Transactions CHAPTER

IN THIS CHAPTER

¢ Choosing a Transaction Technique 195

¢ Transactions in the Proposed
Architecture 200

¢ A Flexible Transaction Design 203
¢ New Possibilities to Consider with .NET 212

¢ Tips on Making Transactions as Short as
Possible 214

¢ Tips on Decreasing the Risk of Deadlocks 221

e Obscure Declarative Transaction Design
Traps 222

e Evaluation of Proposals 224

194 Chapter 6

Transactional design is crucial for a successful Online Transactions Processing (OLTP) appli-
cation, and yet it is often totally “forgotten” in component-based applications. In this chapter, I
discuss several different transaction techniques and recommend ways to choose between them.
I then discuss transactions in the context of the proposed architecture of the previous chapter
and show how you can design your application, making it easy to change transaction tech-
niques if need be. Next, we look at the changes brought about by .NET concerning transactions
and discuss tips on getting shorter transactions, lessening the risk of deadlocks, and avoiding
traps with automatic transactions. Finally, I analyze my various transaction proposals based on
the criteria established in Chapter 2, “Factors to Consider in Choosing a Solution to a
Problem.”

NoTE

This chapter discusses general solutions for transactions. In Chapter 8, “Data Access,”
I'll bind the solutions to my data access proposal and specifically to the architecture.

Locking and concurrency control are at the heart of transactions. We will touch on
the subject in this chapter, but we'll also discuss locking and concurrency control in
more detail in Chapter 9, “Error Handling and Concurrency Control.”

Before we get started, it’s important that you have a firm grasp of the following topics regard-
ing general transaction theory and automatic transactions in .NET because I will not discuss
them in detail in this chapter or anywhere in this book.

* Atomicity, Consistency, Isolation, and Durability (ACID)

» Shared and exclusive locks

¢ Transaction Isolation Levels (TIL)

¢ Two-Phase Commit (2PC)

* Doomed, done, and happy flags

¢ What the different transaction attribute values stand for

NoTE

If you feel you need to catch up on these topics, | recommend Tim Ewald’s
Transactional COM+: Building Scalable Applications' or Ted Pattison’s Programming
Distributed Applications with COM+ and Visual Basic 6.0.> To delve even deeper in
general transaction theory, | recommend Jim Gray and Andreas Reuter’s Transaction
Processing: Concepts and Techniques® or Philip A. Bernstein and Eric Newcomer's
Principles of Transaction Processing.*

Transactions

Choosing a Transaction Technique

As you know, you can choose from several different techniques when dealing with transac-
tions. In this section, I compare distributed transactions with local transactions and discuss the
different approaches to working with those types of transactions, such as using transactional
serviced components, ADO.NET, and stored procedures. First, let’s start by looking at the
main goal of any chosen transaction technique.

The Main Goal of Any Chosen Transaction Technique

As I mentioned in Chapter 2, the main goal of any chosen transaction technique is that it pro-
duces correct results when needed for certain scenarios. Keep this in mind when you read this
chapter’s discussions of performance, scalability, maintainability, and so on. Correctness is
most important.

Although you may think that it is a given that correctness is extremely important, this notion
goes one step further with transactions. Recall what I said in Chapter 1, “Introduction,” about
the new feature of COM+ 1.5 called process recycling. Although nobody likes a memory leak
and we all try to avoid and/or try to find them, they’re often not a large problem, even for criti-
cal Web sites—you just recycle the process once a day and nobody notices. However, if, at the
very same Web sites, one transaction a day or a month produces an incorrect result leading to
an inconsistent database, such leaks become disasters. The good news is that all the techniques
I discuss in this chapter can be used to create correct transactions. Having said that, let’s focus
on issues of raw performance.

Description of the Selection of Transaction Techniques

It’s possible to categorize transaction techniques in several ways. First, we can categorize them
as being local (as are ordinary T-SQL transactions), being taken care of by one SQL Server
instance, or as being distributed as 2PC transactions coordinated by Microsoft Distributed
Transaction Coordinator (DTC). Transaction techniques can also be described as being auto-
matic or manual. In automatic transactions, the desired transaction semantics are declared
rather than programmed. In manual transactions, the transactions are controlled with explicit
start and end statements.

NoTE

Don't confuse automatic and manual transaction techniques with the implicit and
explicit transactions in, for example, T-SQL. As you probably know, when you do an
UPDATE in SQL Server without first starting a transaction, the UPDATE will be wrapped
inside an implicit transaction. If you begin and end your transaction on your own,
you create an explicit transaction.

195

SNOILOVSNVY |

196

Chapter 6

The final category is controller technology, such as ADO.NET (that wraps local T-SQL trans-
actions) and the two wrappers for DTC transaction (namely, COM+ transactions and T-SQL
distributed transactions). The last and very common transaction wrapper isn’t really a wrapper.
I’m referring to making pure T-SQL transactions. If we use the wrappers as categories, the sit-
uation shown in Table 6.1 occurs.

TABLE 6.1 Transaction Wrapper Techniques

Manual/Automatic
Wrapper (Programmed/Declared) Local/Distributed
COM+ transactions Automatic Distributed
ADO.NET transactions Manual Local
Distributed T-SQL transactions Manual Distributed
Pure T-SQL transactions Manual Local

NoOTE

In Table 6.1, you see that using COM+ transactions also means using distributed trans-
actions. This is often overkill, especially if you have only one Resource Manager (RM)
participating in the transaction. Even though a delegated commit will be used to
optimize away some overhead from the 2PC protocol, this kind of transaction is
expensive.

I haven’t used distributed T-SQL transactions in any real-world applications, and I often find
this to be a less commonly useful technique. Therefore, I will not discuss it in any detail now
when describing wrappers. Instead, I’1l briefly describe the different wrappers so that you
understand what I mean when I use the different names. Note that I expect you to have a firm
grasp of the techniques I present next so I will only describe them briefly.

COM+ Transactions

When COM+ controlled transactions are used, you get automatic and distributed transactions.
COM+ asks Microsoft Distributed Transaction Coordinator (DTC) for help with the physical
transaction, but COM+ will tell DTC when to start and when to end the transaction with the
DTC-enabled RM(s). The transactional behavior is declared on the components with transac-
tion attributes, and then COM+ uses interception to start and end transactions. If you use the
AutoComplete () directive on the methods, you don’t have to write any code to manage the
transactions. You can see this in Listing 6.1, where a stored procedure is called and COM+ is
starting and ending a transaction. Otherwise, you should use, for example,
ContextUtil.SetComplete() and ContextUtil.SetAbort() to vote for the outcome.

Transactions

NoOTE

Although you obviously do not have to use stored procedures, | highly recommend it.
In Chapter 5, “Architecture,” | recommended that you always use stored procedures
when components call the data tier. This presents a number of problems, but they are
solvable. In Chapter 8, “Data Access,” | present a few examples of such problems and
offer suggestions for their solution.

LisTING 6.1 An Example of a COM+ Controlled Transaction

aCommand.ExecuteNonQuery ()

NoTE

It's not only database engines that are RMs. Don’t forget that Queued Components
(QC) and MSMQ are other examples of RMs. In the future, | hope to see DTC-enabled
RMs for Exchange’s data storage, the Windows file system, and so on.

A major advantage with automatic transactions is that you can often reuse components without
code changes, and they can directly participate in the transactions of the new consumers. One
reason for this is that all the components participating in one transaction can open a connec-
tion of their own. The connections will auto-enlist in the transaction.

