I~ CursorDown
>§ ™ CurzornFange
U? ™ CursorDutdiR ange
Tl Gesture

™ NewlndirPackets
™ MewPackets

W Stroke

™ SystemGesture v
Stroke Cursorld=3 rS
Stroke Cursorld=3
Stroke Cursorld=3
Stroke Cursorld=3
Stroke Cursorld=3
Gesture Cursorld=1 Gesture=ChevronlUp b

Figure 4-7 InputWatcher logs events from InkCollector to an output
window.

The source for this sample is quite lengthy, but you might find it's well
worth playing around with it in Visual Studio .NET to get a better feel for the
various properties on the EventArgs-based objects. So here is the source listing
in its entirety:

Chapter 4 Tablet PC Platform SDK: Tablet Input 127

InputWatcher.cs

[ITLTTTTLITLT LTI 0L L7070 7707117717717 77
//

// InputWatcher.cs

//

// (c) 2002 Microsoft Press

// by Rob Jdarrett

//

// This program demonstrates how and when events are dispatched for
// the InkCollector class.

//

LITTTLTLLTTT LTI L LT 7D 777770 rrrrr 117777

using System;

using System.ComponentModel;
using System.Drawing;

using System.Windows.Forms;
using Microsoft.Ink;

public class frmMain : Form

{
private Panel pnlInput;
private ComboBox cbxMode;
private CheckedListBox clbEvents;
private ListBox 1bOutput;
private Button btnClear;
private InkCollector inkCollector;

// Entry point of the program
[STAThread]
static void Main()
{
Application.Run(new frmMain());

// Main form setup
public frmMain()
{

SuspendLayout();

// Create and place all of our controls
pnlInput = new Panel();
pnlInput.BorderStyle = BorderStyle.Fixed3D;
pnlInput.Location = new Point(8, 8);
pnlInput.Size = new Size(240, 192);

btnClear = new Button();

(continued)

128 Part Il The Tablet PC Platform SDK

InputWatcher.cs (continued)

btnClear.Size = new Size(40, 23);
btnClear.Text = "Clear";
btnClear.Click += new System.EventHandler(btnClear_Click);

pnlInput.SuspendLayout();
pnlInput.Controls.AddRange(new Control[] {btnClear});
pnlInput.ResumelLayout(false);

cbxMode = new ComboBox();
cbxMode.DropDownStyle = ComboBoxStyle.DropDownlList;
cbxMode.lLocation = new Point(256, 8);
cbxMode.Size = new Size(144, 21);
cbxMode.SelectedIndexChanged +=

new System.EventHandler(cbxMode_SelIndexChg);

clbEvents = new CheckedListBox();
clbEvents.CheckOnClick = true;
clbEvents.Location = new Point(256, 40);
clbEvents.Size = new Size(144, 154);
clbEvents.ThreeDCheckBoxes = true;
clbEvents.ItemCheck +=

new ItemCheckEventHandler(clbEvents_ItemCheck);

1bOutput = new ListBox();
1bOutput.Location = new Point(8, 208);
1bOutput.ScrollAlwaysVisible = true;
1bOutput.Size = new Size(392, 94);
1bOutput.Sorted = false;

// Configure the form itself

ClientSize = new Size(408, 310);

Controls.AddRange(new Control[] { pnllInput,
cbxMode,
clbEvents,
1bOutput});

FormBorderStyle = FormBorderStyle.FixedDialog;

MaximizeBox = false;

Text = "InputWatcher";

ResumelLayout(false);
// Fi11l up the collection mode ComboBox
foreach (CollectionMode ¢ in

CollectionMode.GetValues(typeof(CollectionMode)))

cbxMode.Items.Add(c);

Chapter 4 Tablet PC Platform SDK: Tablet Input 129

// Fill up the events ListBox
clbEvents.Items.Add("CursorButtonDown");
clbEvents.Items.Add("CursorButtonUp");
clbEvents.Items.Add("CursorDown");
clbEvents.Items.Add("CursorInRange");
clbEvents.Items.Add("CursorOutOfRange");
clbEvents.Items.Add("DoubleClick");
clbEvents.Items.Add("Gesture");
clbEvents.Items.Add("MouseDown");
clbEvents.Items.Add("MouseMove");
clbEvents.Items.Add("MouseUp");
clbEvents.Items.Add("MouseWheel");
clbEvents.Items.Add("NewInAirPackets");
clbEvents.Items.Add("NewPackets");
clbEvents.Items.Add("Stroke");
clbEvents.Items.Add("SystemGesture");
clbEvents.Items.Add("TabletAdded");
clbEvents.Items.Add("TabletRemoved");

// Create a new InkCollector, using pnlInput for the
// collection area
inkCollector = new InkCollector(pnlInput.Handle);

// Set the selection in the collection mode ComboBox to
// the current collection mode in inkCollector
cbxMode.SelectedItem = inkCollector.CollectionMode;

// We're now set to go, so turn on tablet input
inkCollector.Enabled = true;

// Events checked—ListBox item checked handler
private void clbEvents_ItemCheck(object sender,
ItemCheckEventArgs e)

if (e.NewValue == CheckState.Checked)
{
// Add the desired event handler to inkCollector
switch (e.Index)
{
case 0:
inkCollector.CursorButtonDown +=
new InkCollectorCursorButtonDownEventHandler(
inkCollector_CursorButtonDown);
break;

case 1:

(continued)

130 Part Il The Tablet PC Platform SDK

InputWatcher.cs (continued)

inkCollector.CursorButtonUp +=
new InkCollectorCursorButtonUpEventHandler(
inkCollector_CursorButtonUp);

break;

case 2:
inkCollector.CursorDown +=
new InkCollectorCursorDownEventHandler(
inkCollector_CursorDown);
break;

case 3:
inkCollector.CursorInRange +=
new InkCollectorCursorInRangeEventHandler(
inkCollector_CursorInRange);
break;

case 4:
inkCollector.CursorOutOfRange +=
new InkCollectorCursorOutOfRangeEventHandler(
inkCollector_CursorOutOfRange);
break;

case b5:
inkCollector.DoubleClick +=
new InkCollectorDoubleClickEventHandler(
inkCollector_DoubleClick);
break;

case 6:
inkCollector.Gesture +=
new InkCollectorGestureEventHandler(
inkCollector_Gesture);
break;

case 7:
inkCollector.MouseDown +=
new InkCollectorMouseDownEventHandler(
inkCollector_MouseDown) ;
break;

case 8:
inkCollector.MouseMove +=
new InkCollectorMouseMoveEventHandler(
inkCollector_MouseMove);
break;

case 9:

Chapter 4 Tablet PC Platform SDK: Tablet Input 131

inkCollector.MouseUp +=
new InkCollectorMouseUpEventHandler(
inkCollector_MouseUp);

break;

case 10:
inkCollector.MouseWheel +=
new InkCollectorMouseWheelEventHandler(
inkCollector_MouseWheel);
break;

case 11:
inkCollector.NewInAirPackets +=
new InkCollectorNewInAirPacketsEventHandler(
inkCollector_NewInAirPackets);
break;

case 12:
inkCollector.NewPackets +=
new InkCollectorNewPacketsEventHandler(
inkCollector_NewPackets);
break;

case 13:
inkCollector.Stroke +=
new InkCollectorStrokeEventHandler(
inkCollector_Stroke);
break;

case 14:
inkCollector.SystemGesture +=
new InkCollectorSystemGestureEventHandler(
inkCollector_SystemGesture);
break;

case 15:
inkCollector.TabletAdded +=
new InkCollectorTabletAddedEventHandTler(
inkCollector_TabletAdded);
break;

case 16:
inkCollector.TabletRemoved +=
new InkCollectorTabletRemovedEventHandler(
inkCollector_TabletRemoved);
break;

(continued)

132 Part Il The Tablet PC Platform SDK

InputWatcher.cs (continued)

}
else
{
// Remove the desired event handler from inkCollector
switch (e.Index)
{
case 0:
inkCollector.CursorButtonDown —=
new InkCollectorCursorButtonDownEventHandler(
inkCollector_CursorButtonDown);
break;

case 1:
inkCollector.CursorButtonUp —=
new InkCollectorCursorButtonUpEventHandler(
inkCollector_CursorButtonUp);
break;

case 2:
inkCollector.CursorDown —=
new InkCollectorCursorDownEventHandler(
inkCollector_CursorDown);
break;

case 3:
inkCollector.CursorInRange —=
new InkCollectorCursorInRangeEventHandler(
inkCollector_CursorInRange);
break;

case 4:
inkCollector.CursorOut0OfRange —=
new InkCollectorCursorOutOfRangeEventHandler(
inkCollector_CursorQutOfRange);
break;

case b5:
inkCollector.DoubleClick —=
new InkCollectorDoubleClickEventHandler(
inkCollector_DoubleClick);
break;

case 6:
inkCollector.Gesture —=
new InkCollectorGestureEventHandler(
inkCollector_Gesture);
break;

