
C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

33

Chapter

2
Creating an ASP.NET
Web Application

In this chapter, you will learn how to:

� Create a new Web application with Microsoft Visual Studio .NET.

� Add a Web Forms page to a Web application project.

� Add Server Controls to a Web Forms page and modify their properties.

� Write code in event handlers.

� Build and test a Web application.

Now that you’ve learned about some of the features of Visual Studio .NET, the
next step is to take advantage of them in your own applications. Conveniently
enough, that’s precisely what you’re going to learn how to do in this chapter.

You’ll begin with an overview of the two major project types used for ASP.NET
applications. Then you’ll look at the file types used in ASP.NET and the pur-
pose of each. Next, you’ll learn how to create a new Web application, add a
new Web Forms page, and add controls to the page and manipulate their prop-
erties. Finally, you’ll learn how to add event-handler code to the page, build the
project, and test the page.

ASP.NET Project Types
There are three basic types of ASP.NET applications, each with a distinct pur-
pose. ASP.NET Web Applications are for a Web application that will provide its
own HTML-based user interface. ASP.NET Web Services are for Web-based
functionality that will be accessed programmatically. ASP.NET Mobile Web

C02619344.fm Page 33 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

34 Part 1 Getting Started with ASP.NET

Applications, new in Visual Studio .NET 2003, are designed for creating Web
applications targeted at Personal Digital Assistants (PDAs), cell phones, and
other mobile devices. You can develop all of these application types with or
without Visual Studio .NET, although the Visual Studio environment makes
developing them significantly easier and faster. The following illustration shows
the Visual Studio .NET New Project dialog box displaying the ASP.NET Web
Application, ASP.NET Web Service, and ASP.NET Mobile Web Application
project templates for Visual Basic .NET (some of the project templates shown
might not appear in all editions of Visual Studio .NET).

G02VB01

ASP.NET Web Applications
ASP.NET applications, at their simplest, are much like classic ASP applications.
The elements of a simple ASP.NET application are

� A virtual directory in IIS, configured as an application root, to hold the
files that make up the application and to control access to the files.

� One or more .aspx files.
� A Global.asax file (analogous to the Global.asa file in classic ASP) to

deal with Session and Application startup and clean-up logic. This
file is optional.

� A Web.config file used to store configuration settings. This file is
optional, and is new for ASP.NET.

For Visual Studio .NET users, the good news is that all of the preceding files are
created for you when you create a new Web application project.

C02619344.fm Page 34 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 35

ASP.NET Web Forms
Web Forms are an important part of any ASP.NET Web application. Put simply,
they are ASP.NET pages that use ASP.NET Server Controls. The Web Forms
programming model makes it possible (and relatively easy) to develop Web-
based applications in much the same way that today’s Microsoft Visual Basic
programmers develop Microsoft Windows–based applications that have a GUI.

Web Forms in Visual Studio .NET allow you to create rich, interactive applica-
tions simply by dragging and dropping controls onto a page and then writing
minimal code to handle user interaction, events, and so on. In addition, the
Visual Studio .NET environment lets you work on your pages either visually—
using the Web Forms Designer—or textually, using the powerful Visual Studio
.NET source-code editor.

You can write code in your Web Forms in one of two ways: inline in the .aspx
file (as is typical of a classic ASP page), or using a code-behind module.
Although it’s possible to write your application with code in the actual .aspx file
and still take advantage of compiled code and the other improvements of .NET,
I recommend that you get in the habit of using code-behind modules. Visual
Studio .NET defaults to using code-behind for UI-specific programming logic.

Code-Behind
Code-behind is a new feature in ASP.NET that allows developers to truly sepa-
rate the HTML and tag-based UI elements from the code that provides user
interaction, validation, and so on. Code-behind modules offer developers a
number of advantages:

� Clean separation of HTML and code Code-behind allows HTML
designers and developers to do what they do best independently,
thereby minimizing the possibility of messing up one another’s work
(something that happens all too frequently when developing classic
ASP applications).

� Easier reuse Code that isn’t interspersed with HTML in an .aspx page
can be more easily reused in other projects.

� Simpler maintenance Because the code is separated from the HTML,
your pages will be easier to read and maintain.

� Deployment without source code Visual Studio .NET projects using
code-behind modules can be deployed as compiled code (in addition to
the .aspx pages), allowing you to protect your source code. This can be
very useful if you’re creating applications for clients but want to retain
control of your intellectual property.

