
397

Advanced .NET Framework
One of the most exciting things about Visual Basic .NET is the newfound power
it gives to Visual Basic programmers. In previous versions of Visual Basic, certain
types of applications were often difficult or impossible to write, or required third-
party toolkits and complicated Win32 API calls. As a result, many of these
advanced techniques were often the exclusive domain of C++ programmers.
Visual Basic .NET changes all that. Advanced programming techniques, such as
creating Windows Services and thread pooling, are now accessible to Visual Basic
programmers. This chapter attempts to cover some of these advanced topics.

Application #78: Create a Windows Service
This sample application demonstrates how to create a Microsoft Windows ser-
vice (formerly Windows NT Service) using Microsoft Visual Basic .NET. There
are three projects in the solution. The first project, VB.NET How-To Creating a
Windows Service, provides a user interface for accessing the Windows service.
The second project, VB.NET How-To Windows Service Demo, is the actual Win-
dows service. The Windows service itself is fairly simple. Whenever the service
starts, pauses, resumes, or ends, a message is written to the event log. Finally,
the third project, VB.NET How-To Windows Service - Time Track Install, is used
to demonstrate the creation of an installation package for a Windows service.

Building Upon…
Application #2: Use DateTimes
Application #7: Object-Oriented Features
Application #8: Scoping, Overloading, Overriding

C09618917.fm Page 397 Monday, May 12, 2003 2:19 PM

398 101 Microsoft Visual Basic .NET Applications

New Concepts
A Windows service is a special type of application that runs in the background
and has no user interface. A Windows service can run without any user being
logged on to the computer and can be started, stopped, paused, resumed, or
disabled. Microsoft SQL Server and Internet Information Services (IIS) are two
examples of programs that run as services.

Creating a Windows Service
The easiest way to create a Windows service using Visual Basic .NET is to use
the Windows Service project template. Using this template, Visual Studio .NET
will automatically create a Service1 class that contains the skeleton code needed
to implement a Windows service.

The Service1 class inherits from the System.ServiceProcess.ServiceBase
class. At a bare minimum, a service should override the OnStart and OnStop
methods. As you can probably guess, the OnStart method is called when the
service is to start and the OnStop method is called when the service is to stop.
In addition, the ServiceBase class provides OnContinue, OnPause, OnShut-
down, and various other methods. Depending on the specifics of what tasks the
service is to perform, these methods might or might not be needed.

Create an Installer for a Windows Service
To create an installer for a Windows service, right-click on the design surface of
the class that inherits from ServiceBase and select the Add Installer menu. Visual
Studio .NET will add a new class to your project named ProjectInstaller. By
default, this class has two components to it: ServiceProcessInstaller1 and
ServiceInstaller1. Both are called by installation utilities when installing the Win-
dows service. Among other things, ServiceProcessInstaller1 specifies the name of
the account under which the service should run and ServiceInstaller1 specifies
the display name of the service. These can be set in code or in the Properties win-
dow. To actually install a Windows service, you can either create a setup project
or use the InstallUtil.exe utility. The sample application uses the former method.
This is where the VB.NET How-To Windows Service - Time Track Install project
comes into play. It creates an .msi file, which serves as the installation package
for the application. To install the Windows service, simply double-click VB.NET
How-To Windows Service - Time Track.msi in Windows Explorer.

Code Walkthrough
As stated previously, there are three projects in the sample application. The
code walkthrough will focus on the VB.NET How-To Windows Service Demo

C09618917.fm Page 398 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 399

project. This service does nothing more than keep track of the time it is run-
ning. Although it is simple, it demonstrates the fundamentals of creating Win-
dows services in Visual Basic .NET.

Service1.vb (default)
To better understand how the code in the sample application works, first take
a look at how the Service1 class appears before any code is changed or added:

Imports System.ServiceProcess

Public Class Service1
Inherits System.ServiceProcess.ServiceBase

‘ Component Designer generated code

Protected Overrides Sub OnStart(ByVal args() As String)
‘ Add code here to start your service. This method
‘ should set things in motion so your service
‘ can do its work.

End Sub

Protected Overrides Sub OnStop()
‘ Add code here to perform any tear-down necessary
‘ to stop your service.

End Sub
End Class

The first line of code imports System.ServiceProcess. This namespace pro-
vides the classes that allow you to implement, install, and control Windows ser-
vice applications. Next, an empty stub for OnStart has been provided. This
method is overridden, and it’s where you place the code to run when the ser-
vice is started. Next is an empty stub for the OnStop method. Place any code
that is needed to stop the service into the OnStop routine.

VB.NET How-To TimeTracker Windows Service.vb
In the sample application, the Service1 class was renamed to VB_NET_HowTo_
TimeTrackerService:

Imports System.ServiceProcess

Public Class VB_NET_HowTo_TimeTrackerService
Inherits System.ServiceProcess.ServiceBase

The declarations section contains several module-level variables:

Private timeStart As DateTime
Private timeEnd As DateTime
Private timeElapsed As New TimeSpan(0)
Private timeDifference As TimeSpan
Private isPaused As Boolean = False

C09618917.fm Page 399 Monday, May 12, 2003 2:19 PM

400 101 Microsoft Visual Basic .NET Applications

The timeStart and timeEnd variables are used to keep track of the times
the service starts and ends. The timeElapsed and timeDifference variables are
both TimeSpan objects. The timeDifference variable is used to calculate the dif-
ference between timeStart and timeEnd. The timeElapsed variable is used to
keep a running total of time elapsed. Finally, isPaused is a Boolean that indi-
cates whether the service is currently in a paused state.