Chapter 4 Tablet PC Platform SDK: Tablet Input 133

case 7:
inkCollector.MouseDown —=
new InkCollectorMouseDownEventHandler(
inkCollector_MouseDown) ;
break;

case 8:
inkCollector.MouseMove —=
new InkCollectorMouseMoveEventHandler(
inkCollector_MouseMove);
break;

case 9:
inkCollector.MouselUp —=
new InkCollectorMouseUpEventHandler(
inkCollector_Mouselp);
break;

case 10:
inkCollector.MouseWheel —=
new InkCollectorMouseWheelEventHandler(
inkCollector_MouseWheel);
break;

case 11:
inkCollector.NewInAirPackets —=
new InkCollectorNewInAirPacketsEventHandler(
inkCollector_NewInAirPackets);
break;

case 12:
inkCollector.NewPackets —=
new InkCollectorNewPacketsEventHandler(
inkCollector_NewPackets);
break;

case 13:
inkCollector.Stroke —=
new InkCollectorStrokeEventHandler(
inkCollector_Stroke);
break;

case 14:
inkCollector.SystemGesture —=

new InkCollectorSystemGestureEventHandler(

(continued)

134 Part Il The Tablet PC Platform SDK

InputWatcher.cs (continued)

inkCollector_SystemGesture);
break;

case 15:
inkCollector.TabletAdded —=
new InkCollectorTabletAddedEventHandler(
inkCollector_TabletAdded);
break;

case 16:
inkCollector.TabletRemoved —=
new InkCollectorTabletRemovedEventHandler(
inkCollector_TabletRemoved);
break;

// Collection mode ComboBox selection changed handler
private void cbxMode_SelIndexChg(object sender,
System.EventArgs e)

// Turn off ink collection since we're changing collection mode
inkCollector.Enabled = false;

// Set the new mode
inkCollector.CollectionMode =
(CollectionMode)cbxMode.SelectedItem;

// Set up the gestures we're interested in recognizing

if ((inkCollector.CollectionMode ==
CollectionMode.InkAndGesture) ||
(inkCollector.CollectionMode ==
CollectionMode.GestureOnly))

{
inkCollector.SetGestureStatus(
ApplicationGesture.Al1Gestures, true);
}
else
{
inkCollector.SetGestureStatus(
ApplicationGesture.Al1Gestures, false);
}

// We're done, so turn ink collection back on
inkCollector.Enabled = true;

Chapter 4 Tablet PC Platform SDK: Tablet Input

// Clear Button clicked handler
private void btnClear_Click(object sender, System.EventArgs e)
{

// Clear out all strokes

inkCollector.Ink.DeleteStrokes();

pnlInput.Invalidate();

// Clear output window
1bOutput.Items.Clear();

// Log a string to the output window
private void LogToOutput(string strlLog)
{
1bOutput.Items.Add(strLog);
1bOutput.TopIndex = 1bOutput.Items.Count — 1;

// Various tablet input event handlers — each logs its relevant

// EventArgs values

private void inkCollector_CursorButtonDown(object sender,
InkCollectorCursorButtonDownEventArgs e)

{
LogToOutput(String.Format(
"CursorButtonDown CursorId={@} BtnName={1} BtnId={2}",
e.Cursor.Id, e.Button.Name, e.Button.Id));
}

private void inkCollector_CursorButtonUp(object sender,
InkCollectorCursorButtonUpEventArgs e)

{
LogToOutput(String.Format(
"CursorButtonUp CursorId={@} BtnName={1} BtnId={2}",
e.Cursor.Id, e.Button.Name, e.Button.Id));
}

private void inkCollector_CursorDown(object sender,
InkCollectorCursorDownEventArgs e)

{
LogToOutput(String.Format(
"CursorDown CursorId={@} CursorName={1}",
e.Cursor.Id, e.Cursor.Name));
}

private void inkCollector_CursorInRange(object sender,
InkCollectorCursorInRangeEventArgs e)

135

(continued)

136 Part Il The Tablet PC Platform SDK

InputWatcher.cs (continued)

LogToOutput(String.Format(
"CursorInRange CursorId={0} Inverted={1} NewCursor={2}",
e.Cursor.Id, e.Cursor.Inverted, e.NewCursor));

private void inkCollector_CursorOutOfRange(object sender,
InkCollectorCursorOutOfRangeEventArgs e)
LogToOQutput(String.Format(
"CursorOutOfRange CursorId={@0}", e.Cursor.Id));
private void inkCollector_DoubleClick(object sender,
CancelEventArgs e)
LogToOutput(String.Format("DoubleClick™));

private void inkCollector_Gesture(object sender,
InkCollectorGestureEventArgs e)

{
LogToQutput(String.Format(
"Gesture Cursorld={@0} Gesture={1} Confidence={2}",
e.Cursor.Id, e.Gestures[0].Id, e.Gestures[@].Confidence));
}

private void inkCollector_MouseDown(object sender,
CancelMouseEventArgs e)

LogToOutput(String.Format("MouseDown"));

private void inkCollector_MouseMove(object sender,
CancelMouseEventArgs e)
LogToOutput(String.Format("MouseMove"));

private void inkCollector_MouseUp(object sender,
CancelMouseEventArgs e)
LogToOutput(String.Format("MouseUp"));

private void inkCollector_MouseWheel(object sender,
CancelMouseEventArgs e)

LogToOutput(String.Format("MouseWheel™));

Chapter 4 Tablet PC Platform SDK: Tablet Input

private void inkCollector_NewInAirPackets(object sender,
InkCollectorNewInAirPacketsEventArgs e)

{
LogToOutput(String.Format(
"NewInAirPackets Cursorld={0@} PacketCount={1}",
e.Cursor.Id, e.PacketCount));
}

private void inkCollector_NewPackets(object sender,
InkCollectorNewPacketsEventArgs e)

{
LogToOutput(String.Format(
"NewPackets CursorId={0} PacketCount={1}",
e.Cursor.Id, e.PacketCount));
}

private void inkCollector_Stroke(object sender,
InkCollectorStrokeEventArgs e)

LogToOutput(String.Format(

"Stroke CursorId={@0} Id={1}", e.Cursor.Id, e.Stroke.Id));

private void inkCollector_SystemGesture(object sender,
InkCollectorSystemGestureEventArgs e)

{
LogToOutput(String.Format(
"SystemGesture Cursorld={0} Id={1} EventlLocation=({2},{3})",
e.Cursor.Id, e.Id, e.Point.X, e.Point.Y));
}

private void inkCollector_TabletAdded(object sender,
InkCollectorTabletAddedEventArgs e)

LogToOutput(String.Format(
"TabletAdded TabletName={@0}", e.Tablet.Name));
private void inkCollector_TabletRemoved(object sender,

InkCollectorTabletRemovedEventArgs e)

LogToOutput(String.Format(
"TabletRemoved TabletId={0}", e.TabletlId));

137

138

Part Il The Tablet PC Platform SDK

Whew, that is a really long listing! But don’t worry, it's not as complex as
it appears. Unfortunately, there’s a lot of bloat that occurs because we are
unable to generically add and remove delegates to the InkCollector, and also
because we can’t generically process events received.

The InputWatcher application starts off in a similar fashion to what we’ve
already seen. The main form creates its child controls: a panel to be used as an
InkCollector’'s host window, a button to clear out any ink in the InkCollector
and any output in the log window, a ComboBox to specify collection mode, a
checked ListBox for choosing events to log, and a ListBox used for crude output
logging. The user interface elements are then initialized with relevant data, and
an InkCollector instance is created using the panel as the host window.

Things start to get interesting in the clbEvents_ItemCheck event handler,
which adds or removes InkCollector event handlers from the InkCollector object
depending on the CheckBox state of the ListBox item. Each handler is respon-
sible for logging interesting properties of the event to the output window.

The cbxMode_SellndexChg event handler deals with the selection changing
in the ComboBox that specifies collection mode. Note that the InkCollector is
disabled when the collection mode is changed and then re-enabled afterward:

// Turn off ink collection since we're changing collection mode
inkCollector.Enabled = false;

// Set the new mode
inkCollector.CollectionMode =
(CollectionMode)cbhxMode.SelectedItem;

// Set up the gestures we're interested in recognizing

if ((inkCollector.CollectionMode ==
CollectionMode.InkAndGesture) ||
(inkCollector.CollectionMode ==
CollectionMode.GestureOnly))

inkCollector.SetGestureStatus(
ApplicationGesture.Al1Gestures, true);
}
else
{
inkCollector.SetGestureStatus(
ApplicationGesture.Al1Gestures, false);

// We're done, so turn ink collection back on
inkCollector.Enabled = true;

Chapter 4 Tablet PC Platform SDK: Tablet Input 139

Some of the InkCollector's properties and methods require tablet input to
be shut off in order for them to be used—a safeguard to prevent simultaneous
user input and programmatic usage.

The purpose of the SetGestureStatus calls in the preceding code is to pro-
vide the gesture recognizer component with the list of gestures we’re interested
in recognizing. This can improve recognition performance and accuracy, which
will be discussed in Chapter 7. By default, the gesture recognizer won'’t try to
recognize any gestures; it will merely return ApplicationGesture.NoGesture in the
InkCollectorGestureEventArgs object’s Gestures array. To get some recognition
results, when a collection mode in which gesture recognition can occur is set,
we’ll ask for every gesture to be recognized for simplicity.

The last piece of code we’ll look at in this sample is the btnClear_Click
event handler. This method removes all strokes from the InkCollector with the
following code:

// Clear out all strokes
inkCollector.Ink.DeleteStrokes();
pnlInput.Invalidate();

The Ink object attached to the InkCollector provides a method named
DeleteStrokes we can use to remove all the strokes from it. Once the strokes are
removed, we need to refresh the host window to reflect the absence of ink in
the Ink object.