ADO.NET Transactions

ADO.NET transactions are conceptually really just a wrapper around ordinary T-SQL transac-
tions. Listing 6.2 shows an example of how ADO.NET transactions can be used. In this case,
there is a transaction around a call to a stored procedure. Of course, there is more to it than
that—you have to make an aConnection.RollbackTrans() at the time of an exception.

LISTING 6.2 An Example of an ADO.NET Controlled Transaction

aTransaction = aConnection.BeginTransaction()
aCommand.Transaction = aTransaction
aCommand.ExecuteNonQuery ()
aTransaction.Commit ()

197

SNOILDVSNVY |

198

Chapter 6

Pure T-SQL Transactions

Although T-SQL transactions are used by ADO.NET transactions, when I refer to “pure” T-
SQL transactions, I'm referring to T-SQL transactions controlled by SQL scripts or by stored
procedures. Listing 6.3 shows an example of how this might look. Once again, I have excluded
the code for ROLLBACK TRAN and the complete code structure discussed in Chapter 5.

LisTiNnG 6.3 Simplified Example of a Pure T-SQL Transaction

BEGIN TRANSACTION

UPDATE errand

SET closedby = @userld

, closeddatetime = GETDATE()
, solution = @solution
WHERE id = @id

INSERT INTO action

(id, errand_id

, description, createdby

, createddatetime, category)
VALUES

(@anActionId, @id

, @description, @userlId

, GETDATE(), @aCategory)

COMMIT TRANSACTION

Why Care About Which Transaction Technique to Use?

There are huge differences between the different techniques when it comes to performance and
scalability. The biggest difference is between local transactions and distributed transactions,
because the 2PC protocol used by distributed transactions is pretty expensive as far as overhead
is concerned. Table 6.2 presents a subjective overview of the advantages and disadvantages of
each technique when you work with one RM. Note that the lower the value, the better.

TABLE 6.2 Comparison of the Transaction Techniques for One RM

COM+ ADO Pure T-SQOL
Factor Transactions Transactions Transactions
Throughput 3 2
Participation in transactions 1 3 3

together with other (unknown)
components

Transactions

TABLE 6.2 Continued

199

COM+ ADO Pure T-SQL
Factor Transactions Transactions Transactions
Getting portable code with 1 1 3
regard to different database
products
Fine-grained control of when 3 2 1

to start and end transactions

ADO and Symmetric Multi-Processing Machines

A few years ago, | ran a test of COM+ transactions, ADO transactions (not ADO.NET),
and pure T-SQL transactions with VB6 written components. | was puzzled when | saw
that the COM+ controlled transactions had a higher throughput than the ADO con-
trolled transactions. It took me a while to understand that it was only true on
Symmetrical Multi-Processing (SMP) machines. When | turned off one of the two CPUs
in my test application server, the throughput for the ADO controlled transactions
actually increased and the resulting relation between ADO transactions and COM+
transactions turned out as expected. You will find the results from a test of the same
techniques but in this new environment of .NET and ADO.NET on the book’s Web site
at www.samspublishing.com.

Reasons to Use Distributed Transactions
You may wonder why, given that they are so expensive, I am discussing distributed transac-
tions at all. The reasons are simple:

* There is more than one RM—If you have more than one RM that must participate in the
transactions, you should use distributed transactions.

* Components that are “unaware” of each other coexist—If you need to reuse a compo-
nent that is out of your control or if you don’t want to rewrite the component to fit into
your architecture of local transactions, you can easily solve the problem with distributed
transactions instead. This is also a useful technique for using legacy components in the
.NET world.

Conclusion and Proposal: Choosing a Transaction
Technique

My proposal for choosing a transaction technique is simple—use pure T-SQL transactions if
you only have one RM; otherwise, use COM+ transactions. Also, use COM+ transactions if

SNOILDVSNVY |

200

Chapter 6

you need transactions to span unknown components that are not all within your control. This is
another situation where COM+ transactions shine.

Transactions in the Proposed Architecture

Transaction design is extremely important and was a key factor I evaluated when creating the
architecture I described in the last chapter. In this section, I’ll discuss how the transactions fit
in the architecture. But before we do this, let’s review the proposed architecture.

Review of the Proposed Architecture

Figure 6.1 presents the architecture for the sample application Acme HelpDesk, which you first
saw in Chapter 5. Keep this figure in mind in the following discussion of what I consider to be
important information about an earlier attempt of an architecture I made. The figure applies to
both my old and new attempt.

Consumer tier Business tier Data tier
(Serviced components)
——
Acme.HelpDesk.EXE

(Windows Forms)

— ¥

Acme.HelpDesk. Acme.HelpDesk.
(ConsumerHelper.DLL| ™~ > Application.DLL
(helper classes) (application)

Acme.HelpDesk.
Domain.DLL
(domain)

S—
Acme.HelpDesk. helpdesk database

PersistentAccess.DLL [~~~ > (public stored
(persistent access) procedures)

—Y

helpdesk database
(private stored
procedures)

FIGURE 6.1
My architecture proposal applied to the sample application Acme HelpDesk.

Transactions

Earlier Architecture Attempt

I've used several different architecture proposals over the years. One that | used a
lot—let’s call it the “old architecture”—Ilooks exactly as shown in Figure 6.1, but there
are a lot of differences to the current proposal. This old architecture isn’t the last one
| used before moving to .NET, but rather something that | used a few years ago. I'd
like to discuss it here to show how my current architecture evolved.

When using automatic transactions in the old architecture, | only let the Persistent
Access layer be transactional, so all the classes in the Application layer and the
Domain layer had NotSupported for the Transaction attribute. (They could also have
had Supported or Disabled, depending on what behavior was desired.) The idea was
to get transactions as short as possible and not to let a transaction span more than
one layer.

The main drawback was that using transactions only in the Persistent Access layer
had a huge influence on design. All transactions had to reach one method in the
Persistent Access layer in one call. Of course, this is possible, but it gave unintuitive
code for the Application and Domain layers and it also made reusing the Domain and
Persistent Access classes for different Application classes harder.

Another drawback when | used the architecture with manual transactions was that |
relied on the stored procedures to control the transactions. The problem was when
several stored procedures had to be called from a Persistent Access layer class to par-
ticipate in one single transaction. In this situation, | let ADO control the transaction.

Yet another negative aspect about this proposal was that | split all the classes in the
Persistent Access layer into two categories—one for fetching with the Transaction
attribute set to Supported and one for writing with the Transaction attribute set to
Required. Yet another drawback was that because | let the Persistent Access layer be
transactional, | had interception and nondefault contexts for both the classes in the
Application layer and the Persistent Access layer.

Transactions in the Current Proposal

When I use automatic transactions with the current proposal, I only declare transactional
behavior on the classes in the Application layer by setting the Transaction attribute of the
transactional classes to Required. (The classes in the other layers will have Disabled as the
value of their Transaction attribute if they aren’t Shared. If they are Shared, no Transaction
attributes will be used, nor will inheritance from ServicedComponent.) Usually, the first con-
tact with the database in a scenario will be deferred until the very end when the SQL script is
to be executed. Consequently, the physical database transaction will not be longer by letting
the Application layer be transactional.

201

SNOILDVSNVY |

202 Chapter 6

Owing to this solution, the design will be less influenced by the transaction. The use case class
in the Application layer can ask several Domain and Persistent Access classes for help by call-
ing primitive methods, instead of having to move the control over to a Persistent Access class.
The class residing in the Application layer will control the complete use case and, at the end,
will send the SQL script to a helper class in the Persistent Access layer for execution.