The OnStart method is called whenever the service is started:

Protected Overrides Sub OnStart(ByVal args() As String)

timeElapsed = New TimeSpan(0)

timeStart = DateTime.Now()
isPaused = False

EventLog.WriteEntry(“The VB.NET How-To Service was Started at “ + _
timeStart.ToString())

End Sub

Inside OnStart, timeElapsed is reset to zero. This is necessary because the ser-
vice can be restarted without pausing or stopping. Then, timeStart is initialized to
the current time by using DateTime.Now. Next, isPaused is set to False. Finally, a
message is written to the event log indicating the time the service has been started.

The OnStop method is called whenever the service is stopped. This provides
an opportunity to perform whatever clean-up code your application needs:

Protected Overrides Sub OnStop()

timeEnd = DateTime.Now()
If Not isPaused Then

timeDifference = timeEnd.Subtract(timeStart)
timeElapsed = timeElapsed.Add(timeDifference)

End If

EventLog.WriteEntry(“The VB.NET How-To Service was Stopped at “ + _
timeEnd.ToString())

EventLog.WriteEntry(“The VB.NET How-To ran for a total time of “ + _
timeElapsed.ToString())

End Sub

For the sample application, this means calculating the elapsed time and
writing it out to the event log. Note that the code checks to make sure the ser-
vice isn’t paused. This needs to be done to make sure the time the service is
paused isn’t counted as part of the total elapsed time.

Of course, the ServiceBase base class provides more than just the OnStart
and OnStop methods. For example, the OnPause method is used when the ser-
vice is to be paused. The sample application uses the OnPause method to cal-
culate the total elapsed time so far, set isPaused to True, and write a message to
the event log:

C09618917.fm Page 400 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 401

Protected Overrides Sub OnPause()

timeEnd = DateTime.Now()
If Not isPaused Then

timeDifference = timeEnd.Subtract(timeStart)
timeElapsed = timeElapsed.Add(timeDifference)

End If
isPaused = True

EventLog.WriteEntry(“VB.NET How-To Service was Paused at “ + _
DateTime.Now().ToString())

End Sub

Finally, OnContinue occurs when a paused service is supposed to continue:

Protected Overrides Sub OnContinue()
If isPaused Then

timeStart = DateTime.Now
End If
isPaused = False

EventLog.WriteEntry(“VB.NET How-To Service Continued at “ + _
DateTime.Now().ToString())

End Sub

The OnContinue method begins by setting timeStart to the current time.
Because the service is resuming, isPaused must be set back to False. Finally, a
message is written out to the event log to indicate the service has resumed.

Conclusion
A Windows service is a special type of application that runs in the background
and has no user interface. To create a Windows service in Visual Basic .NET,
begin by creating a new solution using the Windows Service template in Visual
Studio .NET. At a minimum, implement the OnStart and OnStop methods. Addi-
tional methods exist such as OnPause and OnContinue. To create an installer
for a Windows service, right-click the design surface of the class that inherits
from the System.ServiceProcess.ServiceBase class. In the popup menu, select
Add Installer. Visual Studio .NET will add a new class to your project named
ProjectInstaller. Use this class to set the various properties of the Service-
ProcessInstaller1 and ServiceInstaller1 components so that installation utilities
can install the Windows service.

Application #79: Use Thread Pooling
The ability to use threads within Visual Basic has long been a requested feature
because threads allow you to create a multitasking application that runs
smoothly. However, if an application requires a design where threads must be

C09618917.fm Page 401 Monday, May 12, 2003 2:19 PM

402 101 Microsoft Visual Basic .NET Applications

constantly created and destroyed, performance might actually suffer. Thread
pooling is a technique that streamlines the performance of these types of appli-
cations. When a thread is no longer needed, rather than being terminated, the
thread is saved to a pool where it can be reused later. Conceptually, this is similar
to database connection pooling. Thread pooling improves performance because
it eliminates the overhead of repeatedly creating and destroying threads.

This sample application demonstrates how to use a thread pool in Visual
Basic .NET. It consists of a main form with three TabPages. The first TabPage,
Queued Functions (shown in Figure 9-1), compares performance by running
three processes in sequential order, in three discrete threads. It demonstrates
the ThreadPool function QueueUserWorkItem to queue a task to a thread. The
second TabPage, Timers, shows how to use the Threading.Timer class to set up
timed events. The third TabPage, Synchronization Objects, demonstrates how
to use the synchronization objects Mutex, ManualResetEvent, and Auto-
ResetEvent to manage functions on separate threads.

F09wp01Figure 9-1 The application interface for the Thread Pooling demonstration.

Building Upon…
Application #7: Object-Oriented Features
Application #8: Scoping, Overloading, Overriding
Application #9: Use Callbacks
Application #11: Key Visual Basic .NET Benefits

C09618917.fm Page 402 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 403

New Concepts
This sample introduces three new concepts: function queuing, timers, and syn-
chronization objects.

Function Queuing
Creating a thread pool can be a tricky task. Fortunately, Visual Basic .NET pro-
vides a built-in ThreadPool object that does much of the hard work for you. Part
of the System.Thread namespace, the ThreadPool object provides a pool of
threads that can be used for various application tasks. When a thread is termi-
nated or goes into a sleep state, it’s placed into the thread pool. Visual Basic
.NET manages assigning a work item to a thread automatically. You only need to
queue the work item by using the QueueUserWorkItem method of the Thread-
Pool object. To use QueueUserWorkItem, simply pass it a delegate to the function
to call when the thread is available. This is known as function queuing. By
default, the ThreadPool has a maximum limit of 25 threads per processor.

Timers
The Timer class provides a way to execute a routine at specified time intervals.
This is handy when you want to perform a particular task at regular intervals.
For example, the Timer class could be used in a client e-mail application to
check a server for incoming e-mail messages every five minutes. When using
the Timer class, you set the amount of time to wait before the first time the rou-
tine is executed and the amount of time to wait between subsequent invoca-
tions. When you’re done with the Timer class, be sure to call the Dispose method
to free all allocated resources. Timer is also part of the System.Thread
namespace.