Analyzing the Events

After running InputWatcher and doing some inking on the ink canvas, you’ll
quickly notice that the log window shows no output. That’s because all the
events are turned off when the application starts up—try turning on the Stroke
and Gesture events and drawing some ink. Notice how in InkOnly collection
mode only Stroke events occur. If you have a gesture recognizer installed, set
the collection mode to InkAndGesture and write some text (for instance, your
name). You might see some Gesture events firing as well as Stroke events,
meaning that the gesture recognizer thinks one or more of the strokes you
wrote looks like a known gesture. If the collection mode is set to GestureOnly,
you’ll notice that only Gesture events will fire—this means that every stroke is
being recognized as a gesture, although perhaps an unknown one. Addition-
ally, multiple strokes can form a gesture such as a double circle.

Let’s take a look at some sequences of events for common actions, so try
this: turn on every single event type and draw a stroke across the ink canvas.
Whoa! The output window is deluged with loads of events, mostly of the types
MouseMove, NewInAirPackets, and NewPackets. This actually does make sense
because those events represent an update to the current state of the cursor,
when it’s either on the digitizer’s surface or hovering over it. More information

140

Part Il The Tablet PC Platform SDK

on what exactly “the current state of the cursor” means will be discussed in the
upcoming section, “Specifying the Tablet Data to Capture—Packet Properties.”
To reduce the quantity of events logged to the output window, turn off the
MouseDown, MouseMove, MouseUp, and NewInAirPackets events and tap the
Clear button. Now draw a stroke again—this time the output won’t be quite as
overwhelming. You should see something similar to the following:

CursorButtonDown CursorId=8 BtnName=tip BtnId={GUID value}
CursorDown CursorId=8 CursorName=Pressure Stylus
NewPackets CursorId=8 PacketCount=1

NewPackets CursorId=8 PacketCount=13

NewPackets CursorId=8 PacketCount=5

SystemGesture CursorId=8 EventName=Drag Eventlocation=(1391,1797)
NewPackets CursorId=8 PacketCount=11

NewPackets CursorId=8 PacketCount=2

NewPackets CursorId=8 PacketCount=1

NewPackets CursorId=8 PacketCount=2

...lots of NewPackets...

Stroke CursorId=8 Id=2

CursorButtonUp CursorId=8 BtnName=tip BtnId={GUID value}

The installed tablet devices each have at least one cursor that is used to per-
form input. To distinguish between various cursors, they are assigned a unique 1D,
known as the Cursorld. Each cursor also has one or more cursor buttons, where
a cursor button can be either a tip on a stylus or a physical button on a cursor.

The preceding events show that when the pen touches the digitizer surface,
a CursorButtonDown event is fired and immediately followed by a CursorDown
event. Remember that a cursor button can be a tip of a pen, so the tip being
touched to the digitizer surface is considered the button being pressed down—
hence the CursorButtonDown event being fired. The CursorDown event refers
to the fact that a tip or the primary button on the cursor has been pressed
down, signaling the start of an ink stroke.

The various NewPackets events following the CursorDown mean the cursor’s
input state is updated—that is, the cursor’s location and possibly other data
such as pressure amount and tilt has been sampled and packaged into one or
more packets and then sent to the InkCollector instance. These events are
received throughout the duration of the cursor being pressed down.

The SystemGesture event indicates that a Drag system gesture was
detected, though in your case it could be Tap, RightDrag, or RightTap, depend-
ing on how the stroke was drawn. Notice how the system gesture event didn’t
fire immediately after CursorDown because Wisptis.exe needs to compute
whether a tap or a drag is occurring, as we found out earlier in the chapter. The

Chapter 4 Tablet PC Platform SDK: Tablet Input 141

other NewPackets events following SystemGesture indicate how data is contin-
uously being sampled for the cursor and sent to the /nkCollector object.

Finally a Stroke event is fired, indicating that a new stroke has been created,
and a CursorButtonlUp event is fired, meaning that the cursor has been lifted or
its primary button has been released.

The CursorButtonDown and CursorButtonUp events always book-
end each other, as does CursorDown with Stroke or Gesture.

Now try hovering the pen over the input area and clicking the barrel button
if it has one. You should see something similar to this output:

CursorButtonDown CursorId=8 BtnName=barrel BtnId={GUID value}
CursorButtonUp CursorId=8 BtnName=barrel BtnId={GUID value}

The cursor ID is the same as before, but this time the button name and per-
haps the GUID value are different, implying that a different button was detected.

If your pen has an eraser tip, try inverting the pen over the input area and
then turning it back over to the writing end—observe:

CursorInRange CursorlId=9 Inverted=True NewCursor=True
CursorOutOfRange CursorlId=9

CursorInRange CursorId=8 Inverted=False NewCursor=False
CursorOutOfRange CursorId=8

The NewCursor property of the InkCollectorCursorlnRangeEventArgs class
discloses whether the InkCollector instance has seen that cursor over the Ink-
Collector’s lifetime. That information can be useful for your application to ini-
tialize some data structures to handle unique properties of the cursor, or even
to trigger some user interface prompting the user to set some initial properties
for the cursor (for instance, ink color and ink vs. eraser functionality). The col-
lection of cursors encountered by the InkCollector is provided by the cursor’s
property of the InkCollector class. The preceding example also shows how the
eraser tip is considered a different cursor from the ink tip because it has a dif-
ferent cursor ID and NewCursor equals true. Note also how the Inverted prop-
erty equals true—we’ll use that information later when we implement top-of-
pen erase functionality. When the pen is righted again, we see that the cursor
ID is the original value it was before the eraser tip was used—and we also
know the ink tip is being used because the Inverted property equals false, and
the InkCollector has seen the cursor before.

142

Part Il The Tablet PC Platform SDK

Mouse Message Synchronization

Events from the InkCollector travel a different path through the Windows
OS than mouse messages do. InkCollector events come from Wisptis.exe,
dispatched to a tablet-aware application by RPC. Mouse events are triggered
by Wisptis.exe, but come from User32.dll and are dispatched to an appli-
cation through the application’s message queue. Both processes (Wisptis.exe
and the application receiving the event) are naturally executing asynchro-
nously to one another. Because of this, you cannot rely on the ordering of
InkCollector events in conjunction with mouse events. It’s perfectly OK to
rely on the ordering of just InkCollector events and/or just mouse events,
but not both togetber.

InkOverlay Events

The additional events that the InkOverilay class fires, that is, Painting,
Painted, SelectionChanging, SelectionChanged, SelectionMoving, Selection-
Moved, SelectionResizing, SelectionResized, StrokesDeleting, and StrokesDeleted,
weren’t included in the already long sample for brevity, and for the fact that they
are straightforward in their behavior. Hence, it’s left as an exercise for the reader
to add the InkOuverlay events to InputWatcher and observe when they fire.

What you’ll see in the modified InputWatcher application is that the events
suffixed with “ing” always precede their corresponding counterpart suffixed
with “ed”. For example, SelectionChanging will always fire before Selection-
Changed, and SelectionMoving will always fire before SelectionMoved.

Specifying the Tablet Data to Capture—Packet Properties

Now it’s time to take a closer look at the data received by the NewPackets and
NewlInAirPackets events. What exactly is a packet, and what information is in
one? To explain this, we’ll take another quick dive under the covers of the TIS
to see what'’s going on.

Recall that in addition to the location of the cursor, tablet digitizer hard-
ware may provide other data such as pen pressure, tilt angle, and rotation angle
to Wisptis.exe via the HID driver. This data can be used to render ink in a more
expressive and realistic manner, and/or provide extended user input capabili-

Table 4-10

Chapter 4 Tablet PC Platform SDK: Tablet Input 143

ties as discussed earlier. The various properties available from a digitizer are
known as packet properties, referring to how data is communicated from the
HID driver to Wisptis.exe in the form of packets—chunks of data with a format
known to both the driver and Wisptis.exe. Packet properties are communicated
from Wisptis.exe to a tablet-aware application, though it is the application’s
responsibility to tell Wisptis.exe which properties it wants to receive.

The availability of various packet properties is totally dependent
on the hardware manufacturer (and software driver if applicable) of the
tablet device. The sample application DeviceWalker found later in this
chapter is able to display exactly which properties are supported by
your installed hardware.

The InkCollector class exposes packet properties via its DesiredPacket-
Description property. A packet description is defined to be simply a list of
packet properties. As such, the DesiredPacketDescription property is an array of
zero or more System.Guids—valid values of which are found as static members
in the Microsoft.Ink.PacketProperty class. A few of the properties and their
descriptions are given in Table 4-10.

A Partial Listing of PacketProperty Members and Their Descriptions

PacketProperty Member Name Description

X The X coordinate of the pointer’s location

Y The Y coordinate of the pointer’s location
NormalPressure The pressure measurement of the pointer

PacketStatus Private Wisptis data

RollRotation The rotation angle about the long axis of the pointer
PitchRotation The rotation angle about the normal vector to the digitizer

surface of the pointer

Figure 4-8 shows how packets relate to packet properties, packet property
values, and the packet description.