Take a look at the interaction diagram in Figure 6.2 for an example of a call sequence. Here,
you can see that the ErrandSaving class from the Application layer controls the scenario. First,
it calls the doErrand class in the Domain layer to check whether the new errand is acceptable
according to the defined rules. Then, it calls the paErrand class in the Persistent Access layer
to receive the required rows to the SQL script. Finally, the SQL script is executed with the
paHelper class and the public stored procedure a_Errand_Insert() is called. Finally, the pri-
vate stored procedure Errand_Insert() will be called, and the INSERT statement will be exe-
cuted there.

4: Execute()

Y

: ErrandSaving/| | : doErrand : paErrand :paGeneral | | :a_Errand_| |': Errand_Insert
: : : Helper Insert :
: 1: Save : : : :
: V0o & . Check() | : :
3:Save() H H
—>|:| : :

U 5: EXEC()

6: EXEC()
g

FIGURE 6.2

Interaction diagram, showing an example of a transaction.

Because an SQL Script is used, there is no need to use ADO.NET controlled transactions.
Instead, the transaction can be started and ended in the SQL Script. There is no real reason for
splitting the Persistent Access classes (paErrand in Figure 6.2) into two parts either.

Transactions

The main drawback with the current proposal is that with automatic transactions, a method that
does a fetch from the database and doesn’t need a transaction will get a DTC transaction if it is
located in a transactional Application layer class. When manual transactions are used, it isn’t a
problem to have a single class for both fetching and updating methods because I control
exactly when to start and stop transactions. If it is a real problem with automatic transactions
that fetching methods also starts DTC transactions, the classes in the Application layer have to
be split. This is unfortunate because the use case then needs two different Application layer
classes. Fortunately, the Consumer Helper layer can hide the fact that the class has been split
from the Consumer layer.

A Flexible Transaction Design

If you follow the recommendation to use local transactions when you only have one RM, but
want to prepare for a possible future change to distributed transactions and have as few pro-
gramming changes as possible, there are a couple of things to think about.

Transaction Control

Assume you have followed the architecture that I have proposed. For simplicity’s sake, we
only have one root component in the Application layer that is called ErrandSolving in this
scenario. It will use a component called paHelper in the Persistent Access layer. In turn, the
paHelper will use a stored procedure called a_Errand_Close(). The stored procedure will
UPDATE a row in the errand table and INSERT a row to the action table. Because there is only
one RM involved in the transaction, I am using a local transaction in the stored procedure.
Listing 6.4 shows how this may look, in a simplified version.

NoTE

I will discuss error trapping in greater depth in Chapter 9.

LisTING 6.4 Excerpt from Stored Procedure Showing a Simplified Pure T-SQL Transaction

BEGIN TRANSACTION

UPDATE errand

SET closedby = @userlId

, closeddatetime = GETDATE()
, solution = @solution
WHERE id = @id

203

SNOILOVSNVY |

204 Chapter 6

LisTING 6.4 Continued

INSERT INTO action

(id, errand_id, ...)
VALUES
(@actionld, @id, ...)

COMMIT TRANSACTION

Transaction Attribute Value

How should you declare the transaction-related attributes for the components in this situation
when pure T-SQL transactions are used? There are several correct ways to do it. One possible
proposal is to use the settings shown in Table 6.3.

NoTE

| assume here that paHelper isnt Shared. As you read in Chapter 5, it is preferable to
use Shared whenever possible from a performance perspective.

TaBLE 6.3 Transaction Settings: Proposal 1

Component Transaction(TransactionOption)
ErrandSolving Supported
paHelper Supported

Because ErrandSolving is the root component for this scenario and uses Supported transac-
tions, there will be no DTC transaction started. This is exactly the result I want. But did I
achieve the result in the cheapest way? No, I can do better than this. A slight improvement
would be to change paHelper to have Disabled instead of Supported. This makes it possible
to save one context, but I'm still not satisfied. Let’s investigate why not.

When Supported is used as the Transaction(TransactionOption) value, it means that you
have to use just-in-time activation (JIT). As you recall from the discussion about JIT in
Chapter 5, I prefer to use JIT only when I need COM+ transactions, so this isn’t the perfect
solution. Another way to see it is that because Supported requires interception, objects of this
component can’t go to the default context.

Before you say that you don’t like this solution, remember that without any redeclarations,
instances of both the components can participate in a COM+ transaction. If you really need the

Transactions

components to be able to participate in a COM+ transaction, this solution isn’t so bad after all.
(It’s not all that it takes, but it’s the first step.)

A more efficient declaration would be as shown in Table 6.4, in which the components can still
participate in an outer COM+ transaction.

TABLE 6.4 Transaction Settings: Proposal 2

Component Transaction(TransactionOption)
ErrandSolving Disabled
paHelper Disabled

Now there will be no interception (if no instances of those components will co-locate in a con-
text that uses interception). There is also the possibility of co-location that I discussed in
Chapter 5. Less memory will be used and there will be less overhead for creation and calling
methods.

The good thing is that if you add a new component that required a transaction, say
CustomizedErrandSolving, a created instance of ErrandSolving can participate in the trans-
action. This assumes that instances of ErrandSolving must co-locate in the context of
instances of CustomizedErrandSolving. We then have the best of both worlds.

The drawback is that co-location is often a problem for instances in the Application layer
because that layer often requires component-level security, and then co-location is impossible.
This is also the case for root components. If the consumer is Windows Forms on another
machine, there is no context to co-locate in for the Application Layer class. We should still use
the settings from Table 6.4, but instances of a new and, today, unknown component can’t start
a transaction in which instances of ErrandSolving can participate. In any case, we have
declared transaction attributes as being as efficient as possible for the current situation. And we
haven’t created any obstacles so far for easily changing the transaction technique to COM+
transactions.

Changing the Values for Transaction Attributes

At first I thought I’d recommend the solution that I’'m now in the middle of describing as a
means for administrators to change transaction techniques when they needed to. When I men-
tioned this idea to Joe Long at Microsoft, he strongly disagreed, and we had a long discussion
on the matter. His main concern was that administrators can’t know about the inner workings
of the components and the assumptions the programmers made when they wrote the code.
Even for well and strictly architected components with full documentation of supported
transaction settings, there is a risk that the administrator may make a small mistake. And we
all know what one mistake can do to the transactions. The reason for using declarative

205

SNOILOVSNVY |

206

Chapter 6

transactions isn’t to make transaction semantics easier for administrators to maintain, easier for
developers to program, or more efficient. The reason is correctness!

If we compare some of the EnterpriseServices attributes with other attributes in .NET, there
is a fundamental difference. Some of the EnterpriseServices attributes can be changed from
outside of the code. In the future, it will probably change, so we can lock the settings, but for
the time being, it’s very easy for someone to change the settings in the Component Services
Explorer.

Another flaw with my original reason for my idea was that the administrator has little opportu-
nity to make use of the flexibility I was about to propose. There are two basic situations when
the transaction technique needs to be changed:

* The current components also need to hit another RM.

* The current components need to be used by other components, which in turn hit another
RM, or they use another architecture for controlling transactions.

In the first case, it will usually be the developers who make that change anyway. In the second
case, I think it’s reasonable to contact the developers too.