Synchronization Objects
When two or more threads need to access a shared resource at the same time,
a synchronization object is used to guarantee that only one thread uses the
resource. Thus, synchronization objects are used to gain exclusive access to a
shared resource. Visual Basic .NET has three types of synchronization objects:
Mutex, ManualResetEvent, and AutoResetEvent. All three derive from the Wait-
Handle class, which serves as the base class for synchronization objects. The
Mutex synchronization object is used to gain exclusive access to a shared
resource. Only one thread at a time can hold a Mutex. All other threads are sus-
pended until the Mutex is released.

The ManualResetEvent and AutoResetEvent synchronization objects are
also used for synchronization and are similar to each other. They both have two
states, signaled and unsignaled. Signaled means the shared resource has been
locked and no other thread can use it. Unsignaled means the shared resource is
available to be used by another thread. To signal and unsignal the Manual-

C09618917.fm Page 403 Monday, May 12, 2003 2:19 PM

404 101 Microsoft Visual Basic .NET Applications

ResetEvent and AutoResetEvent objects, use the Set and Reset methods, respec-
tively. The key difference between the ManualResetEvent and AutoResetEvent
objects is that AutoResetEvent is automatically reset to unsignaled by the system
after a single waiting thread has been released. The sample application demon-
strates how to use all three objects on the Synchronization tab page.

Code Walkthrough
The sample application consists of one main form and two helper classes, Pro-
cessGroup and TimerGroup. The ProcessGroup class is used to simulate a two-
second process using thread pooling. The TimerGroup class is used to demon-
strate the Threading.Timer class.

frmMain Declarations
The declarations section of frmMain contains several module-level variables:

Private autoResetEvent1 As Threading.AutoResetEvent
Private manualResetEvent1 As Threading.ManualResetEvent
Private mutex1 As Threading.Mutex

Private processGroup1 As ProcessGroup
Private processGroup2 As ProcessGroup
Private processGroup3 As ProcessGroup

The first three variables—autoResetEvent1, manualResetEvent1, and
mutex1—represent the three types of synchronization objects available in
Visual Basic .NET. Then three ProcessGroup objects are declared. These objects
will be used to simulate work items that will be queued to the thread pool.

frmMain_Load
When frmMain loads, the three ProcessGroup objects are instantiated. Each
ProcessGroup has a Completed event, which occurs when the work item has been
completed. An event handler named OnProcessesCompleted is hooked to each
ProcessGroup’s Completed event. Next, the ProcessGroup’s shared PrepareToRun
method is called to initialize the ProcessGroup objects:

Private Sub frmMain_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

processGroup1 = New ProcessGroup(lblProcess1Active, _
lblProcess1ThreadNum, lblProcess1IsPoolThread)

processGroup2 = New ProcessGroup(lblProcess2Active, _
lblProcess2ThreadNum, lblProcess2IsPoolThread)

processGroup3 = New ProcessGroup(lblProcess3Active, _
lblProcess3ThreadNum, lblProcess3IsPoolThread)

AddHandler processGroup1.Completed, AddressOf OnProcessesCompleted
AddHandler processGroup2.Completed, AddressOf OnProcessesCompleted

C09618917.fm Page 404 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 405

AddHandler processGroup3.Completed, AddressOf OnProcessesCompleted

ProcessGroup.PrepareToRun()

timerGroup1 = New TimerGroup(lblTimer1Output, lblTimer1ThreadNum, _
lblTimer1IsThreadPool)

timerGroup2 = New TimerGroup(lblTimer2Output, lblTimer2ThreadNum, _
lblTimer2IsThreadPool)

End Sub

Thread Pool Button
When the user clicks the Thread Pool button, the process begins. First, all the
buttons on the tab page are disabled. Next, the PrepareToRun method is called
to reinitialize the ProcessGroup objects. Then, the StartPooledThread method is
called:

Private Sub btnThreadPool_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnThreadPool.Click

btnNonthreaded.Enabled = False
btnThreaded.Enabled = False
btnThreadPool.Enabled = False

ProcessGroup.PrepareToRun()

processGroup1.StartPooledThread()
processGroup2.StartPooledThread()
processGroup3.StartPooledThread()

End Sub

Queuing a Function
The StartPooledThread method itself is very short. The first line creates a call-
back to the subroutine RunPooledThread. The second line performs the actual
function queuing. As explained previously, to queue a work item to the thread
pool, use the QueueUserWorkItem method of the Threading.ThreadPool object:

Sub StartPooledThread()
Dim callback As New Threading.WaitCallback(AddressOf RunPooledThread)
Threading.ThreadPool.QueueUserWorkItem(callback, Nothing)

End Sub

OnProcessesCompleted
When the task finally completes, the OnProcessesCompleted event procedure is
triggered. This routine calculates the number of seconds the task took to com-
plete and displays the result in a label on the form. Then it re-enables the but-
tons that were disabled in the btnThreadPool_Click routine. Finally, the
PrepareToRun method is called to reinitialize the ProcessGroup objects:

Private Sub OnProcessesCompleted()
Dim secondsElapsed As Double = ProcessGroup.GetTicksElapsed / 1000

(continued)

C09618917.fm Page 405 Monday, May 12, 2003 2:19 PM

406 101 Microsoft Visual Basic .NET Applications

lblSecondsElapsed.Text = secondsElapsed.ToString

btnNonthreaded.Enabled = True
btnThreaded.Enabled = True
btnThreadPool.Enabled = True

ProcessGroup.PrepareToRun()
End Sub

Conclusion
Visual Basic .NET provides a built-in thread-pool object named ThreadPool as
part of the System.Threading namespace. To queue a function to ThreadPool, use
the QueueUserWorkItem method. To execute a routine at specific time intervals,
use the System.Threading.Timer class. Finally, synchronization objects are used
to make sure that no more than one thread can access a shared resource at the
same time. Visual Basic .NET provides three such synchronization objects: Mutex,
ManualResetEvent, and AutoResetEvent. Threading is a powerful tool in the
Visual Basic .NET programmer’s toolbox, and thread pooling is useful in situa-
tions where an application constantly creates and destroys new threads.