144 Part Il The Tablet PC Platform SDK

Packet property values

el DR
Packet properties 576 > Packet
X 877
----------- <
Packet description Y 210
Pressure 575 > Packet > Packet data
864
<
213
577 > Packet
861
J

Figure 4-8 The relationship of packets, packet properties, packet prop-
erty values, and packet description

InkCollector always ensures that X, Y, and PacketStatus are in the packet
description it provides to Wisptis.exe, even if DesiredPacketDescription is null or
doesn’t contain those values. In fact, if the X, Y, or PacketStatus packet property
is present in the desired packet description of an InkCollector object, that prop-
erty is ignored. Those packet properties are always prepended by InkCollector to
the packet description when it’s specified to Wisptis.exe to make sure that the
location and cursor button state of the pointer is always captured.

If the tablet digitizer you’re using supports pressure information, you’ll
notice that ink drawn in HelloInkCollector will vary in width according to how
much pressure was applied. This is because by default the DesiredPacket-
Description property of an InkCollector object is an array containing the X, Y,
and NormalPressure packet properties. Figure 4-9 shows what pressurized ink
looks like—cool!

If your tablet hardware does support pressure sensitivity, try adding the
following line of code in HelloInkCollector just after the InkCollector object is
created:

// We'1l ask the InkCollector to not receive any pressure data

// from the devices

inkCollector.DesiredPacketDescription = new Guid [] {
PacketProperty.X, PacketProperty.Y };

When you compile and run the application, you’ll notice that ink thickness
will not change with the amount of pressure used as strokes are drawn.

Chapter 4 Tablet PC Platform SDK: Tablet Input 145

HellolnkOverlay D|§| g|

Dressure

Colar m

Figure 4-9 The result of pressure support in the HellolnkCollector
application

Requesting Packet Properties

If an InkCollector object’s desired packet description contains packet
properties that aren’t supported by an installed tablet device, that's OK—
they’re properties that are desired, not required. The InkCollector won’t
yield any data from that tablet for those properties, and it will work fine.
To prove this point, notice how ink can be drawn with the mouse in the
HelloInkCollector application when the DesiredPacketProperties contain
PacketProperty. NormalPressure—the ink just won’t have any pressure data.

We'll see how to determine the list of packet properties that are supported
by a tablet device in the next sample application.

The NewPackets and NewiInAirPackets events notify an application that a
set of packet property values was received—NewPackets indicates the packets
were received when the cursor was down, and NewlnAirPackets indicates the
packets were received when the cursor was hovering. They are two separate
events instead of one because not all the EventArgs data overlaps between them.

Sample Application: PacketPropertyWatcher

To illustrate using packet property values, this sample application will list all
supported packet properties for the default tablet device, allow the selection of
any number of them, and display the corresponding values as the pointer is
used with an instance of InkCollector.

146

Part Il The Tablet PC Platform SDK

Because the Tablet PC Platform supports multiple tablet devices
being installed, a default tablet exists to identify which tablet device
should be used as the primary one.

If the only tablet device you have installed is a mouse, or if the default tablet
device installed is rather meager in capability, chances are that there won’t be any
packet properties available besides X and Y coordinates and PacketStatus. In this
case, this sample application might not clearly demonstrate much functionality,
but it is hopefully still useful for reference.

Figure 4-10 shows what the sample looks like in action.

PacketPropertyWatcher

=

-

-

¥ PacketStatus

I~ SeriaMumber

W MarmalPressure

™ TangentPressure

I~ AzimuthOrientation
AltitudeQrientation

#
Y
d
P
S

[~ TwistOrientation
I~ PitchRotation
I RolRatation v

| 2741 1783 [u] [u] 470

Figure 4-10 The PacketPropertyWatcher sample application displaying
the values of desired packet property types from the default tablet.

Now let’s take a look at the source code to PacketPropertyWatcher:

PacketPropertyWatcher.cs

LITLTTLLILTL T L LT L L L E L r 7 i 11011717777
//

// PacketPropertyWatcher.cs

//

// (c) 2002 Microsoft Press

// by Rob Jarrett

//

// This program allows the user to choose packet properties to

// collect and then displays their values in real time.

//

[I1TTLLTL LT T LT DL LD r 77 r 770771117177

using System;

using
using
using
using
using
using

Chapter 4 Tablet PC Platform SDK: Tablet Input 147

System.Collections;
System.Drawing;
System.Reflection;
System.Text;
System.Windows.Forms;
Microsoft.Ink;

public class frmMain : Form

{
private Panel pnlInput;
private CheckedListBox clbPacketProps;
private TextBox txtOutput;
private InkCollector inkCollector;

// Entry point of the program
[STAThread]
static void Main()

{

Application.Run(new frmMain());

// Main form setup
public frmMain()

{

SuspendLayout();

// Create and place all of our controls
pnlInput = new Panel();
pnlInput.BorderStyle = BorderStyle.Fixed3D;
pnlInput.Location = new Point(8, 8);
pnlInput.Size = new Size(240, 192);

clbPacketProps = new CheckedListBox();
clbPacketProps.CheckOnClick = true;
clbPacketProps.Location = new Point(256, 8);
clbPacketProps.Size = new Size(144, 192);
clbPacketProps.ThreeDCheckBoxes = true;
clbPacketProps.ItemCheck += new ItemCheckEventHandler(
clbPacketProps_ItemCheck);

txtOutput = new TextBox();

txtOutput.Font = new Font(FontFamily.GenericMonospace, 8.0f);
txtOutput.Location = new Point(8, 208);

txtOutput.ReadOnly = true;

txtOutput.Size = new Size(392, 24);

txtOutput.WordWrap = false;

(continued)

148 Part Il The Tablet PC Platform SDK

PacketPropertyWatcher.cs (continued)

// Configure the form itself

ClientSize = new Size(408, 238);

Controls.AddRange(new Control[] { pnllInput,
clbPacketProps,
txtOutput});

FormBorderStyle = FormBorderStyle.FixedDialog;

MaximizeBox = false;

Text = "PacketPropertyWatcher";

ResumelLayout(false);

// Create an InkCollector object
inkCollector = new InkCollector(pnlInput.Handle);

// For simplicity, we're only going to have InkCollector
// use the default tablet since multiple tablets will

// probably have different sets of supported packet

// properties — that would make the code/UI more complex
// and obsfucate what's we're trying to illustrate.
Tablet t = (new Tablets()).DefaultTablet;
inkCollector.SetSingleTabletIntegratedMode(t);

// Fill up ListBox with supported packet properties
foreach (FieldInfo f in
typeof(PacketProperty).GetFields())

{
// We're only interested in static public members of
// the class.
if (f.IsStatic && f.IsPublic)
{
Guid g = (Guid)f.GetValue(f);
if (t.IsPacketPropertySupported(g))
{
clbPacketProps.Items.Add(f.Name);
}
}
}

// Hook up event handlers to inkCollector
inkCollector.NewInAirPackets +=
new InkCollectorNewInAirPacketsEventHandler(
inkCollector_NewInAirPackets);
inkCollector.NewPackets +=
new InkCollectorNewPacketsEventHandler(
inkCollector_NewPackets);

// We're now set to go, so turn on ink collection

Chapter 4 Tablet PC Platform SDK: Tablet Input 149

inkCollector.Enabled = true;

// InkCollector stroke event handler
private void clbPacketProps_ItemCheck(object sender,
ItemCheckEventArgs e)

// Get the Guid value of the item being (un)checked

string n = clbPacketProps.Items[e.Index] as string;

Guid g = new Guid();

foreach (FieldInfo f in
typeof(PacketProperty).GetFields())

{
// We're only interested in static public members
// of the class.
if (f.IsStatic && f.IsPublic)
{
if (f.Name == n)
{
// Found it!
g = (Guid)f.GetValue(f);
break;
}
}
}

// Wait until any current input is finished
while (inkCollector.CollectingInk) {}

// Turn off ink collection so we can alter the desired
// packet description

inkCollector.Enabled = false;

if (e.NewValue == CheckState.Checked)

{
// Add the new packet property to the desired packet
// properties
ArraylList propList = new ArraylList(
inkCollector.DesiredPacketDescription);
propList.Add(g);
inkCollector.DesiredPacketDescription =
(Guid[])propList.ToArray(typeof(Guid));
}
else
{

// Remove the packet property from the desired
// packet properties

(continued)

150 Part Il The Tablet PC Platform SDK

PacketPropertyWatcher.cs (continued)

ArraylList propList = new ArraylList(
inkCollector.DesiredPacketDescription);

propList.Remove(g);

inkCollector.DesiredPacketDescription =
(Guid[])propList.ToArray(typeof(Guid));

// We're done, so turn ink collection back on
inkCollector.Enabled = true;

// InkCollector new in—air packets event handler
private void inkCollector_NewInAirPackets(object sender,
InkCollectorNewInAirPacketsEventArgs e)

// Update the output window with the packet data
UpdateOutput(e.PacketCount, e.PacketData);

// InkCollector new packets event handler
private void inkCollector_NewPackets(object sender,
InkCollectorNewPacketsEventArgs e)

// Update the output window with the packet data
UpdateOutput(e.PacketCount, e.PacketData);

// Updates the UI with new packet values
private void UpdateOutput(int cPktCount, int [] packetData)
{
// This shouldn't ever occur, but let's be safe to avoid a
// divide—by-zero exception
if (cPktCount == 0)
{

return;

// Compute the length of one packet
int nPktLen = packetData.GetlLength(@) / cPktCount;

// Compute the starting index of the last packet
int nOffset = nPktLen * (cPktCount-1);

// Get all of the packet property values
StringBuilder builder = new StringBuilder();
for (int n = @; n < nPktlLen; n++)

{

Chapter 4 Tablet PC Platform SDK: Tablet Input 151

builder.AppendFormat("{0,8} "
packetData[nOffset+n].ToString());
}

// Update the EditBox's text
txtOutput.Text = builder.ToString();

The main form of the application starts off as usual by creating its child
controls: a Panel to be used as an InkCollector host window, a CheckedListBox
to list all the supported packet properties, and an EditBox to act as a crude Ul
for displaying the packet property values.

