
MOBILE DEVICES ARE BECOMING INCREASINGLY popular. Over the past
few years, mobile phones have become so common that it is more of a rar-
ity to see someone without one. Personal Digital Assistants (PDAs), such as
Palm Pilots, also are popular. Combine this with the fact that the Internet
is everywhere. It goes without saying that tremendous opportunity exists
for the savvy web developer to take advantage of this current state of
accessibility.

So, how can a developer take advantage of this? Consider the following:
Most people use the Internet as a means of finding information. Ironically, it
is not always possible to get to an Internet PC or Mac; however, most peo-
ple have more convenient access to a mobile phone or PDA.This means
that there is an enormous, untapped market for mobile Internet services.
After all, imagine being able to use your mobile device not only for sending
and receiving your email, but also for receiving information from the sports
and news feeds or the company you work for, or being able to book and
purchase tickets through online services.The possibilities are limitless!

This chapter introduces the mobile device types you can develop, and
provides a brief overview of the underlying technology used for writing
applications for mobile devices:

n Covering Wireless Application Protocol (WAP)
n Wireless Markup Language (WML)
n WMLScript (the script language for WML)

Mobile Device
Development with

ASP.NET

16

21 1356 CH16 10/22/01 1:08 PM Page 473

474 Chapter 16 Mobile Device Development with ASP.NET

This chapter provides an overview of the ASP.NET Mobile Internet Toolkit
(SDK designed for developing Mobile Device applications). It also explains
some issues dealing with mobile device development and some key differ-
ences between ASP.NET forms and controls, and ASP.NET Mobile forms
and Controls. From here, it describes each Mobile control and gives exam-
ples of their uses. Finally, a brief overview of the mobile device support in
the application presented in Chapter 17,“Putting It All Together” is
provided.

Software You Need for This Chapter
To use the examples in this chapter, your development machine has to have the following software installed as

well as ASP.NET:

n Mobile Internet Toolkit—This can be downloaded from http://www.asp.netwww.asp.net.

n A WAP-enabled Microbrowser or emulator—this book uses Openwave UP Simulator 4.1. For the

examples in this book, you can download this emulator from http://www.phone.com.

Wireless Application Protocol (WAP)
The WAP architecture is not that different from the WWW architecture. In
fact, the WAP architecture is based on the existing WWW architecture,
which means if you understand the WWW architecture, you can understand
the WAP architecture.

Most of the technology developed for the Internet has been designed
with the desktop user in mind, which in itself presents some rather interest-
ing issues when developing Mobile Internet Device applications. For
instance, a desktop user has a large display with which to view, a keyboard
for data entry, and a fast Internet connection. Compare this to the mobile
device user who has a limited display area and limited data entry ability.

The WAP architecture, although based on existing web technology, has
numerous optimizations for wireless data transfer. Most of these optimiza-
tions deal with the fact that the wireless data communications technology
available to the public has a small bandwidth capacity. In most cases, the
bandwidth capacity is less than 15Kbps, which is considerably less when
compared to conventional web browsing technology, which runs at an aver-
age minimum of 56Kbps.

When a mobile device user requests a web page, the following request and
response process occurs:

1. The user requests a URL from his Microbrowser.

21 1356 CH16 10/22/01 1:08 PM Page 474

475Wireless Markup Language (WML)

2. The WAP browser encodes the request into WML format and then sends
the request to a WAP gateway.

3. The WAP gateway receives the WAP request, converts the WAP request
into an HTTP request, and then sends it to a web server.

4. The web server receives the HTTP request, performs whatever processing
is required, and then sends back an HTTP response to the WAP gateway.

5. The WAP gateway receives the HTTP response, converts the HTTP
response into a WAP response, and then sends it to the WAP device that
requested it.