C02619344.fm Page 35 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

36 Part 1 Getting Started with ASP.NET

All in all, it’s worthwhile to get into the habit of using code-behind. You’ll see
examples of code-behind throughout the book.

ASP.NET Web Services
Although no one would deny that Web applications created with ASP.NET (or
even with classic ASP) can be very useful, one feature that has long been missing
is an easy way to provide programmatic functionality over the Internet or an
intranet without tying the client to a specific UI. This is where ASP.NET Web
services come in.

A Web service, at its simplest, is a chunk of programming code that is accessible
over the Web. Web services are based on the World Wide Web Consortium’s
(W3C) SOAP specification. This allows computers on varying platforms, from
Windows servers to UNIX workstations, to offer and consume programmatic
services over the HTTP protocol.

� Note SOAP can use other protocols, such as FTP or SMTP, but HTTP is
the most common protocol used with SOAP and Web services because most
firewalls allow communication via the HTTP protocol.

ASP.NET makes it remarkably easy to implement Web services. In fact, all it takes
is adding an appropriate declaration to any method you want to make available
as a Web service. Visual Studio .NET makes it even easier by taking care of all the
work necessary to make your Web service available to potential clients. Part IV
will discuss Web services in greater detail.

ASP.NET Mobile Web Applications
Like standard ASP.NET Web applications, ASP.NET Mobile Web applications
contain a number of standard elements:

� A virtual directory in IIS, configured as an application root, to
hold the files that make up the application and to control access to
the files.

� One or more .aspx files. Visual Studio .NET creates a single Web
form by default with the name MobileWebForm1.aspx. The default
Web Form contains a special <mobile:form> element, which acts as a
container for mobile Web server controls (formerly part of the
Microsoft Mobile Internet Toolkit). These controls allow you to
design a UI for your application that automatically adapts to a wide
variety of mobile devices.

C02619344.fm Page 36 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 37

� A Global.asax file to deal with Session and Application startup and
clean-up logic. This file is optional.

� A Web.config file used to store configuration settings. In a Mobile
Web Application project created with Visual Studio .NET, this file
also contains a set of filters that help tailor page output to various
mobile devices. This file is optional.

As with the ASP.NET Web Application template, Visual Studio .NET creates all
of the preceding files when you create a new ASP.NET Mobile Web application
project. You’ll learn more about developing ASP.NET applications for mobile
devices in Chapter 8.

ASP.NET File Types
You’ll see a number of new file types in your ASP.NET applications. To avoid
any confusion, let’s take a minute to go over the ones you’ll see most often and
discuss how they’re used.

� .aspx The extension you’ll see most often. Analogous to the .asp
extension in classic ASP, .aspx is used for Web Forms pages.

� .ascx The extension used for Web Forms user controls. User con-
trols provide one of the many ways available in ASP.NET to reuse
code. Similar to include files in classic ASP, .ascx files can be as simple
as a few HTML tags or can include complex logic that the author
might want to reuse in many pages. User controls are added to a Web
Forms page using the @ Register directive, which is discussed in Part III.

� .asmx The extension used for files that implement Web services.
Web services can be accessed directly through .asmx files, or the
.asmx file can direct the request to a compiled assembly that imple-
ments the Web service.

� .vb The extension for Visual Basic .NET code modules. All Web
Forms pages (.aspx) added to a Visual Studio .NET Web application
that are written in Visual Basic .NET will have a corresponding .vb
code-behind module with the same name as the Web Form page to
which it’s related (pagename.aspx.vb).

� .resx Denotes a resource file. These files are used primarily in
Windows Forms applications, but are also available to Web applica-
tion developers for storing resources such as alternative text strings
for internationalization of applications.

� Global.asax Used to define Application- and Session-level variables
and startup procedures. Global.asax is used the same way as
Global.asa is used in classic ASP. Note that while Global.asax can be

C02619344.fm Page 37 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

38 Part 1 Getting Started with ASP.NET

structured like Global.asa, with startup procedures such as
Session_OnStart (Session_Start in ASP.NET) coded directly in the
Global.asax file in a <script runat=“server”> block, Visual Studio
implements these procedures in a .vb (or .cs) code-behind module
(global.asax.vb) rather than in the Global.asax file itself.
In addition to the functionality available in a classic ASP Global.asa
file, which was used for handling Application and/or Session start
and end events and declaring Application- and/or Session-level vari-
ables, ASP.NET also allows you to import namespaces, link to
assemblies, and perform other useful tasks. You’ll learn more about
Global.asax in Chapter 7.