Another reason—and certainly a big one—for not letting administrators change the settings in
the Component Services Explorer for certain attributes is that the common language runtime
won’t look in the COM+ catalog, but rather in the meta data for the assembly to know how to
deal with components regarding Object Pooling, for example. The only values that should be
changed in the Component Services Explorer are deployment-related values, such as object
construction strings, number of objects in the object pools, and similar deployment-related
values—not the settings, for example, that enable object construction strings or object pooling.

So, Joe won the battle. I agree with him that setting the transaction attributes is a matter for the
developers. Because of this, I have slightly changed the basic purpose of the proposal, and I'm
now discussing it as a way for developers to prepare their design and code for a future change
of transaction technique. They will carry out the change, but it will be easily done.

NoTE

It might sound strange to talk about the administrator as a person who would be
thinking about using one of your components from another transactional compo-
nent. However, it's very easy to publish XML Web services whose methods are transac-
tional and that call your components. Meanwhile, BizTalk has been used to
orchestrate a solution in which some of your components will participate. Think
about this before you follow my recommendation of using Disabled for the transac-
tion attribute. Are the implications reasonable in your situation?

Transactions

Starting with Manual Transactions

Programming for a future change of transaction technique must start with coding for manual
transactions and then move to automatic transactions, and not the other way around. Why? If
everything works well for manual transactions, there is a good chance that it will work well for
automatic transactions too.

On the other hand, if you start coding for automatic transactions, it’s very common to use sev-
eral connections in the same transaction so that participating components open their own con-
nections. This works thanks to auto-enlist, so that all the connections will be enlisted in the
automatic transaction. In a way, this is information hiding (which I normally appreciate)
because the different components are more shielded from each other so they won’t send around
a connection object. On the other hand, this is less efficient than letting all instances that par-
ticipate in the transaction share one connection. As you see, I prefer to let the instances share
the connection because it’s efficient and works with both automatic and manual transactions.

It’s important to note that you shouldn’t count on all RMs being able to successfully commit a
transaction where several connections have been used in the same DTC transaction. This works
well with SQL Server; however, at the time of writing it does not work so well with, for exam-
ple, Ingres. (I've heard that a version of Ingres that is to be released soon—or has been
released when you read this—will support transactions that span several connections, but it
isn’t documented as a requirement by Microsoft that “Tightly Coupled XA Threads™ are a
must for an RM to support DTC transactions.) A safe recommendation is to use only one con-
nection in your DTC transactions too. On the other hand, be careful that you don’t send a con-
nection between processes or machines.

NoTE

You will see in Chapter 8 where | propose how to access the database, that only one
method will hit the database for each scenario. The participating instances will just
add logic to an SQL script that is executed against the database from a single method
afterward.

There are two problems in starting with manual transactions and then expecting your compo-
nents to work with automatic transactions without code changes. The first is that you have to
remember that automatic transactions require JIT, so that the member state is lost when the
transaction ends. What I mean is that you have to code your local transactions as if JIT were
being used. That is definitely my intention with the architecture proposal.

207

SNOILOVSNVY |

208

Chapter 6

The second problem is that you get slightly different transaction semantics in the two cases.
You can delay transaction start with local transactions, and you will also, by default, work with
another transaction isolation level (TIL). So watch out!

One Controlling Part

It’s possible to use, say, BEGIN TRANSACTION and COMMIT TRANSACTION in your stored proce-
dures, even if they are to be used from COM+ components. SQL Server will keep track of the
current @TRANCOUNT to determine whether COMMIT TRANSACTION really means a COMMIT or
whether it is only subtracting one from @@TRANCOUNT. That’s perfectly acceptable.

Nevertheless, there is at least one problem with this. ROLLBACK TRANSACTION won’t just sub-
tract 1 from @@TRANCOUNT; it will do a ROLLBACK of the complete transaction, which can create
a problem for the components. In my opinion, it’s much better to decide on just who is respon-
sible for doing something, and then nobody else will interfere. (At least not as long as

the first party does the job.) Therefore, I won’t do a BEGIN TRANSACTION and COMMIT
TRANSACTION/ROLLBACK TRANSACTION in my stored procedures if COM+ transactions are
responsible for taking care of the transactions. However, this makes a real mess if the stored
procedures are also to be used from other consumers that don’t handle transactions on

their own.

Moving from automatic to manual transactions for some scenarios will also take a lot of work.
However, I use the solution to the problem shown in Listing 6.5. @ TRANCOUNT is stored in a
local variable when the stored procedure is entered. When the stored procedure is about to start
a transaction, it investigates whether there is already an active transaction. If there is, there
won’t be another BEGIN TRANSACTION. At COMMIT/ROLLBACK time, a similar technique is used.
If there wasn’t an active transaction when the stored procedure was entered, it should be
COMMITted/ROLLedBACK now. You should also add to this the criteria that there must be an
active transaction. (There can now be several COMMIT sections in the stored procedure without
creating any problems.) Clean and simple.

LISTING 6.5 Excerpt from a Stored Procedure Showing How to Write Flexible
Transaction Code

SET @theTranCountAtEntry = @@TRANCOUNT

IF @theTranCountAtEntry = @ BEGIN
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRAN

END

UPDATE. ..

Transactions

LisTING 6.5 Continued

209

--Another DML-statement...
INSERT...

ExitHandler:
IF @theTranCountAtEntry = @ AND @@TRANCOUNT > @ BEGIN
IF @anError = @ BEGIN
COMMIT TRAN
END
ELSE BEGIN
ROLLBACK TRAN
END
END

NoTE

Oracle, DB2, and even the SQL-99 standard do not support BEGIN TRANSACTION, but
the first SQL command will start the transaction.

Something else you may need to add to this solution is handling the transactions that

span over several stored procedures from your ADO.NET code. Then you can use
ContextUtil.IsInTransaction() to determine whether you should start a new ADO.NET
transaction. (You could also ask the database server for the @ TRANCOUNT value from your com-
ponent, but that would lead to one more round trip, and you definitely don’t want that.)

NoTE

Instead of starting transactions that must span several stored procedures from
ADO.NET, I deal with this in the SQL script. This is at the heart of the data access pat-
tern presented in Chapter 8.

Transaction Isolation Level (TIL)

If you use COM+ transactions, the Transaction Isolation Level (TIL) will be set for you. In the
case of COM+ 1.5, you can configure the TIL you want to have. For COM+ 1.0, it will always
be SERIALIZABLE. It’s better to be safe than sorry.

SNOILDVSNVY |

210

Chapter 6

NoTE

You can change the TIL within COM+ 1.0 transactions by using SET TRANSACTION
ISOLATION LEVEL statements and optimizer hints. With SQL Server, this has a direct
effect, but watch out because the behavior differs between different database
products.

If you use manual transactions, you have to set the TIL on your own. (The default for MS SQL
is READ COMMITTED.) I typically do this when I start the transaction seen in Listing 6.5. The
problem is that, for instance, a public stored procedure doesn’t know which TIL is needed by a
used private stored procedure. It might then be the case that the public stored procedure SETs
REPEATABLE READ, but the private stored procedure needs SERIALIZABLE. In this case, the pri-
vate stored procedure must have its setting outside of the IF clause, so it executes even if the
private stored procedure won’t start the transaction. See Listing 6.6 for an example. When the
code in Listing 6.6 executes, there is already an active transaction (@theTranCountAtEntry is
not 0, so the BEGIN TRANSACTION won’t execute), but the TIL will still be increased.