6. The WAP Microbrowser software receives a WAP response and renders
it to the mobile device display.

WAP Forum
The WAP Forum is an association that developed the WAP standard. It is made up of more than 500 members

worldwide. It has the sole objective of promoting the WAP standard and assisting companies in the adoption of

the standard.

For more detailed information on the WAP architecture, go to the WAP Forum web site at www.wapforum.org.

Wireless Markup Language (WML)
The WAP architecture also includes a markup language that is similar to
HTML in structure; this is called WML.This markup language is used to
render information back to the user of a mobile device through a
Microbrowser.

WML is not an overly complex language, and it benefits from being based
on HTML; however, the similarity is only in the structure of the syntax. In
Listing 16.1, you can see a simple WML application.

Listing 16.1 (1601.wml) Simple WML Application

01 <?xml version=”1.0”?>
02 <!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
03 “http://www.wapforum.org/DTD/wml_1.1.xml”>
04 <wml>
05 <card id=”main” title=”Hello Mobile Device World Example”>
06 <p>
07 Hello Mobile Device User
08 </p>
09 </card>
10 </wml>

21 1356 CH16 10/22/01 1:08 PM Page 475

476 Chapter 16 Mobile Device Development with ASP.NET

In line 4, you can see the <wml> element.This element outlines what is
referred to as a deck, a collection of cards and forms for a mobile device
application. In line 5, we encounter the first <card> element.A <card> ele-
ment is used like a page. It contains all the rendering commands for a single
screen of data on a mobile device.The WML file can have more than one
card nested inside the <wml> elements.After the card definition, we use a <p>
tag to surround any content we need to display.The <p> is not optional—it
has to be used or the mobile device will not render any of the content for
the card. Line 7 contains text to display on the device.

Figure 16.1 shows the screen after the mobile device receives the
WML file.

Figure 16.1 WML example.

Enter ASP.NET
So, now you have had a brief look at WAP and WML. It’s time to see how
this all relates to the Mobile Device SDK for ASP.NET.Table 16.1 outlines
some key elements used in WAP/WML development and explains the
equivalent elements in ASP.NET:

Table 16.1 Comparing WAP/WML to ASP.NET

WAP Element Mobile Internet Control

Deck, <wml> This is the name of the file sent to a mobile device; the deck can
be made up of one or more cards.

MobilePage The MobilePage class is similar to the Web Form page class, but it
is specifically for the creation of mobile Web Forms.

21 1356 CH16 10/22/01 1:08 PM Page 476

477Enter ASP.NET

<card> The <card> is the term given to a chunk of presentation logic
for a mobile device page.You can have more than one card to a
deck.The first card in the deck file is the first card to be dis-
played or processed by the mobile device.

Mobile:Form The Mobile:Form control encapsulates the functionality of the
WML <card> element.You can have many forms to a
MobilePage.The first form is the form that is initially displayed
by the mobile device.

<do>, <go> When a user interface event occurs, the device performs the
associated <do> task.

Mobile:Command The Mobile:Command control provides a mechanism that enables
the user to call an ASP.NET event handler for a task.

<fieldset> The <fieldset> element enables you to group multiple text or
input items on a card.

Mobile:Panel The Mobile:Panel control enables the user to group controls on
a form together, so that they can be rendered on one screen (if
the mobile device supports that feature).

<a>, <anchor> These elements instruct the device to display another card from
the current card.

Mobile:Link Mobile:Link provides a hyperlink to another file or to another
form in the current file.

<input> The <input> element provides the user with data entry
functionality.

Mobile:TextBox The Mobile:TextBox control provides data entry support for text
data for the user.

<select> This element renders a list of options from which the user can
choose.

Mobile:List The Mobile:List control enables the user to select an item from
a list of possible values.

Note
You can use <wml> elements inside ASP.NET mobile forms without any problems. However, it is better to use

ASP.NET controls because the mobile control’s toolkit can generate either WML or HTML depending on the capa-

bilities of the device to which it is rendering.