After an InkCollector instance is created using pnilnput as the host window,
it is followed by some rather curious-looking code:

Tablet t = (new Tablets()).DefaultTablet;
inkCollector.SetSingleTabletIntegratedMode(t);

Recall that by default an InkCollector instance receives tablet input from
all installed tablet devices. Different tablet devices can (and usually do) have
different sets of supported packet properties, so to keep the user interface of
this application as simple as possible we’ll just deal with the default tablet. Any
other installed tablet device could be used, but the default one is typically the
most capable. We tell the InkCollector which tablet device to accept input from
by calling InkCollector's SetSingleTabletIntegratedMode method.

Single vs. Multiple Tablet Mode

Most tablet-aware applications will want all installed tablet devices used
for input. However, if that’s not desirable for whatever reason, the Ink-
Collector class supports excluding the mouse from input as well as listening
to a single tablet device. InkCollector constructor overloads or the methods
SetAllTabletsMode and SetSingleTabletIntegratedMode are used, respectively.

The term “integrated” indicates how input on the digitizer device
should be mapped to the screen. It loosely refers to the physical relation-
ship of the tablet device to the screen display, though it doesn’t enforce
that relationship: external tablets are nonintegrated with the display, and
tablets layered over the display are integrated. In the integrated case,
digitizer input should be mapped to the entire screen area so that the
mouse cursor will follow the pen. In the nonintegrated case, digitizer
input is mapped to the InkCollector object’s host window dimensions to
typically allow greater precision.

Version 1 of the Tablet PC Platform supports only integrated mapping;
sometime in the future, nonintegrated mapping may be added.

152

Part Il The Tablet PC Platform SDK

The Tablets class encapsulates the collection of installed tablet devices in
the system—its elements are Tablet objects. By simply creating an instance of
Tablets, the collection is automatically filled and can then be used—or as the
preceding code shows, its DefaultTablet property can be queried. We'll learn
more about the Tablets and Tablet classes toward the end of the chapter in the
section “Getting Introspective.”

Next the PacketPropertyWatcher application uses the reflective abilities of
C# and the .NET Framework to fill up the CheckedListBox with the packet
properties supported by the default tablet device. The Tablet class method
IsPacketPropertySupported(Guid g) determines whether a given tablet device
supports a given packet property. As the various packet property GUIDs are
iterated over, adding only the supported ones to the CheckedListBox is done
as follows:

Guid g = (Guid)f.GetValue(f);
if (t.IsPacketPropertySupported(g))
{

clbPacketProps.Items.Add(f.Name);

The event handlers to the InkCollector events NewPackets and NewInAir-
Packets are added, and the InkCollector is enabled so that tablet input can
begin.

When an item is checked or unchecked in the CheckedListBox, the
clbPacketProps_ItemCheck event handler adds or removes the corresponding
packet property from the InkCollector’s DesiredPacketDescription. The first part
of the function computes the GUID of the packet property because items in the
CheckedListBox are stored as strings, and the second part does the adding or
removing:

// Wait until any current input is finished
while (inkCollector.CollectingInk) {}

// Turn off ink collection so we can alter the desired
// packet description
inkCollector.Enabled = false;

if (e.NewValue == CheckState.Checked)

{
// Add the new packet property to the desired packet
// properties
ArrayList proplList = new ArraylList(

inkCollector.DesiredPacketDescription);

propList.Add(g);
inkCollector.DesiredPacketDescription =

Chapter 4 Tablet PC Platform SDK: Tablet Input 153

(Guid[])propList.ToArray(typeof(Guid));
else

// Remove the packet property from the desired

// packet properties

ArrayList proplList = new ArraylList(
inkCollector.DesiredPacketDescription);

propList.Remove(g);

inkCollector.DesiredPacketDescription =
(Guid[1)propList.ToArray(typeof(Guid));

// We're done, so turn ink collection back on
inkCollector.Enabled = true;

You might be wondering what’s going on with that first while statement.
Well, it turns out that to change the DesiredPacketDescription property of an
InkCollector it must be in the disabled state. When changing the enabled state
of an InkCollector object, no current ink collection can be occurring or else an
exception will be thrown. InkCollector's property CollectingInk is polled to
cause the program flow to temporarily halt if any in-progress inking is occur-
ring. You might now be thinking that in order for the checked ListBox’s item-
Checked event to fire, the InkCollector couldn’t be in the middle of inking
because the pointer was used to select the item, right? Yes, physically that’s
what might have happened, but recall the asynchronous execution of Windows
messages and tablet input, and how either form of event could occur in any
order. If the user is quick enough, he or she could stop inking and immediately
choose an item in the ListBox, causing a Windows message to fire indicating an
item has been checked or unchecked in the ListBox. This would cause nkCol-
lector’s Enabled property to be set to false, but in the meantime it’s possible that
the InkCollector is still processing tablet input from the ink stroke. That would
cause the Enabled property to throw an exception—an undesirable behavior.

The simple rule here is this: whenever you’re going to disable an Ink-
Collector object, make sure you wait until any inking is completed to avoid any
problems.

Once the InkCollector is disabled, the desired packet description is modi-
fied to either add or remove the chosen packet property GUID from it. Then the
InkCollector is re-enabled so that tablet input can resume.

The inkCollector_NewInAirPackets and inkCollector_NewPackets event
handlers call the UpdateOutput method to get the packet data displayed in the
output window. Packets arrive as an array of integers along with the count of
the number of packets contained in the array. Because multiple packets can

154

Part Il The Tablet PC Platform SDK

arrive in one event, UpdateOutput displays only the data in the last packet—
there’s no use in trying to display the others as they’d just quickly flicker by in
the output window. You can see how this is handled in the following code:

// Compute the Tength of one packet
int nPktLen = packetData.GetlLength(@) / cPktCount;

// Compute the starting index of the last packet
int nOffset = nPktLen * (cPktCount-1);

// Get all of the packet property values
StringBuilder builder = new StringBuilder();
for (int n = @; n < nPktlLen; n++)
{
builder.AppendFormat("{0,8} ",
packetData[nOffset+n].ToString());

// Update the edit box's text
txtOutput.Text = builder.ToString();

The method first computes the length of one packet in the array, easily
accomplished by dividing the number of packets into the total array length. An
offset to the last packet in the array is computed, and then a for-loop concate-
nates each packet value to a string. The resulting string is then displayed in the
output window.

If we wanted to actually make sense of the various members in the packet,
we’d need the packet description for the tablet device. This is easily obtained in
a NewPackets event handler because a Stroke object is available in the Event-
Args that has a specific PacketDescription property. For a NewInAirPackets
event handler, the packet description would have to be manually computed,
and this is accomplished by obtaining the DesiredPacketDescription from the
InkCollector, seeing if each GUID in the packet description is supported by
the tablet device using the method Tablet.IsPacketPropertySupported, and
then constructing an array of supported properties, always prepending the
GUIDs for X and Y.

Notice that in the PacketPropertyWatcher application if you turn off the X
and Y properties their values will still be displayed in the output window, proving
that those properties are always collected.

Ink Coordinates
You may have noticed that the X and Y values in the packet may seem rather
large in magnitude—too big to be screen pixels. Recall that tablet input not only

Chapter 4 Tablet PC Platform SDK: Tablet Input 155

needs to be captured quickly, but its resolution must be significantly high
enough to give a great inking experience and yield high recognition accuracy.
The X and Y values in a packet are in ink coordinate space—otherwise
known as HIMETRIC units. We'll learn more about them in the next chapter,
along with how to convert X and Y values into screen pixels (for example, to
implement your own editing behavior or a custom ink type, perhaps).

Extending InkOverlay Behaviors

The functionality in the /nkOuveriay is cool, and it provides us with some pretty
complex functionality for free. As we saw earlier, though, if you contrast k-
Overlay to the inking experience Windows Journal yields, you'll see that some
functionality is missing. That functionality is what your application’s users may
request once they begin using a Tablet PC with your application. Recall the list
of missing functionality we enumerated earlier:

B Using the top-of-pen as an eraser

B Press-and-hold (or right-click and right-drag) in ink mode to mode-
lessly switch to select mode

B An insert/remove space mode

B Showing selection feedback in real time (for example, as the lasso is
being drawn, ink becomes selected or deselected immediately as it is
enclosed or excluded by the lasso)

B Using a scratchout gesture to delete strokes

This section addresses the first two items listed: lack of top-of-pen erase
and modeless switching to select mode. The samples here illustrate possible
solutions to rolling your own functionality into these areas.

Sample Application: TopOfPenErase

Top-of-pen erase is an extremely handy shortcut to access ink erasing function-
ality, not to mention an easy one to understand. The InkOverlay class provides
an explicit editing mode for erasing ink (EditingMode == DeleteMode), and we
saw earlier that eraser tip usage of a pen is detected through the Cursor class’s
property Inverted. If we can put these two pieces of functionality together, it
seems that we’re most of the way there in implementing top-of-pen erase.