LISTING 6.6 Increasing the TIL Within a Transaction

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
IF @theTranCountAtEntry = 0 BEGIN

BEGIN TRANSACTION
END

As you understand, it’s very dangerous to change the TIL in code down the call stack, but as
long as you only increase it, it’s usually acceptable. How can you know that you have only
increased the TIL? You can use DBCC USEROPTIONS and find an entry called isolation level
that tells you the current TIL. If you don’t find that entry, the TIL hasn’t been changed and it
has the default value. On the other hand, to avoid using this for my code, setting the TIL only
to SERIALIZABLE can be done outside the IF-clause, as shown in Listing 6.6.

To summarize, I use the following rules for my stored procedures:

 If a transaction is needed, it will be started, but only if there isn’t a current transaction.

» TIL is not SET if a transaction is already started, except if SERIALIZABLE is the needed
level. That is, SERIALIZABLE will be SET, even if there is a current transaction.

Transactions

I use the following rules when I generate the SQL script in the components:

 If the SQL script only calls one stored procedure, a transaction is not started from the
SQL script. (The stored procedure starts a transaction if it is needed.)

e If the SQL script calls more than one stored procedure, the SQL script starts a transac-
tion (if it is needed). Unfortunately, the only solution here is that the involved stored pro-
cedures must be investigated to decide whether a transaction is needed and should be
started from the SQL script and what TIL is needed. This can be troublesome, but there
is no shortcut.

As you know, I love to centralize code, so I tried to write helper stored procedures for my
BEGIN TRANSACTION block and my block for ending transactions. This would have given me
cleaner and smaller stored procedures, and I could also have hidden implementation details,
such as that only SERIALIZABLE should be SET even if a transaction isn’t to be started.
Unfortunately, I failed because SQL Server monitors that the @aTRANCOUNT must have the same
value when you exit a stored procedure as when you entered it. Otherwise, there will be an
erTor.

NoTE

A colleague of mine once said that using a high (and correct) TIL is important if you
work with bank applications, but you can cheat a bit and decrease it for simple
administrative applications. This may sound like a dangerous viewpoint, but don’t
forget the context. In some applications, a high TIL may be very expensive and, at the
same time, unnecessary. A typical example is applications that generate statistical
information.

If you are unsure about which TIL to use for a certain scenario, go for a higher one,
presumably SERIALIZABLE. Of course, you could standardize on SERIALIZABLE for all
scenarios in the application, but | prefer to use the lowest correct TIL for each sce-
nario.

AutoComplete() Versus SetComplete()/SetAbort()

As you know, with COM+ transactions, you must vote on the outcome. Should it be COMMIT or
ROLLBACK? Even in this case, you have to pay extra attention to support the flexibility pattern
that I discuss in this section. You can check ContextUtil.IsInTransaction() before you do a
SetComplete() and SetAbort() to determine whether there is a transaction for which outcome
you may choose. If not, there’s no need to vote, and remember that SetComplete () and

211

SNOILOVSNVY |

212

Chapter 6

SetAbort () don’t only vote, they also set the done bit to True, which will lead to a deactiva-
tion of the object. Because I only use JIT for classes that use COM+ transactions, I don’t want
the deactivation to occur in other situations.

Another solution to the problem of voting for what transaction outcome you want to have is to
use the AutoComplete() attribute on the methods for the transactional classes instead. With
AutoComplete(), a raised exception is understood as a SetAbort (), but you don’t have to
write any code for it. At the same time, a method that ends without a raised exception is
thought of as being SetComplete().

A somewhat subtle positive effect of AutoComplete() is that you don’t have to have a Catch
block just to get a place for your SetAbort (), as shown in Listing 6.7. In this case, you can
just skip the catch block because nothing is really happening except the SetAbort ().

LIsTING 6.7 Catch Block Only Due to Calling SetAbort ()

Catch e As Exception
ContextUtil.SetAbort()
Throw(e)

A problem with AutoComplete() is that if you get an exception but want to make a compensat-
ing action in a method higher up in the call stack and still COMMIT the transaction, it is impossi-
ble if AutoComplete () has already voted for the secondary object and deactivated it. In this
case, the transaction is doomed. (Of course, in this situation, SetAbort () in the secondary
method would give exactly the same result. DisableCommit () should be used instead.)
Anyway, I usually prefer to take the easy way. If there is a problem, the transaction should

be rolled back, and, because of this, the problem doesn’t exist with AutoComplete().
Furthermore, if your secondary object co-locates in the context of the root object, there is no
problem in the first place because the doomed flag isn’t set until the context is left. As a matter
of fact, it’s not a good idea at all to let your secondary co-located instances vote. It’s better to
only let one instance in the context be responsible for the voting, preferably the root.

New Possibilities to Consider with .NET

NET brings us a flood of new possibilities, although not all of them are even close to optimal.
In this section, I point out a few weaknesses that the marketing department in Redmond does-
n’t talk much about.

Transactions and XML Web Services

A method on an XML Web service can use an automatic transaction (owing to a parameter of
the WebMethod attribute). That transaction can span several .NET objects, but it cannot span

Transactions

several XML Web services. The transaction won’t flow. At first this may seem like a great lim-
itation, but it makes sense because of the following reasons:

* Round trips between computers are always expensive. When XML Web services are
used, it is not because they are the most performance efficient way of communicating, it
is because of other reasons. What I mean is that transactions spanning several calls to
XML Web services would be longer than with other communication mechanisms, and
you don’t want to have long transactions.

 Typical protocols for distributed transactions, such as OLE transactions (as are used by
DTC), are inherently connection oriented. XML Web services are not.

* You don’t know what technique is “hiding” behind that other XML Web service. Is it one
that understands OLE transactions, for example? There is nothing in the XML Web ser-
vices standard regarding transaction support.

e Several XML Web services publishers would certainly be very reluctant to let the con-
sumers decide on the length of the transactions.

NoTE

Of course, you should pay a lot of attention to ensuring all the necessary information
is given to the XML Web service in one method call so that it can take care of the
complete transaction the normal way. This is a “must” for all root components in the
Application layer, even if they aren’t to be published as an XML Web service.

For the moment, the way to proceed to get transaction semantics over several XML Web
services is to use a compensating mechanism instead. It won’t be possible to fulfill the ACID
properties, but this is the best you can do. Unfortunately, the Compensating Resource Manager
(CRM) won’t help you in this situation, even though its name suggests that it will. You have to
roll your own solution instead.

The Compensating Resource Manager (CRM)

The Compensating Resource Manager (CRM) is relatively unknown, even though it
has been around since COM+ 1.0 first saw the light of day. CRM helps to write a
transactional resource dispenser of a resource that isn"t DTC-transactional. CRM is to
be considered as yet another RM. Typical examples of resources that the CRM are use-
ful for dealing with are the file system and Microsoft Exchange. CRM won't perform
magic and create a truly transactional resource dispenser for you, but with the help
of compensating actions, you can go a long way.> ¢

213

SNOILOVSNVY |

214

Chapter 6

NoTE

There is more and more interest in using sagas for transactions. A saga is a logical
transaction aggregated from a sequence of physical transactions that must all succeed
or be undone. One reason for the new interest in sagas is the interest in XML Web
services. It is not within the scope of this book to discuss sagas further. For more
information about sagas, see Transaction Processing: Concepts and Techniques® and
Principles of Transaction Processing.*

Flow of Services Through Remoting

As you recall from Chapter 5, component services won’t flow through XML Web services

nor through Remoting. Actually, the lack of flow of component services through XML Web
services is usually not as large a problem as it may seem at first. Most often, for reasons of
efficiency, you have all the serviced components that are to talk to each other at the same
application server (and in the same AppDomain). There is then no need for flow of component
services over Remoting.