Application #80: Use Sockets
This sample application demonstrates how to create a simple chat program by
using sockets. Support for using sockets within Visual Basic .NET is provided by
the System.Net and System.Net.Sockets namespaces. Broken into two different
solutions, the sample application features a chat server (shown in Figure 9-2)
and a chat client. It demonstrates three important aspects of sockets communi-
cation using the TcpClient and TcpListener classes:

■ Server-to-client communication The server application allows
you to enter text to broadcast to all attached clients. To run this dem-
onstration, run the server and at least one instance of the client.

■ Client-to-client communication This shows how to send text from
a client application to all other attached clients. To run this demonstra-
tion, run the server with at least two instances of the client running.

■ Client-to-server request with server response This demon-
strates the client sending the server a request for a list of all users that
are in the chat. When the client receives the response, it fills a list-
box control with the users. To run this demonstration, run the server
and at least one instance of the client.

C09618917.fm Page 406 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 407

F09wp02Figure 9-2 Application Interface for the Sockets Server project.

Building Upon…
Application #7: Object-Oriented Features
Application #8: Scoping, Overloading, Overriding
Application #11: Key Visual Basic .NET Benefits

New Concepts
This sample application introduces three new concepts: sockets, TCP clients,
and TCP listeners.

Sockets
Simply speaking, a socket is an endpoint for communication between two com-
puters. In Visual Basic .NET, the Socket class is part of the System.Net.Sockets
namespace and serves as a wrapper around the Winsock32 API. The Socket class
supports both synchronous and asynchronous modes. In synchronous mode,
network calls such as Send and Receive wait until the operation completes
before returning control to the calling program. In asynchronous mode, these
calls return immediately and a callback is used to indicate when the operation
completes. To use a socket, you must know the connected computer’s IP
address and TCP port number. In the sample application, the TCP port number
is defined as a constant so that both client and server use the same port. Sending

C09618917.fm Page 407 Monday, May 12, 2003 2:19 PM

408 101 Microsoft Visual Basic .NET Applications

data across the connection is accomplished by using the Send or SendTo
method. To read data from the socket, use the Receive or ReceiveFrom method.

TcpClient Class
The TcpClient class is a type of socket that provides TCP services for client access.
To send and receive data, you use a NetworkStream object, which provides an
underlying stream of data for the network. The TcpClient GetStream method
returns this NetworkStream object. For example, TcpClient.GetStream.Read
would receive a message from a connected client. TcpClient is capable of both
synchronous and asynchronous communications. The Read and Write methods
are synchronous, while the BeginRead, BeginWrite, EndRead, and EndWrite
methods are asynchronous. When you’re done with your TcpClient, use the Close
method to release its resources.

TcpListener Class
The TcpListener class is also a type of socket and listens for connections from
TCP clients. Once a TcpListener object has been instantiated, use the Start
method to begin listening for network requests. There are two ways to detect a
request. One way is to use the Pending method to detect incoming connection
requests. You can also use the AcceptSocket or AcceptTcpClient method to
block until a connection request arrives. The sample application uses the
AcceptTcpClient method. When the TcpListener is done listening for network
requests, the Stop method is used.

Code Walkthrough
The sample application is divided into two solutions: a server solution and a cli-
ent solution. This code walkthrough will focus on the server solution.

The Server Solution—frmMain
First, examine the declarations section of frmMain, the main form of the
application:

Imports System.Net.Sockets

Public Class frmMain
Inherits System.Windows.Forms.Form

Const PORT_NUM As Integer = 10000

Private clients As New Hashtable()
Private listener As TcpListener
Private listenerThread As Threading.Thread

C09618917.fm Page 408 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 409

First, the System.Net.Sockets namespace is imported to the file to reduce the
amount of typing required. A constant, PORT_NUM, is used to specify the port
number the application will use. A PORT_NUM constant is also defined in the cli-
ent solution. clients is a Hashtable that is used to keep track of all clients that con-
nect to the server. As each client connects, a new item is added to the Hashtable.
When a client disconnects, it’s removed from the collection. The listener object is
the TcpListener object that listens for and connects to client applications. Finally,
a thread is declared that will be used later in conjunction with the listener object.
Although using a thread to listen for client requests is not a requirement for pro-
gramming with sockets, it can make the application more responsive.

The Server Solution—frmMain_Load
When frmMain loads, it starts the background listener thread and updates the
status list box to indicate the server is now available for client requests:

Private Sub frmMain_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

listenerThread = New Threading.Thread(AddressOf DoListen)
listenerThread.Start()
UpdateStatus(“Listener started”)

End Sub

The Server Solution—frmMain.DoListen
The DoListen subroutine is used by the background listener thread so that cli-
ents can connect to the server without slowing down the user interface:

Private Sub DoListen()
Try

listener = New TcpListener(PORT_NUM)
listener.Start()
Do

Dim client As New UserConnection(listener.AcceptTcpClient)
AddHandler client.LineReceived, _

AddressOf OnLineReceived
UpdateStatus(“New connection found: waiting for log-in”)

Loop Until False
Catch
End Try

End Sub

Inside DoListen, a new TcpListener object is created to listen for client
requests. Note that the port number is passed into its constructor and the Start
method is used to begin the listening process. A Do/Loop is used to continu-
ously monitor for client requests. If a request is received, the OnLineReceived
method is invoked.