156

Part Il The Tablet PC Platform SDK

The task at hand here then is to switch an InkOveriay into DeleteMode
when the cursor becomes inverted and switch back to the previous mode when
the pen returns to being right side up. Sounds easy enough, doesn’t it? Let’s
enhance the HelloInkOverlay sample presented earlier so that it provides top-
of-pen erasing:

TopOfPenErase.cs

[ILLTTLTTL LTI DT LT r il i i 777077111777
//

// TopOfPenErase.cs

1/

// (c) 2002 Microsoft Press

// by Rob Jarrett

//

// This program demonstrates usage of the InkOverlay class and how
// to respond to system gestures in order to implement top—of—pen

// erase functionality.

//

[I1TTTLT LT LT LTI LT LD 7l r i 7171771117177

using System;

using System.Drawing;

using System.Reflection;
using System.Windows.Forms;
using Microsoft.Ink;

public class frmMain : Form

{
private Panel pnlInput;
private Button btnColor;
private ComboBox cbxEditMode;
private InkOverlay inkOverlay;

private InkOverlayEditingMode modeSaved;

// Entry point of the program
[STAThread]
static void Main()
{
Application.Run(new frmMain());

// Main form setup
public frmMain()
{

SuspendLayout();

Chapter 4 Tablet PC Platform SDK: Tablet Input

// Create and place all of our controls
pnlInput = new Panel();
pnlInput.BorderStyle = BorderStyle.Fixed3D;
pnlInput.Location = new Point(8, 8);
pnlInput.Size = new Size(352, 192);

btnColor = new Button();

btnColor.Location = new Point(8, 204);

btnColor.Size = new Size(60, 20);

btnColor.Text = "Color";

btnColor.Click += new System.EventHandler(btnColor_Click);

cbxEditMode = new ComboBox();
cbxEditMode.DropDownStyle = ComboBoxStyle.DropDownlList;
cbxEditMode.Location = new Point(76, 204);
cbxEditMode.Size = new Size(72, 20);
cbxEditMode.SelectedIndexChanged +=

new System.EventHandler(cbxEditMode_SelIndexChg);

// Configure the form itself

ClientSize = new Size(368, 232);

Controls.AddRange(new Control[] { pnlInput,
btnColor,
cbxEditMode});

FormBorderStyle = FormBorderStyle.FixedDialog;

MaximizeBox = false;

Text = "TopOfPenErase";

ResumelLayout(false);

// Fill up the editing mode combobox

foreach (InkOverlayEditingMode m in
InkOverlayEditingMode.GetValues(
typeof(InkOverlayEditingMode)))

cbxEditMode.Items.Add(m);
// Create a new InkOverlay, using pnlInput for the collection
// area

inkOverlay = new InkOverlay(pnlInput.Handle);

// Select the current editing mode in the combobox
cbxEditMode.SelectedItem = inkOverlay.EditingMode;

157

(continued)

158 Part Il The Tablet PC Platform SDK

TopOfPenErase.cs (continued)

// Install handler for cursor in range so we can detect when
// the eraser tip or ink tip is used.
inkOverlay.CursorInRange +=
new InkCollectorCursorInRangeEventHandler(
inkOverlay_CursorInRange);

// Initialize the saved editing mode value
modeSaved = inkOverlay.EditingMode;

// We're now set to go, so turn on tablet input

inkOverlay.Enabled = true;

// Handle the click of the color button
private void btnColor_Click(object sender, System.EventArgs e)

{
// Create and display the common color dialog, using the
// current ink color as its initial selection
ColorDialog digColor = new ColorDialog();
dlgColor.Color = inkOverlay.DefaultDrawingAttributes.Color;
if (d1gColor.ShowDialog(this) == DialogResult.0K)
{
// Set the current ink color to the selection chosen in
// the dialog
inkOverlay.DefaultDrawingAttributes.Color = dlgColor.Color;
}
}

// Handle the selection change of the editing mode combobox
private void cbxEditMode_SelIndexChg(object sender,
System.EventArgs e)

{
// Set the current editing mode to the selection chosen in the
// combobox
inkOverlay.EditingMode =

(InkOverlayEditingMode)cbxEditMode.SelectedItem;

// Save current editing mode in case it gets restored later
modeSaved = inkOverlay.EditingMode;

}

// Handle cursor in range events from inkOverlay
private void inkOverlay_CursorInRange(object sender,
InkCollectorCursorInRangeEventArgs e)

if (e.Cursor.Inverted)

Chapter 4 Tablet PC Platform SDK: Tablet Input 159

{
// Eraser tip is being used, so switch to delete mode if
// we need to
if (inkOverlay.EditingMode != InkOverlayEditingMode.Delete)
{
// Save current editing mode so we can restore it later
modeSaved = inkOverlay.EditingMode;
// Switch to delete mode
inkOverlay.EditingMode = InkOverlayEditingMode.Delete;
}
}
else
{
// Ink tip is being used, so restore previous mode if we
// need to
if (inkOverlay.EditingMode == InkOverlayEditingMode.Delete &&
modeSaved != InkOverlayEditingMode.Delete)
{
// Restore the previous editing mode
inkOverlay.EditingMode = modeSaved;
}
}

The example differs only slightly from the original—a member variable
modeSaved and an event handler for CursorinRange are added. The
inkOverlay_CursorInRange event handler switches to DeleteMode when the
pen is inverted and reverts to the previous mode when it is righted again. The
modeSaved member stores the current InkOverlayEditingMode before the
switch to DeleteMode occurs so that we know which mode to return to when
the ink tip gets detected.

Notice how the modeSaved member is also updated in
cbxEditMode_SellndexChg. This is done to avoid a bug—the accidental reverting
to modeSaved's value if the CursorlnRange event fires when the eraser tip isn’t
used (for instance, the cursor goes outside the input area and then returns). To
see the problem, try this: comment out the line that updates the value and run the
application. Switch to select mode, move the pen outside the input area and then
back into it—you’ll see that ink mode gets switched to instead of select mode.

160

Part Il The Tablet PC Platform SDK

Sample Application: ModelessSwitch

Explicit mode switching, particularly between inking and editing, is cumber-
some, inefficient, and annoying. Using right-tap and right-drag (via press-and-
hold, a pen barrel button, or the right mouse button) to access selection and
editing behavior is convenient, not to mention powerful.

This next sample application shows an implementation of modeless
switching between ink and input modes via right-tap and right-drag. In Chapter 6,
at which point we’ll better understand rendering and hit-testing ink, we’ll utilize
some homemade lasso selection capability (with real-time selection feedback!)
so that we can complete this application’s functionality.

The application is based on the HelloInkCollector sample with one initial
change—an InkOverlay is used instead of an InkCollector to get selection
functionality.

ModelessSwitch.cs

[T TTTT T L LTIl 7 i i i i i rrrrrrr777r7rr7r7777
//

// ModelessSwitch.cs

//

// (c) 2002 Microsoft Press

// by Rob Jarrett

//

// This program demonstrates the basis for how to do an editing mode
// switch in a modeless fashion using the InkOverlay class.

//

[ILLTTTTT L7777 rrrirrrrrr 770 rrr0r77777717171771777

using System;

using System.Drawing;

using System.Windows.Forms;
using Microsoft.Ink;

public class frmMain : Form

{
private InkOverlay inkOverlay;

private Stroke strkCurr = null;
private Stroke strkCancel = null;

// Entry point of the program
[STAThread]
static void Main()
{
Application.Run(new frmMain());

Chapter 4 Tablet PC Platform SDK: Tablet Input

// Main form setup
public frmMain()
{
// Set up the form which will be the host window for an
// InkCollector instance
ClientSize = new Size(472, 240);
Text = "ModelessSwitch";

// Create a new InkOverlay, using the form for the collection
// area
inkOverlay = new InkOverlay(this.Handle);

// Set up event handlers for inkOverlay
inkOverlay.CursorDown +=
new InkCollectorCursorDownEventHandler(
inkOverlay_CursorDown);
inkOverlay.Stroke +=
new InkCollectorStrokeEventHandler(
inkOverlay_Stroke);
inkOverlay.SystemGesture +=
new InkCollectorSystemGestureEventHandler(
inkOverlay_SystemGesture);

// We're now set to go, so turn on tablet input
inkOverlay.Enabled = true;

// Handle a cursor down event from inkOverlay
private void inkOverlay_CursorDown(object sender,
InkCollectorCursorDownEventArgs e)

// Remember the current stroke being created
strkCurr = e.Stroke;

// Handle a stroke event from inkOverlay
private void inkOverlay_Stroke(object sender,
InkCollectorStrokeEventArgs e)

// Throw away the stroke if a right tap or right drag was
// detected during it's creation
if (strkCancel != null && (e.Stroke.Id == strkCancel.Id))
{

e.Cancel = true;

strkCancel = null;

// Turn dynamic stroke rendering back on

161

(continued)

162 Part Il The Tablet PC Platform SDK

ModelessSwitch.cs (continued)

inkOverlay.DynamicRendering = true;

// Reset current stroke value for the next stroke created
strkCurr = null;

// Handle a system gesture event from inkOverlay
private void inkOverlay_SystemGesture(object sender,
InkCollectorSystemGestureEventArgs e)

{

if (e.Id == SystemGesture.RightTap)

{
// Right tap means throw out the stroke, and show a context
// menu
strkCancel = strkCurr;
Invalidate();
//LATER: hit test the item at e.Point and select it

}

else if (e.Id == SystemGesture.RightDrag)

{
// Right drag means throw out the stroke, and start up the
// selection lasso
strkCancel = strkCurr;
// Turn off dynamic rendering and set the in—progress ink
// stroke to be invisible — that way when we invalidate the
// form no ink will be drawn for the stroke
inkOverlay.DynamicRendering = false;
strkCancel.DrawingAttributes.Transparency = 255;
Invalidate();
//LATER: start up selection lasso, showing realitme
// feedback of ink selection

}

}

You can see there’s a fair amount of logic over and above HelloInkCollector
to support modeless switching. Let’s take a look at what this extra code does.