WAP Element Mobile Internet Control

21 1356 CH16 10/22/01 1:08 PM Page 477

478 Chapter 16 Mobile Device Development with ASP.NET

Creating a Mobile Device Application
ASP.NET Mobile controls are defined as elements in exactly the same man-
ner as regular ASP.NET controls.The only thing you have to do with
Mobile controls is make sure that at the top of your web page, you register
the Mobile Internet Toolkit controls and namespace as shown:

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
03 Assembly=”System.Web.Mobile” %>

On the first line, the Web Form properties are inherited from the
System.Web.UI.MobileControls.MobilePage class.This class provides the core
functionality of a mobile device web page.Also, the language is set for any
script on the web page to use Visual Basic .NET.The second line registers
the TagPrefix to mobile for the namespace
System.Web.Mobile.UI.MobileControls.This enables access to a Mobile control
without having to type in the long namespace first. For more on this, see
Chapter 2,“Developing Applications with ASP.NET.”

After this has been done, you are ready to start using the Mobile Internet
Toolkit controls to build your application.

The Form Element

The Form element is required for every single mobile device web page with-
out exception.You can have more than one form to a Web Form source file;
however, only one form at a time will be rendered on the mobile device.
The first form definition in your source file is the initial form that will be
displayed on the mobile device.The syntax for the form control follows:

01 Mobile:Form runat=server
02 id=”id-of-control”
03 StyleReference=”StyleReference”
04 OnActivate=”OnActivateHandler”
05 OnDeactivate=”OnDeactivateHandler”>

The id attribute is used to create a unique identifier for the Form in the
source file.This is important because you can have many forms in a file, and
you will need to reference each form for navigational purposes if nothing
else.The StyleReference attribute is used to apply a style sheet to any controls
inside the Form elements. More on this attribute in the “Presentation
Controls” section later in this chapter.The OnActivate and OnDeactivate
attributes are used to call a function after these events happen.The
OnActivate event occurs when the form is first displayed, and the
OnDeactivate event occurs when the form is replaced by another form.

21 1356 CH16 10/22/01 1:08 PM Page 478

479Enter ASP.NET

An example of the Form control with an OnActivate event handler is
defined in Listing 16.2.

Listing 16.2 An Example of a Simple Mobile Form-Based Application

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb”
02 %>
03 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
04 Assembly=”System.Web.Mobile” %>
05 <script language=”vb” runat=server>
06 sub One_OnActivate (Source as Object, E as EventArgs)
07 ActiveForm = Two
08 End Sub
09 </script>
10 <Mobile:Form id=”One” runat=server OnActivate=”One_OnActivate”>
11 <Mobile:Label runat=server>Form One</Mobile:Label>
12 </Mobile:Form>
13 <Mobile:Form id=”Two” runat=server>
14 <Mobile:Label runat=server>Form Two</Mobile:Label>
15 </Mobile:Form>

Do not be daunted by the amount of code in Listing 16.2. Most of it is
straightforward. Lines 1 and 3 set up the Web Form as a mobile Web
Form. In line 10, the definition of form “One” begins. Notice that the
form has an event handler defined for the OnActivate event.The handler
itself is defined in the script block (lines 5–9); all the handler does is get
the mobile device to display another form, in this case “Two”, which is
defined in line 13.

When this code is run, the screen (shown in Figure 16.2) displays form
”Two”, not form ”One”.

Figure 16.2 Mobile:Form example.