C09618917.fm Page 409 Monday, May 12, 2003 2:19 PM

410 101 Microsoft Visual Basic .NET Applications

OnLineReceived acts as an event handler and is triggered when a client
sends a command to the server. The sample application defines four types of
commands: “CONNECT”, “CHAT”, “DISCONNECT”, and “REQUESTUSERS”. The
command is sent over the network stream as a text message. A vertical bar (|)
is used as a delimiter to separate the type of command from the content of the
message. For example, consider “CHAT|Hello World”. “CHAT” is the type of
command, and “Hello World” is the actual message content. To parse the mes-
sage, the Split method of the String object is used:

Private Sub OnLineReceived(ByVal sender As UserConnection, _
ByVal data As String)

Dim dataArray() As String

dataArray = data.Split(Chr(124))

Select Case dataArray(0)
Case “CONNECT"

ConnectUser(dataArray(1), sender)
Case “CHAT"

SendChat(dataArray(1), sender)
Case “DISCONNECT"

DisconnectUser(sender)
Case “REQUESTUSERS"

ListUsers(sender)
Case Else

UpdateStatus(“Unknown message:” & data)
End Select

End Sub

Now that the client is connected, the chat program is operational for cli-
ents to send messages back and forth to each other.

Conclusion
This sample application shows how to use sockets within Visual Basic .NET
applications. Support for sockets is provided by the System.Net and Sys-
tem.Net.Sockets namespaces. The sample application uses two basic types of
sockets, TcpClient and TcpListener. The TcpClient class provides client connec-
tions for TCP network services. The TcpListener class listens for connections
from TCP clients. When running the sample application, remember to run both
the server and client solutions at the same time.

C09618917.fm Page 410 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 411

Application #81: Work with Resource Files
This sample application shows how to work with resource files to create forms
that are localized to specific cultures. A resource file contains nonexecutable
data such as strings and graphics that can be embedded into the portable exe-
cutable (PE) file for an application. Windows Forms have Localizable and Lan-
guage properties, which allow a form to share application code for all cultures
while allowing the form to easily display culture-specific strings and images.
The sample application contains a form, frmDataEntry, that uses these proper-
ties and resource files for four different cultures: France, Italy, Spain, and the
United States. The user can select from these four cultures simply by clicking a
command button, as shown in Figure 9-3. When the button is clicked, frmData-
Entry displays the culture the user selected, as shown in Figure 9-4.

F09wp03Figure 9-3 The main form lets you choose between four different cultures.

F09wp04Figure 9-4 The data entry form localized to French.

C09618917.fm Page 411 Monday, May 12, 2003 2:19 PM

412 101 Microsoft Visual Basic .NET Applications

Building Upon…
Application #7: Object-Oriented Features
Application #8: Scoping, Overloading, Overriding
Application #32: Use Format Codes to Format Data

New Concepts
This sample application introduces two new concepts: globalization and local-
ization. To support these concepts in your applications, Windows Forms pro-
vides Localizable and Language properties.

Globalization and Localization
Visual Basic .NET provides built-in support for creating global, culturally aware
applications. These days, many companies are expanding their markets across
the world. Users in other parts of the globe have various standards for formatting
numbers, dates, and currencies, and they speak various languages. To make your
applications usable to these people, you must design them to take into account
the concepts of globalization and localization. Globalization is the process of for-
matting data based on the selected culture. For example, in the United States, a
period is used as a decimal place and a comma as a thousands separator. But in
other countries, a comma is used as a decimal place and a period is used as a
thousands separator. Localization is the process of displaying languages and
graphics based on the selected culture. In the sample application, the text and
graphics on frmDataEntry change according to the selected culture.

Localizable and Language Properties
Creating a localized form in Visual Basic .NET is straightforward. First, set the
form’s Localizable property to True. This tells Visual Basic .NET the form will be
localized to one or more cultures. Next, each Windows Form has a Language
property that indicates the current localizable language. By default, this property
is set to (Default). After you’ve set Localizable to True, change the Language
property to whatever language you want to localize to and then make whatever
culture-specific changes that need to be made to the form. Visual Studio .NET
automatically handles the creation of all appropriate resource files. Then change
the Language property to the next culture you want to localize to, and make the
culture-specific changes to the form for that language. Repeat these steps for as
many cultures as there are to be localized.

C09618917.fm Page 412 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 413

Code Walkthrough
Because the actual localization takes place at design time when you’re creating
your user interface, there is very little code to walk through. The frmMain form
contains four button controls: Italy, France, Spain, and US. Each of these but-
tons will display the frmDataEntry form localized to one of these cultures. For
example, here is the click event procedure for the France button:

Private Sub btnFrance_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFrance.Click

Thread.CurrentThread.CurrentUICulture = New CultureInfo(“fr-FR”)
Dim frmData As New frmDataEntry()
frmData.ShowDialog()

End Sub

Thread.CurrentThread.CurrentUICulture represents the current culture
for the user interface. The culture code for the French language and the region
France is “fr-FR”. By changing Thread.CurrentThread.CurrentUICulture, you
are effectively telling Visual Basic .NET to render your form for this culture.

Conclusion
As the world seems to get smaller and smaller, there is a greater need to create
applications that can be sold and used across the global marketplace. Global-
ization and localization are two related but different concepts. Globalization is
the process of formatting the same data based on the current culture, whereas
localization is the process of displaying different languages and images based
on the current culture. To create a localized form, set the form’s Localizable
property to True and customize the user interface for each culture using the
form’s Language property. A resource file containing all localizable data (such
as strings and graphics) is automatically embedded into the binary file of an
application. Using the Localizable and Language properties, Visual Studio .NET
will create these resource files for you.

Application #82: Serialize Objects
Serialization is the process of converting an object into a linear sequence of
bytes. This is a powerful technique that has several practical uses, such as per-
sisting an object’s state to disk. For example, a word-processing document
might exist as an object. Using serialization, the word-processing document can
be saved to a file on disk for later retrieval. When the user wants to reopen the
document, it’s deserialized and the document is restored. Other uses include
cloning objects and remoting.