The implicit mode switch to select mode is triggered by a right-tap or
right-drag, which the SystemGesture event will notify us of. When either system
gesture fires, we want to throw away the ink stroke that was created; otherwise,
ugly ink blobs will be added into our /nk object.

The system gestures RightTap and RightDrag are responded to in the
InkOverlay_SystemGesture event handler. In the RightTap case, a reference to

Chapter 4 Tablet PC Platform SDK: Tablet Input 163

the stroke is saved so that it can be later thrown away in the imminent Stroke
event (by setting Cancel to true in the InkCollectorStrokeEventArgs). For Right-
Drag, not only is a reference to the stroke saved for later disposal, but also
dynamic ink rendering is turned off so that the ink stroke doesn’t continue to be
drawn. Also, the stroke is made completely invisible by having its drawing
attributes’ Transparency property set to 255 (the maximum value). These both
give the user the visual impression that the stroke disappears during creation.

Getting Introspective

Sitting alone in front of a crackling fire, sipping a glass of cabernet, listening to
William Shatner’s rendition of “Mr. Tambourine Man”... life, the universe—what
does it all mean? OK, that's actually not what’s being referred to here. Rather,
we're going to talk about how your tablet-aware application might find it useful
to know more about the hardware environment it’s running in—perhaps find out
how many tablet devices are installed, what their capabilities are, and so on.

This section covers the Platform SDK support to introspect the system, in
order to garner all the information you’d ever need about the installed tablet
devices.

Tahlets Collection

We briefly saw earlier that the Tablets class encapsulates the collection of
installed tablet devices in the system. The collection’s elements are Tablet
objects, representing a single installed tablet device. You obtain an instance of
Tablets simply by allocating it—Tablet PC Platform will automatically fill in the
contents.

Besides having the normal collection properties and methods, the Tablets
class also has a DefaultTablet property that identifies the primary tablet device
installed in the system.

Tablet Class

Tablet devices installed in the system have various attributes, such as a name, a
coordinate system, a list of all the packet properties it can report, and other
capabilities such as being able to uniquely identify pens.

The Tablet class encapsulates the properties of an installed tablet device.
Let’s take a look at each of these properties in Table 4-11:

164 Part Il The Tablet PC Platform SDK

Table 4-11 The Properties of the Tablet Class

Property Name Type Description

HardwareCapabilities TabletHardwareCapabilities A bitfield of various device capa-
bilities, defined in the TabletHard-
wareCapabilities enumeration

MaximumlInputRectangle System.Drawing.Rectangle The coordinate space of the entire
surface of the tablet device

Name String A human-readable form of the
tablet’s name

PlugAndPlayld String The device name reported to the
system by the device

The HardwareCapabilities property is a bitfield of values found in the
TabletHardwareCapabilities enumeration. The various capabilities of tablet hard-
ware that the Tablet PC Platform currently enumerates are as listed in Table 4-12:

Table 4-12 The Members of the TabletHardwareCapabilities Enumeration

Hardware Capability Description

CursorMustTouch The pen must be touching the surface for its position to be sampled.
CursorsHavePbhysicallds The tablet is able to distinguish between pens used with the device.

HardProximity The pen’s position can be reported while it’s in the air but in close
proximity to the device.

Integrated The tablet is integrated with the display.

The Tablet class’s IsPacketPropertySupported method is a useful function
that tells you whether the tablet supports or provides a given packet property
type. We saw use of this function earlier in the PacketPropertyWatcher sample
so that the ListBox could be filled up only with packet properties that the
default tablet supported.

The GetPropertyMetrics method returns an instance of TabletProperty-
Metrics given a packet property GUID. TabletPropertyMetrics is used to provide
the units, resolution, and minimum and maximum values of a packet property
type. This is useful information if you ever want to parse packet data beyond
just X and Y values—for example, if you wanted pen pressure or rotation to per-
form some special behavior, the TabletPropertyMetrics of the packet property
should be used so that you know how to interpret those packet data values.

Chapter 4 Tablet PC Platform SDK: Tablet Input 165

Sample Application: DeviceWalker
This final sample application displays all installed tablet devices, their capabilities,
and supported packet properties, as shown in Figure 4-11.

DeviceWalker

Installed tablet devices:

PrP ID: InputRect: [0.0,15240,20320]

Hardware capabilities:

Capability | Poszessed
Integrated Mo
CurzortustT ouch Mo
HardProzimity Yes
CurzorsHavePhysicallds Yes

Packet properties:

Froperty | Supported -~
* “es: [20319-0 Centimeters)

N “es: [15239-0 Centimeters)

z Yes: [1023-1023 Centimet. ..
PacketStatus es: [8-0 Default) w
< >

Cloze

Figure 4-11 The DeviceWalker sample application shows the capabilities
of all the tablet devices installed in the system.

DeviceWalker.cs

LILTTIILTLLTTI LI L LT LT E L LT 0 L7777 r7171777
//

// DeviceWalker.cs

//

// (c) 2002 Microsoft Press

// by Rob Jarrett

//

// This program demonstrates introspection of installed Tablet

// devices.

//

LIITTTLLLTTT LT E LT L0000 7771710717 1177777

using System;

using System.Drawing;

using System.Reflection;
using System.Windows.Forms;
using Microsoft.Ink;

public class frmMain : Form
{
private Label 1b1Tablets;

(continued)

166 Part Il

The Tablet PC Platform SDK

DeviceWalker.cs (continued)

private Label 1b1Linel;
private ComboBox cbTablets;
private Label 1bT1Extralnfo;
private Label TbTHardwareCaps;
private Label 1b1Line2;
private ListView lvHardwareCaps;
private Label 1b1PacketProps;
private Label 1bTLine3;
private ListView lTvPacketProps;
private Button btnClose;

// Entry point of the program

[STAThread]

static void Main()

{
Applicati

// Main form
public frmMai
{

SuspendLlLa

on.Run(new frmMain());

setup
n()

yout();

// Create and place all of our controls

1b1Tablets
1b1Tablets.Location
1b1Tablets.Size

1b1Tablet

1bTLinel

1bTLinel.
1b1Linel.
1b1Linel.

cbTablets
cbTablets
cbTablets
cbTablets
cbTablets

new Label();

new Point(8, 8);

new Size(128, 16);

s.Text = "Installed tablet devices:";

new Label();
BorderStyle
Location
Size

BorderStyle.Fixed3D;
new Point(136, 16);
new Size(1l44, 2);

new ComboBox();

.DropDownStyle = ComboBoxStyle.DropDownlList;
.Location new Point(16, 32);

.Size new Size(264, 21);
.SelectedIndexChanged +=

new System.EventHandler(cbTablets_SelIndexChg);

TbTExtral
1bTExtral
1bTExtral

1bTHardwa
1b1Hardwa
1b1Hardwa

nfo = new Label();
nfo.Location new Point(16,
nfo.Size new Size(264, 16);

56);

reCaps new Label();
reCaps.Location new Point(8, 80);
reCaps.Size = new Size(120, 16);

Chapter 4 Tablet PC Platform SDK: Tablet Input 167

1b1HardwareCaps.Text = "Hardware capabilities:";

1b1Line2 = new Label();
Tb1Line2.BorderStyle = BorderStyle.Fixed3D;
1b1Line2.Location = new Point(128, 88);
1b1Line2.Size = new Size(1l52, 3);

TvHardwareCaps = new ListView();
TvHardwareCaps.FullRowSelect = true;
lvHardwareCaps.Location = new Point(16, 104);
TvHardwareCaps.MultiSelect = false;
TvHardwareCaps.Size = new Size(264, 80);
TvHardwareCaps.View = View.Details;

1b1PacketProps = new Label();
Tb1PacketProps.Location = new Point(8, 200);
1b1PacketProps.Size = new Size(96, 16);
1bTPacketProps.Text = "Packet properties:";

1b1Line3 = new Label();
1bTLine3.BorderStyle = BorderStyle.Fixed3D;
1bTLine3.Location = new Point(104, 208);
1b1Line3.Size = new Size(1l76, 3);

TvPacketProps = new ListView();
TvPacketProps.FulTlRowSelect = true;
TvPacketProps.Location = new Point(16, 224);
TvPacketProps.MultiSelect = false;
TvPacketProps.Size = new Size(264, 97);
lTvPacketProps.View = View.Details;

btnClose = new Button();
btnClose.DialogResult = DialogResult.OK;
btnClose.Location = new Point(208, 328);
btnClose.Text = "Close";
btnClose.Click +=

new System.EventHandler(btnClose_Click);

// Configure the form itself

AcceptButton = btnClose;

CancelButton = btnClose;

ClientSize = new Size(292, 360);