21 1356 CH16 10/22/01 1:08 PM Page 479

480 Chapter 16 Mobile Device Development with ASP.NET

Developing Applications for Mobile Devices
The Mobile Internet Toolkit comes with its own collection of web controls,
which can be used to create the user interface of a mobile device applica-
tion.These controls can be separated into three main areas of functionality:

n Presentation—Controls used to present content or data to the mobile
device display

n Navigation—Controls used to navigate from one mobile form to
another

n Data Entry—Controls used to get input from the user

All the mobile device controls have some default attributes.These are out-
lined in the following list and apply to all mobile device controls unless oth-
erwise stated:

n Id—The Id attribute is used to create a unique identifier for the control.
This is important because you can have many controls on a form, and you
may need to reference the label to programmatically change its value.

n StyleReference—The StyleReference attribute is used to apply a stylesheet
style to the control.

n Runat—The Runat attribute is required for all mobile device controls, and
its value should be set to Server, otherwise, the web controls will not be
processed and the mobile application will not run.

Note
All the examples in this section are based on mobile device development for mobile phones and have been tested

with the Openwave UP SDK. All the examples work on any WAP 1.1-capable device; however, the rendered results

can be different because of the different capabilities of each device.

Presentation Controls
As mentioned previously, the Mobile Internet Toolkit has a collection of
controls designed for presenting content on a mobile device.These controls
are outlined in the next few sections.

The Mobile:Label Control

The Mobile:Label control is used to display some static text on the mobile
device display area, or it is used as a placeholder for some display text.

21 1356 CH16 10/22/01 1:08 PM Page 480

481Enter ASP.NET

The syntax of the Mobile:Label control is as follows:

01 <mobile:Label runat=”server”
02 id=”id”
03 StyleReference=”StyleRef”
04 Text=”Text”>
05 Text
06 </mobile:Label>

A specific attribute of the Mobile:Label control is the Text attribute, which is the text
to display on the Web Form.

An example of Mobile:Label control use is shown in Listing 16.3.

Listing 16.3 Mobile:Label Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb”
02 %>
03 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
04 Assembly=”System.Web.Mobile” %>
05 <script language=”vb” runat=server>
06 sub One_OnActivate (Source as Object, E as EventArgs)
07 DynamicLabel.text = “Dynamic text”
08 End Sub
09 </script>
10 <Mobile:Form id=”One” runat=server OnActivate=”One_OnActivate”>
11 <Mobile:Label runat=server Text =”Simple Text” />
12 <Mobile:Label runat=server>
13 More Text
14 </Mobile:Label>
15 <Mobile:Label runat=server id=”DynamicLabel” text=”static text” />
16 </Mobile:Form>

The preceding code demonstrates three different uses of the Mobile:Label
control. Line 11 uses the Text attribute to set the value of the text to display
on the device.The second control in line 12 uses both opening and closing
elements and enables free text to be typed between them.The final Label
control in line 15 sets its text value to one value, then has it changed by the
form’s OnActivate event to another value.The script block references the
Label control by its id of DynamicLabel, and then set its Text attribute to a
new value.

Figure 16.3 shows the resulting screenshot of the preceding code on a
mobile device.

21 1356 CH16 10/22/01 1:08 PM Page 481

482 Chapter 16 Mobile Device Development with ASP.NET

Figure 16.3 mobile:Label example.

The Mobile:TextView Control

The Mobile:TextView control is used to display multi-line static text on the
mobile device display area.

01 <mobile:TextView
02 runat=”server”
03 id=”id”
04 StyleReference=”styleReference”
05 Wrapping={NotSet|Wrap|NoWrap}
06 Text=”Text”>
07 Text
08 </mobile:TextView>

The specific attributes of the Mobile:TextView control include
n Wrapping—The Wrapping attribute is used to define how the text in the

control is wrapped across the device display.
n Text—The Text attribute is the text displayed on the Web Form.

An example of the Mobile:TextView control is shown in Listing 16.4.

Listing 16.4 Mobile:TextView Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”C#” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <mobile:Form runat=”server”>
04 <mobile:TextView runat=”server” id=”TV” Alignment=”Center”
➥Font-Bold=”true”>
05 This is an example of a mobile:TextView control!
06 </mobile:TextView>
07 </mobile:Form>

21 1356 CH16 10/22/01 1:08 PM Page 482

483Enter ASP.NET

The preceding code line demonstrates the use of the Mobile:TextView control
in lines 4–6. Figure 16.4 shows a resulting screenshot of the code on a
mobile device.