C09618917.fm Page 413 Monday, May 12, 2003 2:19 PM

414 101 Microsoft Visual Basic .NET Applications

The sample application, shown in Figure 9-5, allows the user to serialize a
class by using either SOAP or binary format. The six grouped command buttons
are for serializing and deserializing. The bottom two buttons allow the user to
view the SOAP envelopes for the serialized objects. The text boxes on the right
allow the user to specify the initial data for the instances. The read-only text boxes
on the far right allow the user to see the new field values after deserialization.

F09wp05Figure 9-5 The application interface for the Serialization demonstration.

Building Upon…
Application #7: Object-Oriented Features
Application #8: Scoping, Overloading, Overriding

New Concepts
There are two ways to mark a class as being serializable: using the <Serializ-
able> attribute, or implementing the ISerializable interface.

Using the <Serializable> Attribute
The <Serializable> attribute is the easiest way to mark a class as being serializ-
able. Simply add this attribute to a class, and all module-level fields in a class
are marked as being serializable. This includes all public and private fields.

C09618917.fm Page 414 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 415

Implementing ISerializable
A second way to mark a class as serializable is to implement the ISerializable
interface. ISerializable has only one method that must be implemented: Get-
ObjectData. GetObjectData accepts two parameters and has no return value.
The first parameter, SerializationInfo, holds all the data needed to serialize or
deserialize an object. The second parameter, StreamingContext, indicates the
source or destination of the information. Because you implement GetObject-
Data yourself, you can specify exactly which fields are to be serialized.

Formatters
Regardless of how a class is marked as being serializable—either by using the
<Serializable> attribute or the ISerializable interface—the data is serialized
using a formatter. Visual Basic .NET provides two built-in formatters: the
BinaryFormatter and the SoapFormatter. The BinaryFormatter is used to seri-
alize and deserialize an object in binary format. The SoapFormatter uses XML
format. You can also create your own formatters, which can be customized in
any way you want.

Marking a Class as Serializable
The sample application contains a class named Class1, which is used as the
object to be serialized:

<Serializable()> Public Class Class1

Public x As Integer
Private y As Integer
<NonSerialized()> Public z As Integer

Public Sub New(ByVal argx As Integer, ByVal argy As Integer, _
ByVal argz As Integer)
Me.x = argx
Me.y = argy
Me.z = argz

End Sub

Public ReadOnly Property GetY() As Integer
Get

Return y
End Get

End Property
End Class

As you can see, Class1 is marked with the <Serializable> attribute. Nor-
mally, this means that all fields in the class—public and private—will be serial-
ized. However, if there is a particular field you don’t want to be serialized, you
can mark it with the <NonSerialized> attribute. In this case, the variable z is
marked with the <NonSerialized> attribute.

C09618917.fm Page 415 Monday, May 12, 2003 2:19 PM

416 101 Microsoft Visual Basic .NET Applications

Serialization Using the SoapFormatter
Now that you’ve seen the class that is to be serialized, here is the code that seri-
alizes an instance of Class1 to an XML file using the SoapFormatter:

Private Sub cmdStandardSerializationSoap_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles cmdStandardSerializationSoap.Click

Dim c As New Class1(CInt(txtX.Text), CInt(txtY.Text), CInt(txtZ.Text))
Dim fs As New FileStream(strFileName1, FileMode.OpenOrCreate)
Dim sf As New SoapFormatter()

sf.Serialize(fs, c)

fs.Close()

End Sub

First, an instance of Class1 is created and populated with sample data.
Then a FileStream is created. This will be used to save the XML to a file on disk.
Next, an instance of the SoapFormatter is created. Now that all the variables
have been set up, the Serialize method of the SoapFormatter is called to per-
form the actual serialization. Note that the FileStream and Class1 objects are
both passed into the Serialize method. Finally, the file is closed.

Deserialization Using the SoapFormatter
The code for deserializing an object is similar to the serialization code:

Private Sub cmdStandardDeserializationSoap_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles cmdStandardDeserializationSoap.Click

Dim c As Class1
Dim fs As New FileStream(strFileName1, FileMode.Open)
Dim sf As New SoapFormatter()

c = CType(sf.Deserialize(fs), Class1)

fs.Close()

End Sub

Again, an instance of Class1 is declared, but this time it won’t be instanti-
ated until later. Then a FileStream object is created to read the XML text file.
Next, an instance of a SoapFormatter is created. To perform the actual deserial-
ization, the Deserialize method of the SoapFormatter object is called. This is
when Class1 is instantiated. Finally, the file is closed.

C09618917.fm Page 416 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 417

Conclusion
Serialization is the process of converting an object into a linear sequence of
bytes. To mark a class as serializable, use either the <Serializable> attribute or
implement the ISerializable interface. To perform serialization, use a formatter.
Visual Basic .NET provides two built-in formatters: SoapFormatter and Binary-
Formatter. You can also create your own custom formatter. The Serialize
method is used to serialize an object, and the Deserialize method is used to
deserialize an object.

Application #83: Use TCP Remoting
This sample is designed to show how to use .NET Remoting with Visual Basic
.NET. Because .NET Remoting is an architecture for distributed applications, this
sample is divided into three solutions: server, host, and client. The server solu-
tion is named RemoteCustomer, and it exposes three types of server objects: cli-
ent-activated, single-call, and singleton.

Before running the demo, you need to build all three solutions. You
should build them in the following order:

1. RemoteCustomer

2. Host

3. Client

Once the binaries have been built, start the Host application first to make
sure your objects are available for remoting. Then start the client, which is
shown in Figure 9-6.