On the other hand, if you do need to let component services flow between machines, you can
always rely on good old DCOM for that. Yes, DCOM is a nightmare through firewalls, but why
would you have a firewall between your serviced components? If you do have a firewall
between your serviced components, ask yourself again if this is the correct design to use.

Tips on Making Transactions as Short as Possible

The length of transactions affects scalability. Each transaction holds on to resources, such as
locks in the database. If you can shorten your transactions, you can service more users (and
transactions) with the same hardware. The following are tips I think are important in making
transactions as short as possible.

Avoiding Large Updates

If you have to update several rows in a transaction, the transaction will take longer than if only
a few rows are to be updated. No rocket science here. Even so, it is worth thinking about
because, for example, this may affect your batch processes, which often update thousands of
rows in each transaction. It is increasingly so that you don’t have any downtime when you can
run batch processes like this without interfering with other transactions. Therefore, it may be
important to use a strategy other than using huge transactions. For example, you could use a
compensating solution instead so that if you have to update 100,000 rows, you can update
them in chunks of, say, 1,000 in each transaction. If one transaction fails, you will see that the

Transactions

total operation isn’t atomic. As a result, you will have to compensate for this. For example, try
again with those transactions that weren’t updated the last time, or undo the result of the trans-
actions that were updated before. Watch out—these can be dangerous design changes to make,
and you have to make careful evaluations before moving along.

NoTE

Note that batch processes dont go well with COM+ transactions. First we have the
timeout, saying that the complete transaction may not take more than x seconds.
(Normally in production, x is set to 5 or lower.) Then we have the JIT behavior that
leads to longer execution time, without any real use in this situation. Distributed
transactions are also a drawback because they will be more resource consuming,
which is not wanted if you don’t need distributed transactions.

Another typical situation arising from too large updates is when you haven’t used a high
enough normal form. It then might be the case that a certain value is located in thousands of
rows and, when the value has to be updated, you have a very large transaction to deal with.
The solution to this is simple—use a high enough normal form for your database design, usu-
ally the third normal form or higher.

Avoiding Slow Updates

For all tasks, there are a number of different approaches to use. For relational databases, the
correct way to proceed is usually to use a set technique instead of a row technique. Let’s take a
simple example. If you are going to increase the price of all products for a certain category in a
stored procedure, you can do this by opening a CURSOR with a SELECT that fetches all the rows
to UPDATE. Then you iterate the CURSOR and UPDATE row by row. It works, but it will be much
slower than a simple UPDATE that updates all the rows in one statement. This might be obvious,
but you should think in this way more often and for less obvious scenarios too. Think twice if
there is a loop in your T-SQL code—check that it isn’t a design bug.

Loops
Although you want to avoid loops, you may sometimes need to use a loop after all. Typical
reasons for this are

* You need to update a large number of rows and you don’t want to fill the transaction log,
or you don’t want to lock out all other users from the table.

* You need to use a very tricky algorithm that can’t be solved or that can’t be solved effi-
ciently with set techniques. (However, don’t give up too fast.)

* You need to call a stored procedure for each row in a resultset.

215

SNOILDVSNVY |

216

Chapter 6

Even though you need a loop, you don’t have to use a CURSOR. As a matter of fact, I recom-
mend that you use a WHILE loop instead. It’s as fast as or faster than a CURSOR in almost all situ-
ations. (If the used key is a composite of more than two parts, a CURSOR is slightly faster.) The
code is also simpler and cleaner with a WHILE loop, and there is less chance of making mis-
takes, but once again, if the key is a composite, the WHILE code is more complicated than the
CURSOR code.

Let’s look at an example of what a WHILE loop looks like in action. I will solve the same exam-
ple that I just used (increasing the price of all products), but this time I will update all the prod-
ucts with a WHILE loop, and I will update them category by category. The products are split into
ten different categories.

In Listing 6.8, you can see that I first SELECT what is the smallest category from the product
table. If I found a category, the WHILE loop is started. I UPDATE all the products for the particu-
lar category, and I investigate that the UPDATE went all right as usual.

LisTING 6.8 WHILE Example: Part 1

SELECT @aCategory = MIN(category)
FROM product
WHILE @aCategory IS NOT NULL BEGIN
UPDATE product
SET price = price + @add
WHERE category = @aCategory

SELECT @anError = @RERROR, @aRowcount = @@ROWCOUNT
IF @anError <> @ OR @aRowcount = @ BEGIN
SET @anErrorMessage = 'Problem with...'
IF @anError = @ BEGIN
SET @anError = 81001 --An example...
END
GOTO ExitHandler
END

In Listing 6.9, you can see that I save the last processed category in an old variable, and then I
search for the smallest category larger than the last processed.

LiSTING 6.9 WHILE Example: Part 2

SET @aCategoryOld = @aCategory

SELECT @aCategory = MIN(category)

FROM product

WHERE category > @aCategoryOld
END

Transactions

NoOTE

Several years ago when | was porting an application that | built for SQL Server 4.21 to
SQL Server 6, | decided to rewrite a WHILE loop to a CURSOR solution. | guess | was
tricked by all the hype about server-side CURSORs that was taking place at the time. It
was probably not a good idea, especially because the WHILE loop worked just fine
and there weren’t any problems with it. (Well, there weren’t any problems with the
CURSOR either, but it was probably a worse solution.) Since then, I've learned not to
make transitions like these without having a real purpose and without examining
whether such transitions will have a positive effect.

Avoiding Pure Object-Oriented Design

As you recall from Chapter 5, I stress in this book that object orientation is great, but it has to
be used wisely. I've seen pure object-oriented design used often for COM+ applications, and
the result has typically been scalability that’s too low. (I’'ve not only seen it used, I've been
contacted by e-mail and in person several times and asked what to do in these situations. My
answer has always been “Redesign.”)

NoTE

When | say pure object-oriented design, | mean classic object orientation, for exam-
ple, with many properties. Each row and column from the database has lead to
instantiated objects, and methods have been primitive so that to accomplish a task,
several method calls must be made.

One of the reasons that pure object-oriented design doesn’t scale is that the transactions will
start too early, and because several objects will participate in the transaction and each one of
them will talk to the database, there is also a lot of overhead for round trips. Usually, stored
procedures are not used in those applications, and if they are used, it’s only for primitive oper-
ations such as one SELECT, one UPDATE, one INSERT, or one DELETE.

It might seem compelling to have all the code in the components and not let the database and
transactions affect the design at all. Unfortunately, it doesn’t work well in large-scale situa-
tions. I've heard war stories about applications built this way not scaling beyond five to ten
users.

217

SNOILDVSNVY |

218

Chapter 6

Avoiding Pessimistic Concurrency Control Schemas

Another typical reason for having long transactions is the need to use pessimistic concurrency
control schemas. Try to avoid pessimistic concurrency control schemas and you will get shorter
transactions. Of course, the disadvantage is that you don’t know whether your transaction will
be able to run when you use an optimistic schema instead, but most often this is the way to go.

With Web-based applications, it’s not usual to keep a connection for a user between page ren-
derings. It’s the same for all COM+ applications where the connection is closed and the result
is disconnected from the database and sent back to the user. Because of this, a built-in pes-
simistic concurrency control schema can’t be used. In any case, you never want a user to
decide the length of a transaction by asking the user for an answer between start of the
transaction and COMMIT.