Figure 16.4 mobile:TextView example.

The Mobile:Image Control

The Mobile:Image control is used to display images on the mobile device.
These images can be from an internal list of symbols on the mobile device,
or they can be external graphic files. One additional feature of the
Mobile:Image control is that you can assign a URL to the image, so it works
like a Mobile:Link control. (Mobile:Link controls are covered later in this
chapter in the “Navigation Controls” section.

The syntax of the Mobile:Image control is as follows:

01 <mobile:Image
02 runat=”server”
03 id=”id”
04 Alignment={NotSet|Left|Center|Right}
05 StyleReference=”styleReference”
06 Wrapping={NotSet|Wrap|NoWrap}
07 AlternateText=”AltText”
08 ImageURL=”masterImageSource”
09 NavigateURL=”targetURL”>
10 </mobile:Image>

The specific attributes of the Mobile:Image control include
n Alignment The Alignment attribute is used to set the physical alignment of

the image on the mobile device display area.The Mobile:Image can be dis-
played on the left, right, and center of the screen.

21 1356 CH16 10/22/01 1:08 PM Page 483

484 Chapter 16 Mobile Device Development with ASP.NET

n Wrapping—The Wrapping attribute is used to define how the text in the
control is wrapped across the device display.

n AlternateText—This attribute is used to describe the image. It is rendered
to the mobile device as a Mobile:Label control, if the mobile device does
not support the use of images.

n ImageURL—The ImageURL attribute is a URL of an image file displayed to
the user. It can also be an internal symbol name for an internal image on
the mobile device.To use a symbol name, you have to prefix the mobile
device’s internal symbol identifier with symbol.An example of the
Mobile:Image control is in Listing 16.5.

n NavigateURL—If this attribute is used, the image becomes a link to another
Mobile Web Form.The value used with this attribute is the same as the
one for the Mobile:Link control, which is described in more detail later in
the “Navigation Controls” section of this chapter.

In Listing 16.5, we have a more complex sample application.

Listing 16.5 Mobile:Image Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”C#” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <mobile:Form runat=”server”>
04 <mobile:label runat=”server” text=”Image Control Example” />
05

06 Open Folder
07 <mobile:Image runat=”server” id=”myImage3” ImageURL=”symbol:folder2”
08 NavigateURL=”#form2” />
09 Closed Folder
10 <mobile:Image runat=”server” id=”myImage2” ImageURL=”symbol:folder1”
11 NavigateURL=”#form3” />
12 </mobile:Form>
13
14 <mobile:Form id=”form2” runat=”server”>
15 <mobile:TextView runat=”server” font-bold=”True”
16 text=”You Selected the open Folder” />
17 </mobile:Form>
18 <mobile:Form id=”form3” runat=”server”>
19 <mobile:TextView runat=”server” font-bold=”True”
20 text=”You Selected the Closed Folder” />
21 </mobile:Form>

In this application, I have added a Mobile:Label control (line 4) to be used as
the title of the application.Then two image controls follow (lines 7–8),

21 1356 CH16 10/22/01 1:08 PM Page 484

485Enter ASP.NET

which are using the mobile device’s internal symbol library and have been
assigned an internal form URL to jump to once they have been selected.
The output of these lines is shown in Figures 16.5 and 16.6.

Figure 16.5 Mobile:Image example, first page.

Figure 16.6 Mobile:Image example, after selection.

The Mobile:Panel Control

Mobile:Panel controls are used to group controls together and also to apply
styles to a group of controls. Listing 16.6 uses a panel control to apply a style
to nested controls in two different panels.