� Web.config A new file type in ASP.NET, used to solve one of the
major hassles with classic ASP applications: configuration. The
Web.config file is a human- and machine-readable XML-based file
that stores all of the configuration settings for a given application (or
segment of an application). Web.config files are interpreted hierarchi-
cally—a Web.config file in a subdirectory of your application will
override the settings of the Web.config file (or files) in its parent
directories. The advantage is that configuration settings can be inher-
ited where that is desirable, but you also have very granular control
over configuration.

Visual Studio .NET
It’s certainly possible to create ASP.NET Web applications in Notepad or
another text editor, but if you’re doing serious ASP.NET or component develop-
ment, you’ll probably want to work within the Visual Studio .NET environ-
ment. The advantages of Visual Studio .NET over simple text editors include

� Robust management of project files and multiple projects
� Integration with the Microsoft Visual SourceSafe source-code

control environment
� Visual Tools for working with Web services, Web Forms server

controls, and database tools
� Packaging and deployment services for Web applications
� Support for multiple languages within a single IDE, including

cross-language inheritance and debugging

That’s just a brief list. There’s much more to the tool than can be covered in a
single chapter. So without further ado, let’s look at how to create projects and
pages in the Visual Studio .NET environment.

C02619344.fm Page 38 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 39

Creating Applications
One of the first things you’re going to want to do in order to work with
ASP.NET in Visual Studio .NET is create a new project, or in Visual Studio
.NET parlance, a Web application.

Create an ASP.NET Web application
1 Launch Visual Studio .NET using the techniques you learned in

Chapter 1.
2 Open the New Project dialog box using one of the following methods:

� Click the Create A New Project link on the Visual Studio .NET
Start Page (displayed by default when you first open Visual
Studio .NET).

� Click the New Project button (shown in the following illustra-
tion), located on the Standard toolbar.

G02VB02

� From the File menu, select New, and then Project.
3 In the New Project dialog box (see the following illustration), under

Project Types, select the Visual Basic Projects folder, then select the
appropriate template (ASP.NET Web Application). Type the location
as http://localhost/Chapter_02, and then click OK.
Visual Studio .NET will create a new Web application along with
physical and virtual directories for the project.

G02VB01

C02619344.fm Page 39 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

40 Part 1 Getting Started with ASP.NET

That’s it! You’ve created your first ASP.NET Web application. Note that this
application is separate from the Chapter_02 project included with the practice
file installation, which is contained in the aspnetsbs solution. Next we’ll look at
how to add new pages.

In your new Web application, you’ll notice that Visual Studio .NET has already
added a page named WebForm1.aspx to the project for you and opened it in the
editor. Your Visual Studio .NET screen should look similar to the following
illustration. However, since one page is rarely enough for most sites, let’s look
at how to add a new page to your Web application.

G02VB03

Create a new ASP.NET page (Web Form)
1 Add a new Web Form to your application.

As with creating a new project, there are several ways to add a new
ASP.NET page (Web Form) to your application. The method you
choose depends largely on how you like to work. Here are three
ways to accomplish this task, although there are others:

� In the Solution Explorer window, right-click the application
name, then select Add, and then select Add Web Form, as
shown in the following illustration.

C02619344.fm Page 40 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 41

G02VB04

� On the Visual Studio .NET toolbar, click the Add New Item
button (shown in the following illustration) and then select Web
Form from the Templates list.

G02VB05

� From the Project menu, select Add Web Form.
Any of these methods will open the Add New Item dialog box,
shown in the following illustration.

G02VB06 2 In the Add New Item dialog box, verify that the Web Form template
is selected and name the new page Hello.aspx. Click Open.

C02619344.fm Page 41 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

42 Part 1 Getting Started with ASP.NET

Visual Studio .NET creates the page, adds it to the project, and opens
it in the Web Forms Designer, as shown in the following illustration.

G02VB07

� Tip While in the Add New Item dialog box, a brief description of each template
is displayed along the bottom of the list window. If you decide to browse the dif-
ferent templates, don’t forget to select the proper one (Web Form) before click-
ing Open.

Adding Server Controls
Now that you’ve created a page for your new application, what can you do
with it? Well, let’s begin by making it display a “Hello World!” greeting to the
client. By default, Web Forms are opened in GridLayout mode. Since GridLay-
out relies on cascading style sheets (CSS), which are not supported in all brows-
ers, you might want to change the page layout to FlowLayout mode.