Building Upon…
Application #7: Object-Oriented Features
Application #72: Configuration Settings
Application #82: Serialize Objects

C09618917.fm Page 417 Monday, May 12, 2003 2:19 PM

418 101 Microsoft Visual Basic .NET Applications

F09wp06Figure 9-6 The application interface for the Client project.

New Concepts
This sample application introduces several new concepts: .NET Remoting, and
single-call, singleton, and client-activated objects.

.NET Remoting

.NET Remoting is the process of communicating between different processes, usu-
ally across a network. .NET Remoting is the .NET replacement for DCOM in Visual
Basic 6.0, only it’s more powerful and flexible. For example, with .NET Remoting,
you have the power of actually moving an object across the network from one
machine to the next using the Visual Basic .NET built-in serialization capabilities.
There were no built-in facilities for serialization in DCOM, so this had to be done
manually. .NET Remoting is also very flexible. You can choose between HTTP and
TCP for your transfer mechanism, and SOAP and binary formats for the data
encoding. What’s more, you can switch between these by simply changing a cou-
ple of lines in a configuration file. No recompilation is necessary.

Single-Call and Singleton Objects
Single-call and singleton objects both run on the server and service client
requests. The key difference between them is that a single-call object serves just
one request and then is destroyed upon completion, whereas a singleton object
serves multiple clients and multiple requests. Thus, a single-call object is stateless
and a singleton object is stateful. Further, only one singleton object exists at a
time. Multiple single-call objects can be running in memory simultaneously.

C09618917.fm Page 418 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 419

Client-Activated Objects
Client-activated objects also run on the server and service client requests. Unlike
single-call objects, client-activated objects are stateful. Also, client-activated
objects are different from singleton objects in that multiple client-activated objects
can exist at the same time, serving multiple clients. If you’re familiar with DCOM
in Visual Basic 6.0, client-activated objects are the most similar of the .NET Remot-
ing objects to DCOM.

Code Walkthrough
As mentioned previously, this application comprises three solutions. The code
walkthrough will focus on two of these solutions: first, on the server solution
and then the client solution.

The Server Solution—Defining the Server Classes
The server solution, RemoteCustomer, exposes three types of server objects:
client-activated, single-call, and singleton. Note that all three inherit from the
MarshalByRef object:

Public Class Customer
Inherits MarshalByRefObject
§

Public Class SingleCallCustomer
Inherits MarshalByRefObject
§

Public Class SingletonCustomer
Inherits MarshalByRefObject
Implements IDisposable
§

The Client Solution—Accessing a SingleCall Object
There’s a lot of code contained in these three solutions, more than can be shown
here. So, the rest of the walkthrough will focus on the code to access a SingleCall
object. Take a look at the event procedure for the Single Call Debug Data button:

Private Sub cmdSingleDebug_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cmdSingleDebug.Click

Dim args() As Object
Dim scCust As SingleCallCustomer

Try
scCust = _

CType(Activator.CreateInstance _
(GetType(RemotingSample.SingleCallCustomer), _
args), RemotingSample.SingleCallCustomer)

With Me.lstResponses.Items

(continued)

C09618917.fm Page 419 Monday, May 12, 2003 2:19 PM

420 101 Microsoft Visual Basic .NET Applications

.Add(“Debug data follows:”)

.Add(String.Format(“ Creation Time: {0}", _
scCust.DebugCreationTime.ToString))

.Add(String.Format(“ Code Base: {0}", scCust.DebugCodeBase))

.Add(String.Format(“ Fully Qualified Name: {0}", _
scCust.DebugFQName))

.Add(String.Format(“ Remote Host Name: {0}", _
scCust.DebugHostName))

.Add(String.Format(“ Creation Time: {0}", _
scCust.DebugCreationTime.ToString))

.Add(“End Debug Data”)
End With

Catch exp As Exception
Dim txt As String
txt = “I was unable to access the remote customer object.” _

& vbCrLf & vbCrLf & _
“Detailed Error Information below:” & vbCrLf & vbCrLf & _
“ Message: “ & exp.Message & vbCrLf & _
“ Source: “ & exp.Source & vbCrLf & vbCrLf & _
“ Stack Trace:” & vbCrLf & _
exp.StackTrace

MessageBox.Show(txt, “Generic Exception", MessageBoxButtons.OK, _
MessageBoxIcon.Stop)

End Try

End Sub

Again, single-call objects live only for the life of one method call. Each
time the button is clicked, a new instance of the object is created. Note that to
create a single-call object, the code uses Activator.CreateInstance. The Activa-
tor object is used to create types of objects locally or remotely, or to obtain ref-
erences to existing remote objects. The first parameter to CreateInstance is the
type of object you want to create. The second parameter is the arguments to be
passed into the object’s constructor. Although SingleCallCustomer is expecting
no arguments, it is a required parameter, so you must pass something. In this
case, args is defined as an array of objects. There is no need to initialize the
array. Simply pass it in as is. Once the object has been instantiated, a series of
diagnostic messages are written to the list box on screen. The code is enclosed
within a Try/Catch/Finally block to trap for errors. If an exception is thrown, it
is caught, and an appropriate error message displays on screen.

Conclusion
.NET Remoting is a powerful technology for enabling the distributing of .NET
applications. Objects can live solely on a single machine or be transferred
across the network. Out of the box, .NET Remoting provides two methods of

C09618917.fm Page 420 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 421

data transfer—HTTP and TCP—and two methods of encoding—SOAP and
binary. You can also plug in your own data-transfer and encoding objects.
There are three types of server objects: singleton, single-call, and client-acti-
vated. The most similar of these to classic DCOM is the client-activated object.
.NET Remoting is such an advanced technology that you’d need an entire book
to explain it in detail. Hopefully, this sample will give you a good start. For
more information, consult the .NET documentation.