The syntax of a Mobile:Panel control is as follows:

01 <mobile:Panel
02 runat=”server”
03 id=”id”
04 Alignment={NotSet|Left|Center|Right}
05 StyleReference=”styleReference” >
06 … Controls inside Panel Control go here
07 </mobile:Panel>

21 1356 CH16 10/22/01 1:08 PM Page 485

486 Chapter 16 Mobile Device Development with ASP.NET

The specific attributes of the Mobile:Panel control include the alignment
attribute, which is used to set the physical alignment of the controls inside
the panel on the mobile device display area.The Mobile:Image can be dis-
played on the left, right, or center of the screen.

Listing 16.6 shows a simple example of using the Mobile:Panel control to
apply group formatting.

Listing 16.6 Mobile:Panel Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”c#” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <mobile:Form runat=”server”>
04 <mobile:Panel runat=”server” Font-Italic=”true” Alignment=”left”>
05 <mobile:Label runat=”server”>First Panel</mobile:Label>
06 <mobile:Label runat=”server”>is up here</mobile:Label>
07 </mobile:Panel>
08 <mobile:Panel runat=”server” Font-Bold=”true” Alignment=”right”>
09 <mobile:Label runat=”server”>Second Panel here</mobile:Label>
10 </mobile:Panel>
11 </mobile:Form>

The first Mobile:Panel control (lines 4–7) sets the font to italic and also fixes
the alignment to the left side. For all controls in the panel, the second
Mobile:Panel control (lines 8–10) has only one control, which is right-aligned
and set to bold. Figure 16.7 shows the output.

Figure 16.7 Mobile:Panel example.

21 1356 CH16 10/22/01 1:08 PM Page 486

487Enter ASP.NET

The Mobile:StyleSheet Control

This control is used to create user-defined style sheets to apply to mobile
device controls.

The syntax of the Mobile:StyleSheet control is as follows:

01 <mobile:Stylesheet
02 runat=”server”
03 id=”id”
04 Font-Name=”fontName”
05 Font-Size={NotSet|Normal|Small|Large}
06 Font-Bold={NotSet|False|True}
07 Font-Italic=”{NotSet|False|True}
08 ForeColor=”foregroundColor”
09 BackColor=”backgroundColor”
10 Alignment={NotSet|Left|Center|Right}
11 StyleReference=”styleReference”
12 Wrapping={NotSet|Wrap|NoWrap}
13 ReferencePath=”externalReferencePath” >
14 </mobile:Stylesheet>

The specific attributes of the Mobile:StyleSheet control include the
following:

n Font-Name—This attribute enables you to select the name of the font you
want to use. For most mobile phones, this attribute does nothing because
it generally only supports one font.

n Font-Size—This attribute enables you to select the size of the font used
on the mobile device.Again, this has very little use on mobile phones
because the display area is so small.

n Font-Bold, Font-Italic—These two attributes act like switches.They
should be set to either true or false.

n ForeColor, BackColor—These are used to set the foreground and back-
ground colors for text display on a mobile device, for mobile phone
development, they are not very useful but because most mobile devices
are monochrome in nature.

n StyleReference—The StyleReference control can be used to inherit the
style settings from another stylesheet control.

n ReferencePath—This attribute holds a relative path to a user control (.ascx
file), which contains a set of style elements.These style controls can then
be used in the current mobile application file.

In Listing 16.7, we declare a style sheet at the beginning of the code (lines
3–6), which has two styles defined—Style1 and Style2, respectively.These
styles only apply font-bold and font-italic style properties, but the styles can

21 1356 CH16 10/22/01 1:08 PM Page 487

488 Chapter 16 Mobile Device Development with ASP.NET

use any combination of styles shown in the control’s syntax.After the styles
have been defined, simply apply them to any control we want by using the
StyleReference attribute of the control. Listing 16.7 uses Mobile:Label
controls.