Controls.AddRange(new Control[] { 1blTablets,
1blLinel,
cbTablets,
1blExtralnfo,
1b1HardwareCaps,
1b1Line2,

(continued)

168 Part Il The Tablet PC Platform SDK

DeviceWalker.cs (continued)

TvHardwareCaps,
1b1PacketProps,
1b1Line3,
TvPacketProps,
btnClose });
FormBorderStyle = FormBorderStyle.FixedDialog;
MaximizeBox = false;
Text = "DeviceWalker™;

ResumelLayout(false);

// Fill the combobox with the currently installed tablet
// devices
Tablets tablets = new Tablets();
foreach (Tablet t in tablets)
{
cbTablets.Items.Add(t);

// Trigger a UI update to fill in the rest of the properties
cbTablets.SelectedIndex = 0;

// Tablet device combobox selection changed handler
private void cbTablets_SelIndexChg(object sender,
System.EventArgs e)

// Turn off listview invalidatation for performance
lTvHardwareCaps.BeginUpdate();
lTvPacketProps.BeginUpdate();

// Remove all items from the Tistviews
lTvHardwareCaps.Clear();
TvPacketProps.Clear();

// Set up their columns
lTvHardwareCaps.Columns.Add("Capability", 150,
HorizontalAlignment.Left);
lTvHardwareCaps.Columns.Add("Possessed", 100,
HorizontalAlignment.Left);
lvPacketProps.Columns.Add("Property™, 100,
HorizontalAlignment.Left);
1vPacketProps.Columns.Add("Supported", 150,
HorizontalAlignment.Left);

// Get the tablet device to introspect
Tablet t = cbTablets.SelectedItem as Tablet;
if (£ != null)

Chapter 4 Tablet PC Platform SDK: Tablet Input 169

// Fill in "extra" info about the tablet

1bl1Extralnfo.Text = String.Format(
"PnP ID: {0} InputRect: ({1},{2},{3},{4})",
t.PlugAndPlaylId,
t.MaximumInputRectangle.Lleft,
t.MaximumInputRectangle.Top,
t.MaximumInputRectangle.Bottom,
t.MaximumInputRectangle.Right);

// Fi11l in hardware capabilities by walking through each

// value in the TabletHardwareCapabilities enum and seeing

// if the device supports it

foreach (TabletHardwareCapabilities c in
TabletHardwareCapabilities.GetValues(
typeof(TabletHardwareCapabilities)))

ListViewItem item = new ListViewItem();
item.Text = c.ToString();
if ((t.HardwareCapabilities & c) == c)
{
item.SubItems.Add("Yes");
}
else
{
item.SubItems.Add("No");
}
TvHardwareCaps.Items.Add(item);

// Fill in packet properties by walking through each value

// in the PacketProperty class and seeing if the device

// supports it

foreach (FieldInfo f in
typeof(PacketProperty).GetFields())

// We're only interested in static public members of
// the class
if (f.IsStatic && f.IsPublic)
{
ListViewItem item = new ListViewItem();
item.Text = f.Name;

Guid g = (Guid)f.GetValue(f);
if (t.IsPacketPropertySupported(g))
{
TabletPropertyMetrics tm =
t.GetPropertyMetrics(g);

(continued)

170 Part Il The Tablet PC Platform SDK

DeviceWalker.cs (continued)

item.SubItems.Add(
String.Format(
"Yes: ({0}-{1} {2})",
tm.Minimum.ToString(),
tm.Maximum.ToString(),
tm.Units.ToString()));
}
else
{
item.SubItems.Add("No");
}
TvPacketProps.Items.Add(item);

// Turn on listview invalidation now that we're done
lTvHardwareCaps.EndUpdate();
1vPacketProps.EndUpdate();

// Close Button clicked handler
private void btnClose_Click(object sender, System.EventArgs e)

{
Application.Exit();

The cbTablets_SellndexChg method does the lion’s share of the work in this
application—it fills in the UI with the hardware capabilities and supported packet
properties of the currently selected tablet device. Again we take advantage of C#’s
reflection abilities to enumerate various members of enumerations and classes.

Common Properties on InkCollector and InkQOverlay

In an effort to bring together all that we've learned thus far, we've put together a
mini-review of the InkCollector and InkOuverlay classes by listing the commonly
used properties, methods, and events in them. Tables 4-13 and 4-14 aren’t
meant to be an exhaustive reference, merely an effort to summarize the infor-
mation that has been covered in the chapter.

Chapter 4 Tablet PC Platform SDK: Tablet Input

Table 4-13 InkCollector and InkOverlay Mini-Reference

Input Can
Property Type Description Be Enabled
AutoRedraw Bool (read-write) Whether to redraw cur- Read: Yes
rently captured ink when Write: Yes
the host window gets
invalidated
CollectingInk Bool (read-only) Reports if the InkCollector Read: Yes
is currently collecting an
ink stroke
CollectionMode CollectionMode Whether the InkCollector Read: Yes
(read-write) should recognize ink Write: No
gestures
DefaultDrawingAttributes DrawingAttributes Specifies the drawing Read: Yes
(read-write) attributes to be used when Write: Yes
creating new ink strokes
DesiredPacketDescription Guid(] (read-write) Specifies which tablet input ~ Read: Yes
properties to collect Write: No
DynamicRendering Bool (read-write) Whether in-progress ink Read: Yes
strokes should be drawn Write: Yes
Enabled Bool (read-write) Turns tablet input data Read: Yes
capture on and off Write: N/A
Handle IntPtr32 The InkCollector's host Read: Yes
(read-write) window’s handle Write: No
Ink Ink (read-write) The object used to store Read: Yes
collected ink strokes Write: No
Table 4-14 InkOverlay Mini-Reference
Input Can
Property Type Description Be Enabled
EditingMode InkOverlayEditingMode The current editing mode used for ~ Read: Yes
(read-write) interaction Write: Yes
EraserMode InkOverlayEraserMode The type of erasing used when in Read: Yes
(read-write) DeleteMode Write: Yes
EraserWidth int (read-write) The eraser width and height for Read: Yes
point-level erase Write: Yes

172

Part Il The Tablet PC Platform SDK

Best Practices for InkCollector and InkOverlay

Now that you're armed with a boatload of knowledge about tablet input, it’s
worth covering a few points of interest in properly using certain facilities. To sum
up the core philosophy behind getting the most out of tablet input, “conservation
is key.”

Let’s look at some things you should keep in mind when using either the
InkCollector or InkOverlay classes.

NewPackets and NewlInAirPackets Events
Remember that tablet events occur a lot more frequently than mouse events do.
Performance is crucial when you use the NewPackets and NewlInAirPackets
event handlers because they’re called so often. Ink performance can suffer
dramatically if too much time is taken executing code in them—so if you can,
don’t even use those handlers in your application. You might be able to use the
mouse events instead.

If you do need to use NewPackets and NewlnAirPackets, the code in the
handlers should be efficient; try to avoid potentially slow operations such as
rendering or network access.

Choosing Desired Packet Properties

Packet property types are cool, but try to be conservative when requesting them.
Recall that Wisptis.exe packs the property values into packets that are sent to a
tablet-aware application via a packet queue. Because each packet property adds
an integer value to each packet, requesting many packet properties can cause
the packet size to be large. This can slow down the communication between
Wisptis.exe and your application, resulting in poor inking performance.

Gesture Recognition

A similar philosophy to packet properties should be taken with gesture recog-
nition. Gestures can take a long time to recognize, so the set of gestures your
application uses should be kept to a minimum. This is not to say gestures are
bad because they’re definitely not! It’s just that executing code that recognizes
gestures your application isn’t interested in will only slow down getting the
results of gestures your application is interested in. Therefore, use the Ink-
Collector’s SetGestureStatus method to specify only the gestures you're inter-
ested in being recognized.

Mouse Events

Recall that mouse events occur asynchronously to tablet input events. This can
have a negative effect on user interface behavior if you're not careful. If your
application changes the user interface state as a result of a tablet event (for

Chapter 4 Tablet PC Platform SDK: Tablet Input 173

example, showing a context menu, bringing up a dialog, or hiding a form), the
corresponding mouse event may occur either before or after that user interface
change. That may cause some strange behavior that can be tough to debug.

Consider this example—in the SystemGesture event handler, an application
chooses to show a context menu as the result of a RightTap. Sometimes the
menu will randomly immediately disappear, not allowing the user to choose any
item in it. What's happening? The mouse events that Wisptis.exe is generating are
getting processed after the tablet input event is, and that causes User32.dll to
think that the user has clicked the right-mouse button, causing the menu to be
dismissed. Yuck!

The general rule of thumb here is: perform user interface changes only for
those mouse events that have an effect in mouse event handlers.

Summary

This chapter covered a lot of material—hopefully everything you'd ever want to
know about tablet input.

We started off looking at the requirements and the architecture of the tablet
input subsystem in Windows XP Tablet PC Edition and under a Windows-based
OS running Tablet PC runtime libraries. We were then introduced to the Ink-
Collector and InkOverlay classes and how they facilitate any occurring tablet
input. We learned about the capabilities of ImkCollector and InkOuverlay and
how to leverage them in a hands-on sense through various sample applications.
And finally we presented some real-world knowledge from folks who have
used the stuff.

Now that you know all about collecting ink, the next two chapters will
show you how to manipulate it in all sorts of fun ways.