Application #84: Asynchronous Calls
This sample application demonstrates how to use threads to create a responsive
application while executing a processor-intensive or lengthy task in the back-
ground. This application allows the user to fire a long-running process on various
types of threads. The main form contains three command buttons. The first but-
ton runs the task on the same thread as the main application, effectively blocking
the user from interacting with the main form until the task is finished. The second
and third buttons run the task on a second thread, allowing the user to continue
interacting with the main form. The difference is that the second button runs the
task on a thread from the worker pool, whereas the third button uses a newly cre-
ated Win32 thread. This example does not include synchronization because no
data is being accessed by multiple threads.

F09wp07Figure 9-7 The application interface of the Asynchronous Calls demonstration.

Building Upon…
Application #7: Object-Oriented Features
Application #79: Use Thread Pooling

C09618917.fm Page 421 Monday, May 12, 2003 2:19 PM

422 101 Microsoft Visual Basic .NET Applications

New Concepts
This sample application introduces two new concepts: the DebuggerStep-
Through attribute and delegates.

DebuggerStepThrough Attribute
The DebuggerStepThrough attribute is used several times in the sample applica-
tion to tell the Visual Studio .NET debugger to skip over a routine while it’s exe-
cuting. You can, however, still set a breakpoint in the routine. The
DebuggerStepThrough attribute is used because attempting to step through mul-
tithreaded code can sometimes lead to inconsistent results.

Delegates
A delegate is a special kind of data type that allows you to pass a routine as a
parameter to a method. In a sense, delegates are new to Visual Basic develop-
ers, but in reality, this mechanism has been prevalent all along. Behind the
scenes, events are implemented as delegates. To create your own delegate, use
the Delegate keyword. For example:

Public Delegate Sub MyDelegateType(ByVal i As Integer, ByVal s As String)

This creates a new delegate named MyDelegateType with two parameters,
an integer and a string, in that order. The signature is important because any pro-
cedure assigned to this delegate must have the same signature to keep your code
type-safe. Once a delegate type has been declared, you can create instances of it
by passing in the address of the routine you want to assign it to. For example:

Public Sub MyProcedure(ByVal i As Integer, ByVal s As String)
‘ Do something

End Sub

Dim dt As New MyDelegateType (AddressOf MyProcedure)

The sample application uses a delegate in the Click event procedure for
the Run On Worker Pool Thread button.

Code Walkthrough
The focal point of the code walkthrough will be on frmMain. In particular, it will
examine the TheLongRunningTask subroutine and the cmdSameThread_Click,
cmdWorkerPoolThread_Click, and cmdRunOnNewWin32Thread_Click event
handlers.

TheLongRunningTask Subroutine
Before taking a look at the actual threading code, first look at the TheLongRun-
ningTask subroutine. The first thing to notice is that this subroutine doesn’t do
any real work. Its only purpose is to simulate a long-running process. The Sleep

C09618917.fm Page 422 Monday, May 12, 2003 2:19 PM

Chapter 9 Advanced .NET Framework 423

method of the Thread.CurrentThread object is used to simulate a long-running
piece of code:

Private Sub TheLongRunningTask()

Dim f As New frmTaskProgress()
f.Show()
f.Refresh()

Dim i As Integer
For i = 1 To 10

f.prgTaskProgress.Value += 10
Thread.CurrentThread.Sleep(500)

Next

f.Hide()
f.Dispose()

End Sub

The Sleep method inserts a half-second delay. To keep the user apprised
of its progress, this subroutine displays a form with a progress bar on it. As the
For/Next loop iterates, the progress bar is incremented. TheLongRunningTask
takes 5 seconds to run.

The Run On Same Thread Button
When the user clicks the Run On Same Thread button, the TheLongRunning-
Task subroutine is executed directly. No threading is used. In other words, this
is “normal” code:

<DebuggerStepThrough()>_
Private Sub cmdSameThread_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles cmdSameThread.Click

TheLongRunningTask()

End Sub

Also, note that when this button is clicked, the whole application is unre-
sponsive until the task completes.

TaskDelegate
TaskDelegate is a delegate used by the Run On Worker Pool Thread button:

Delegate Sub TaskDelegate()

The Run On Worker Pool Thread Button
The Run On Worker Pool Thread button executes the TheLongRunningTask
subroutine on a thread from the thread pool. This is performed asynchronously
using the TaskDelegate declared previously. The AddressOf operator passes the

C09618917.fm Page 423 Monday, May 12, 2003 2:19 PM

424 101 Microsoft Visual Basic .NET Applications

memory address of the TheLongRunningTask subroutine into the delegate, and
then the BeginInvoke method starts execution:

<DebuggerStepThrough()>_
Private Sub cmdWorkerPoolThread_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles cmdWorkerPoolThread.Click

Dim td As New TaskDelegate(AddressOf TheLongRunningTask)
td.BeginInvoke(Nothing, Nothing)

End Sub

Note that when this button is clicked, the application itself remains
responsive.

The Run On New Win32 Thread Button
Finally, the Run On New Win32 Thread button runs the same subroutine as the
previous two buttons. But this time the task is run on a newly created operating
system thread (not on a thread from the thread pool):

<DebuggerStepThrough()>_
Private Sub cmdRunOnNewWin32Thread_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles cmdRunOnNewWin32Thread.Click

Dim t As New Thread(AddressOf TheLongRunningTask)
t.Start()

End Sub

Again, when this button is clicked, the application remains responsive.

Conclusion
Visual Basic .NET allows you to run code asynchronously using free threading.
Free threading lets you write an application that performs a task on a separate
thread, keeping your user interface free and responsive. You can even use mul-
tiple threads to run multiple tasks simultaneously. This technique is very useful
when you’re trying to create an application that scales. As more clients connect,
or as the workload increases, you can add more threads.

C09618917.fm Page 424 Monday, May 12, 2003 2:19 PM