Listing 16.7 Mobile:StyleSheet Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”C#” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <mobile:StyleSheet runat=”server”>
04 <Style Name=”Style1” font-bold=”true”/>
05 <Style Name=”Style2” font-italic=”true”/>
06 </mobile:StyleSheet>
07 <mobile:Form runat=”server”>
08 <mobile:Label runat=”server” StyleReference=”Style1”>
09 This is Style 1</mobile:Label>
10 <mobile:Label runat=”server” StyleReference=”STyle2”>
11 This is Style 2</mobile:Label>
12 </mobile:Form>

The output is shown in Figure 16.8.

Figure 16.8 Mobile:StyleSheet example.

Navigation Controls
There are two types of navigation controls in a mobile web application:

n Internal navigation—This is used to change the currently displayed form
to another form in the same .aspx file.

n External navigation—This is how you navigate to the first form in
another .aspx file.

21 1356 CH16 10/22/01 1:08 PM Page 488

489Enter ASP.NET

To use internal navigation, you must prefix the form that you want to navi-
gate with a “#” symbol, and to navigate to an external form, just supply the
filename:

n #Form1—Navigates to the form with the ID form1.
n File1.aspx—Navigates to the first available form in the File1.aspx file.

The Mobile:Link Control

The Mobile:Link control is used to display a text label that operates as a
hyperlink to another form in the same file or external document.

The syntax of the Mobile:Link control is as follows:

01 <mobile:Link
02 runat=”server”
03 id=”id”
04 Text=”Text”
05 NavigateURL=”relativeLink”
06 SoftkeyLabel=”softkeyLabel”>
07 </mobile:Link>

The specific attributes and properties of the Mobile:Link control include
n Text—Sets the text to display the link on the mobile device.
n NavigateURL—Holds the URL of the form that you want to render. If the

value of the NavigateURL property begins with a (#), the remainder of
the value is assumed to be the identifier of a form on the current
Mobile:Page control. Otherwise, the value of the NavigateURL property is
treated as a standard URL.

n SoftKey—Holds the text that is displayed above the softkey of a softkey-
capable mobile device.

Listing 16.8 shows a single link control that, when selected, will navigate to
the 123 Jump news and finance WAP portal. See Figures 16.9 and 16.10 to
see how this appears on your mobile device.

Listing 16.8 Mobile:Link Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”C#” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <mobile:Form runat=”server”>
04 <mobile:Link runat=”server”
05 NavigateURL=”http://www.123jump.com”>123 Jump WAP Portal</mobile:Link>
06 </mobile:Form>

21 1356 CH16 10/22/01 1:08 PM Page 489

490 Chapter 16 Mobile Device Development with ASP.NET

Figure 16.9 Mobile:Link example, link page.

Figure 16.10 Mobile:Link example, www.123Jump.com.

The Mobile:Command Control

The Mobile:Command control is used to display a text label that operates as a
hyperlink to another form in the same file or an external document.

The syntax of the Mobile:Command control is as follows:

01 <mobile:Command
02 runat=”server”
03 id=”id”
04 Text=”text”
05 CommandArgument=”commandArgument”
06 CommandName=”commandName”
07 OnClick=”clickEventHandler”
08 OnItemCommand=”commandEventHandler”
09 SoftkeyLabel=”softkeyLabel”>
10 </mobile:Command>

21 1356 CH16 10/22/01 1:08 PM Page 490

491Enter ASP.NET

The specific attributes and properties of the Mobile:Command control include
n Text—This attribute sets the text to display as the command on a mobile

device.
n OnClick—Holds the name of a sub, which is to be called when the user

selects a Mobile:Command control.
n SoftKey—Holds the text that is displayed above the softkey of a softkey-

capable mobile device.

Listing 16.9 shows an example of the Mobile:Command control, which basically
requests both the user’s first and last names (lines 11 and 13), and then when
the command button is selected (line 14), the procedure myCmd_OnCLick (lines
03–07) is called, and a second form is subsequently displayed with values
entered by the user (lines 17–19). See Figures 16.11, 16.12, and 16.13.