NoTE

In Chapter 9, | will show you an alternative to the built-in pessimistic concurrency
control schema that works in disconnected scenarios and doesn’t create long transac-
tions.

Using an Efficient Pattern for Data Access

I won’t go into detail about my pattern for data access until Chapter 8, but it is crucial that you
have an effective pattern for data access. As you can guess, I think my pattern is a very effi-
cient one. I defer all access to the database until the end of a scenario. Until then, an SQL
script is built with all the calls to different stored procedures. A transaction won’t be started
until it’s needed in the SQL script. When the SQL script has started to run, there are no other
round trips and no operations other than the calls to stored procedures until the transaction is
to be ended.

Starting Transactions Late and Ending Them Early

Suppose that you have five tasks to accomplish. Quite often, only two of these need to be done
inside the transaction, so you should program in this way, of course. Don’t do anything in the
transaction that you don’t have to do. Prepare the transaction before it starts by getting
NEWID()s, if you need to INSERT a row that has a UNIQUE IDENTIFIER as the key, for example.
Listing 6.10 shows an example of a simplified stored procedure for reporting a new errand
and, at the same time, writing an action because the reporter also made a first attempt to solve
the problem that failed.

Transactions

LisTING 6.10 A Simplified Version of a Stored Procedure for Inserting an Errand and a
First Action

CREATE PROCEDURE a_Errand_Insert

(@userId uddtUserId, @errandDescription uddtDescription
, @actionDescription uddtDescription)

AS

DECLARE @anErrandId UNIQUEIDENTIFIER
, @anActionId UNIQUEIDENTIFIER
, @aCategory UNIQUEIDENTIFIER

SET @anErrandId
SET @anActionId

NEWID()
NEWID()

SELECT @aCategory
FROM category
WHERE description = 'report'

BEGIN TRANSACTION

INSERT INTO errand

(id, description, createdby, ...)

VALUES

(@anErrandId, @errandDescription, @userId, ...)

INSERT INTO action

(id, errand_id

, description, createdby

, createddatetime, category)
VALUES

(@anActionId, @anErrandId

, @actionDescription, @userlId
, GETDATE(), @aCategory)

COMMIT TRANSACTION

NoTE

| have cut out the error trapping code from Listing 6.10. | will focus on error trapping
in Chapter 9.

219

SNOILOVSNVY |

220

Chapter 6

As you see in Listing 6.10, I waited until I had created the two GUIDs and I read the category
GUID before I started the transaction. The difference isn’t huge, but it’s the principle I like to
push. However, what happens if this stored procedure is called together with other stored pro-
cedures? There is a great chance that you will need to create an outer transaction, and then my
recommendation here is of no use. Even if it won’t matter in some cases, it will in others. This
is also an indication that it might be better to let the components prepare as much as possible
before starting the database transaction. In the example in Listing 6.10, this would mean that
the GUIDs will be given as parameters instead. It might result in a little more network traffic
because more data will be sent over the network, but it’s usually worth it.

That was the usual recommendation. Just be careful that you don’t overuse it so that you fetch
rows from the database that will not keep their shared lock during the complete transaction
because you had the fetch before the transaction started.

Using Correct TIL

Be careful that you use the correct TIL. Overusing SERIALIZABLE can definitely affect scalabil-
ity. I can’t tell you how many times I’ve heard developers at COM+ newsgroups ask why there
is so much blocking in the database when they start using COM+. They aren’t doing anything
unusual. If you only execute a SELECT COUNT(*) FROM mytable, other transactions will not be
allowed to INSERT rows INTO mytable until the first transaction is done. COM+ 1.0 always
uses SERIALIZABLE for automatic transactions with SQL Server. You can configure the TIL for
COM+ transactions in COM+ 1.5.

When you use pure T-SQL transactions, you should sometimes use SERIALIZABLE, sometimes
not—you have to decide from case to case. You could go for SERIALIZABLE all the time, but
then your transactions will be longer and you will also affect concurrency much more than if
you use a lower TIL.

NoOTE

For a good discussion on how to think about the TIL, see Tim Ewald’s Transactional
COM-+: Building Scalable Applications.’

Avoiding 2PC with the Help of Replication

If you are going to use more than one RM in your transactions, you have to use distributed
transactions if you like to have transaction semantics over the RMs. Distributed transactions
will operate with the 2PC protocol, which is very expensive when it comes to performance

Transactions

compared to local transactions. An alternate solution is to only UPDATE one of the RMs and
then let the UPDATE affect the other RM with the help of replication. You won’t get full trans-
action semantics, but often the consistency is good enough. In addition, the difference in
throughput can be very big. This will also increase the reliability because if one of the part-
icipants in a 2PC transaction is down, the transaction can’t be fulfilled. With replication, the
transactions will still take place, even if one of the database servers is not operating at the time.
The faulty server will get the UPDATEs when it comes back to life again.

Tips on Decreasing the Risk of Deadlocks

For local transactions, the RM will quickly find deadlocks itself. In this case, the RM will
decide which transaction should lose, and it is interrupted so the other transaction can con-
tinue. Unfortunately, you can’t catch a deadlock error in your stored procedures because they
are interrupted, and even the batch that calls the stored procedure is interrupted. The error will
always have to be caught in your components instead.

For distributed transaction, the Transaction Manager (TM) will, in most industrial implementa-
tions, not really try to detect a deadlock but will rather use a timeout. If the transaction takes
more than x seconds, the TM decides that there is a deadlock and the transaction is interrupted.
The case with distributed transactions is worse because it will often take longer to detect the
presumable deadlock situation and, meanwhile, several transactions are blocked. It’s also com-
mon that more than one transaction will be affected by the timeout and therefore be termi-
nated.

In any case, deadlocks are bad for our health, both with local and distributed transactions. We
can’t avoid deadlocks completely, but we can make them less likely to appear. Using short
transactions is extremely important for reducing the deadlock risk. The shorter the time you
hold the locks, the smaller the risk that somebody else acquires the locks in a way that con-
flicts with yours. The following are other tips I recommend for decreasing the risk of dead-
locks.

Taking uPDLOCK When Reading Before Writing

Another common reason for a deadlock is that two transactions first acquire shared locks on
one and the same row and then both of them try to escalate their locks to exclusive locks. None
of the transactions succeeds until one of the transactions is interrupted. The solution is sim-
ple—when you know you need an exclusive lock, acquire it immediately instead of starting
with a shared lock that you later escalate to an exclusive lock. You can do that with the
UPDLOCK optimizer hint in SQL Server, as shown in Listing 6.11.

221

SNOILOVSNVY |

222

Chapter 6

LisTING 6.11 Example of How to Acquire an Exclusive Lock with a SELECT

SELECT description
FROM errand (UPDLOCK)
WHERE id = @id

Working with Tables in the Same Order for All
Transactions

One simple tip is to always work with your tables in the same order in all transactions. In
Listing 6.10, you see that one row is inserted into errand and then one row is inserted into
action. That order should be used for all transactions. I usually say that the master table
should be used before the detail table. You don’t have a choice when it comes to INSERTs as in
Listing 6.10 because of FOREIGN KEY constraints. When this rule doesn’t help because there are
no relationships between the tables, use alphabetical order for the table names instead.

Unfortunately, DELETE has to happen in the opposite order of master and detail, once again
because of FOREIGN KEY constraints. The problem is easily solved by first taking an UPDLOCK
on the master row, and then DELETE the detail rows followed by a DELETE of the master row.