Modify Web Form properties
1 With the Web Form open in the Visual Studio .NET designer, click

the Web Form page to ensure it is selected.
When the page is selected, the word DOCUMENT should appear in
the drop-down box at the top of the Properties window.

C02619344.fm Page 42 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 43

2 Select the pageLayout property from the Properties window, and
then use the drop-down list to change its value to FlowLayout, as
shown in the following illustration.

G02VB08 3 Save the page by selecting File, and then Save filename, where file-
name is the name of the file you’re currently editing (or by clicking
the Save button on the toolbar).
Until you add controls (or HTML elements), the page will display the
following message in Design view.

G02VB09

C02619344.fm Page 43 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

44 Part 1 Getting Started with ASP.NET

Add controls to a Web Form
1 With the Web Form open in Design mode, place your mouse over the

Toolbox tab. (By default, it’s found to the left of the code editor/
designer window.)

2 When the Toolbox appears, ensure that the Web Forms palette is
active. (The title bar of the active palette is shown immediately above
the controls displayed in the Toolbox.) If it isn’t active, click on its
title bar to activate it. Note that the Web Forms palette is available
only when a page is in Design mode.

3 With the Web Forms palette active, double-click the Label control
entry to add an ASP.NET Label control to the page. (You might have
to let the toolbox hide itself by moving the mouse pointer away from
it to see the label on the form.) Once you’ve added the label, it
should be selected by default. If not, click the control to select it.

4 To make the Label control display the text you want, you need to
change its Text property. Select the Text property in the Properties
window, and then change the text (by default, Label) to Enter a
name:, as shown in the following illustration.

G02VB10 5 Click the background of the page to place the cursor after the Label
control you added to the page.

6 Using the Toolbox as in step 3, add a TextBox control to the page,
and then add a Button control to the page.

7 Using the same technique as in step 4, change the Text property of
the Button control to Submit.

C02619344.fm Page 44 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 45

8 Save the page by clicking the Save button (shown in the following
illustration) on the toolbar. You can also save by selecting Save
<filename> from the File menu.

G02VB11

Add event handler code
1 To make the page do anything useful, you need to add some code, so

double-click the Button control.
This will open up the code-behind module for the Web Form and cre-
ate an event handler procedure called Button1_Click.

2 Add the following code to the Button1_Click procedure:
Label1.Text = "Hello, " & TextBox1.Text & "!"
TextBox1.Visible = False
Button1.Visible = False

3 Save the code-behind module, which should now look like the fol-
lowing illustration.

G02VB12

C02619344.fm Page 45 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
reating A

S
P.N

ET A
pplications

2

46 Part 1 Getting Started with ASP.NET

Building and Testing Your Page
Because you modified the code-behind module for the Web Form, you need to
build your project before you can browse the page. (You’ll learn more about
code-behind in later chapters.) Building is the process of compiling all of the
code modules in the project so they’ll be available to the pages and modules that
call them. To build the project, from the Build menu, select Build Chapter_02
(or Build Solution, which will build all projects in the solution).

Once you’ve saved the Web Form page and its code-behind module and built
the application, you can test the page.

Test your page
1 Right-click the page in Solution Explorer and select View In Browser.

The result should look like the following illustration. (You can close
the Output window if you want to see more of a page.)

G02VB13 2 Enter your name in the text box and click Submit.

C02619344.fm Page 46 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

C
re

at
in

g
A

SP
.N

ET
 A

pp
lic

at
io

ns
2

Chapter 2 Creating an ASP.NET Web Application 47

The result should be similar to the following illustration. (Note that
the Web toolbar shows the address of the page being browsed. You
can enter this address in a browser window on your machine to view
the page in a non-embedded browser window.)

G02VB14

Chapter 2 Quick Reference
To Do this Button
Create a new project
in Visual Studio .NET

Click the New Project button, select
the project language and template,
and then provide the name and
location for the new project.

G02VB02

Create a new Web
Forms page

Click the Add New Item button (or
click the arrow to the right and select
Add Web Form). Provide a name for
the new Web Form and click OK.

G02VB05

Save a file Click the Save button, or select Save
<filename> from the File menu.

G02VB11

C02619344.fm Page 47 Monday, March 24, 2003 1:21 PM

Black process 45.0° 128.0 LPI