Obscure Declarative Transaction Design Traps

Using COM+ transactions is often thought of as being simple because the system will deal
with the transactions for you, deciding when to COMMIT and when to ROLLBACK. Even so, it’s
important to understand how COM+ transactions work and how your settings will affect the
outcome.

All three traps that follow are taken from situations where my proposed architecture was not
used. Even so, I want to point out a few “gotchas” so you don’t fall into these traps if you
decide to use another architecture.

Example 1: Incorrect Error Trapping

There are several examples of how error trapping might go wrong, some obvious and some not
so obvious. The result might be that SetAbort () isn’t called at all and that the transaction will
therefore be COMMITed. It’s probably obvious why the example in Listing 6.12 isn’t one you
want to have in your code. When the Throw() statement executes in Listing 6.12, the method
will stop executing (except for one or more possible Finally and/or Catch blocks on an outer
level).

Transactions

LiIsTING 6.12 Incorrect Example of Error Trapping

Catch e As Exception
Throw(e)
ContextUtil.SetAbort()

Example 2: Incorrect Use of NotSupported

In this example, we will let a root component control a transaction and ask for help from
two secondary components for doing subtasks. Assume you have the components listed in
Table 6.5.

TABLE 6.5 Example 2: Instances, Components, and Transaction Attributes

Instances and Components Transaction Aftribute

aRoot (instance of component A) TransactionOption.Required
aSecondary (instance of component B) TransactionOption.Required
anotherSecondary TransactionOption.NotSupported

(instance of component C)

Assume that aRoot calls aSecondary and aSecondary UPDATEs a specific errand. (Recall

the sample application Acme HelpDesk introduced in Chapter 5.) Then aRoot calls
anotherSecondary that SELECTS the same errand, or at least anotherSecondary tries to.
Because component C is marked with NotSupported, its instances will not execute in the same
transaction that is still going on for aRoot and aSecondary. Instead, the SELECT in component
C will be wrapped in an implicit transaction and put in a wait state waiting for the row in the
errand table to be released. Now we’re stuck in a wait state until the timeout for the transaction
helps us. Unfortunately it won’t; it will kill us.

The typical solution to this problem would be to use Supported or Disabled for component C.
(Disabled only works if C instances can co-locate in the contexts of A instances.) It could also
be the case that a redesign needs to take place. Perhaps the SELECT isn’t really needed because
there may be no UPDATE TRIGGER for the table.

Example 3: Incorrect Use of RequiresNew

The third example is perhaps a bit strange, but is still possible. This time, we also have three
instances and components. You can see how they are configured in Table 6.6.

223

SNOILOVSNVY |

224

Chapter 6

TABLE 6.6 Example 3: Instances, Components, and Transaction Attributes

Instances and Components Transaction Attribute

aRoot (instance of component A) TransactionOption.Required
aSecondary (instance of component B) TransactionOption.Supported
anotherSecondary (instance of component C) TransactionOption.RequiresNew

This time, aRoot calls aSecondary and aSecondary SELECTSs a specific errand. Because of the
information in the errand, aRoot understands that the errand must be updated; therefore, it
calls anotherSecondary so that it can deal with the UPDATE. No matter what happens after-
wards in the activity, the UPDATE must take place and therefore it is put in a separate transac-
tion. The result is the same as for the second example; anotherSecondary grinds to a halt and
waits for the timeout.

As a matter of fact, I have never used RequiresNew in any of the systems I have built. The only
time I have even thought about it was for my error-logging component, but as I said in Chapter
4, “Adding Debugging Support,” I use another trick instead for having the error logged in a
separate transaction. The solution to this problem must be a redesign, but first we have to ask
ourselves whether it is correct at all that C should run in a transaction of its own. The scenario
I presented here was, as I said, a bit strange.

Traps Summary

All three examples of traps that I selected and discussed here were problems arising when sev-
eral components interacted. None of the problems would have existed if all the code had been
put in a single method instead. But that is not the moral of this story. That would lead to code
bloat. Instead, what I'm saying is that you must understand how different settings affect your
transactions and be very careful with error trapping. As usual, COM+ transactions don’t
change that.

Evaluation of Proposals

As in previous chapters, it’s time for me to evaluate the proposals I have presented in this
chapter against the criteria I established in Chapter 2.

Evaluation of Transaction Technique Proposal

As I said earlier, the transaction technique to favor is to control transactions in the stored pro-
cedures—that is, when you only have one RM. It’s a very good idea to let the transactions be
controlled in stored procedures when you have a slow network between the components and
the database. As a matter of fact, this is most often the solution that gives the best performance

Transactions

and scalability. When version 1 of .NET has been released, you will find my results of a test in
which stored procedure controlled transactions are compared to ADO.NET controlled transac-
tions and COM+ controlled transactions at the book’s Web site at www.samspublishing.com.

Productivity might be better if you go for automatic transactions instead, because you don’t
have to code the transactions yourself. In reality, I find the difference in productivity between
automatic transactions and local transactions to be small.

Maintainability, reusability, and interoperability may be negatively affected if you don’t also
prepare for moving to automatic transactions when you need to. Therefore, you should also
consider using the proposal I evaluate in the next section.

Evaluation of Transactions in the Architecture Proposal

My proposal of how to deal with transactions in the new architecture is totally independent of
the type of consumer, at least as long as you let the consumer stay out of the transaction,
which is definitely how it should be. The exception to this is when the consumer is a compo-
nent that uses automatic transactions, but that is more a matter of interoperability. You should
note that the transaction design in the architecture has interoperability as one of its major
design goals.

When using pure T-SQL transactions, the most efficient solution for transactions is imple-
mented. This is especially apparent when there is a slow network between the application
server and the database server.

Both the performance and the scalability factors are targeted well by the proposal. The main
problem is that methods at the Application layer classes that don’t need transactions may also
have automatic transactions started. There is an easy solution to this (splitting the classes into
two parts), but it is not good for maintainability and productivity.

Apart from the drawback just mentioned, I think that the architecture proposal is good for
maintainability, reusability, debuggability, and interoperability. To a large extent, this is
because of the data access pattern that will be discussed in Chapter 8.

By getting shorter transactions, which is one of the results of the architecture proposal, the reli-
ability will also increase because the risk for deadlocks will decrease.

Evaluation of the Flexible Transaction Design Proposal

The main reason for the flexible transaction design is to increase maintainability. Because of
that, reusability and interoperability are improved as well. In the short run, it might be the case
that productivity is decreased, but in the long run, it wins.

225

SNOILOVSNVY |

226

Chapter 6

If you want your components to work well both with automatic and manual transactions, you
have to test both situations thoroughly. The proposed design will increase testability because it
is easy to just change the settings for some attributes and test again.

What's Next

There has been a lot of talk about business rules in the last few years, but relatively few con-
crete recommendations for how to handle them have been shown. In the next chapter, I will
discuss several different proposals for how to take care of business rules, both in serviced com-
ponents and in stored procedures.

References

1.
2.

o

T. Ewald. Transactional COM+: Building Scalable Applications. Addison-Wesley; 2001.

T. Pattison. Programming Distributed Applications with COM+ and Visual Basic 6.0.
Microsoft Press; 2000.

. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann; 1993.

P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kaufmann;
1997.

G. Brill. Applying COM+. New Riders; 2000.

. D. Platt. Understanding COM+. Microsoft Press; 1999.