Listing 16.9 Mobile:Command Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <script language=”vb” runat=”server”>
04 Protected Sub myCmd_OnClick(sender As Object, e As EventArgs)
05 myLabel.Text = “Hello: “ + FNEdit.Text + “ “ + LNEdit.Text
06 ActiveForm = form2
07 end sub
08 </script>
09 <mobile:Form runat=”server”>
10 <mobile:Label runat=”server” font-bold=”True”>Enter First Name</mobile:Label>
11 <mobile:TextBox runat=”server” id=”FNEdit” />
12 <mobile:Label runat=”server” font-bold=”True”>Enter Last Name</mobile:Label>
13 <mobile:TextBox runat=”server” id=”LNEdit” />
14 <mobile:Command runat=”server” id=”myCmd” OnClick=”myCmd_OnClick”>
15 OK
16 </mobile:Command>

17 </mobile:Form>
18 <mobile:Form runat=”server” id=”form2”>
19 <mobile:Label runat=”server” id=”myLabel” />
20 </mobile:Form>

The Mobile:Image Control

This control has already been covered earlier in this chapter, but you can use
the NavigateURL attribute to assign a link to which a page can navigate.

The Mobile:List Control

You can also use the Mobile:List control to navigate to other pages.This is
covered in the “Data Entry Controls” section of this chapter.

21 1356 CH16 10/22/01 1:08 PM Page 491

492 Chapter 16 Mobile Device Development with ASP.NET

Figure 16.12 Mobile:Command example, last name.

Figure 16.11 Mobile:Command example, first name.

Figure 16.13 Mobile:Command example, hello message.

21 1356 CH16 10/22/01 1:08 PM Page 492

493Enter ASP.NET

The Code-Based Alternative
You also can navigate to another form within the current mobile page by setting the ActiveForm property of the

mobilePage class. This property takes the name of a form to navigate to as its value. After the property is

assigned, the new form is displayed on the device screen. An example call is shown by the following:

ActiveForm = Form1

The preceding code tells the mobile device to display a form with the ID of Form1.

Data Entry Controls
The Mobile Internet Toolkit supports data entry through two data entry
controls:

n Mobile:TextBox

n Mobile:List

Although this seems to be a very limited set of controls, you must not forget
that the browser display is limited in display area size, and mobile devices also
generally have limited processing power and memory. However, with some
ingenuity, you can create an intuitive user interface for data entry.

The Mobile:TextBox Control

The Mobile:TextBox control is used to get information from the user of a
mobile device. It supports only two types of data entry: general text and
password formats.The control enables you to specify formatting rules for the
text entered, and you can also limit the amount of text entered in the con-
trol as well as the physical size of the control in characters.

The syntax of the Mobile:TextBox control is as follows:

01 <mobile:TextBox
02 runat=”server”
03 id=”id”
04 MaxLength=”maxLength”
05 Numeric=”{true, false}”
06 Password=”{true, false}”
07 Size=”textBoxLength”
08 Text=”Text”>
09 </mobile:TextBox>

The specific attributes of the Mobile:Textbox control include
n Text—This attribute sets the text to display as the mobile device.
n MaxLength—This attribute is used to define how much text can be entered

into the Mobile:TextBox control.A value of 0 means there is no length
restriction for the textbox.

21 1356 CH16 10/22/01 1:08 PM Page 493

494 Chapter 16 Mobile Device Development with ASP.NET

n Numeric—This attribute tells the textbox to only accept numeric input. It
can be set to either true or false.

n Password—This attribute tells the textbox to mask all data entry as
though a password were being entered. (The characters typed are echoed
back to the display as * characters.)

Listing 16.10 demonstrates three different uses of the Mobile:TextBox control.
These are normal data entry, password data entry, and numeric-only data
entry. Figures 16.14, 16.15, 16.16, and 16.17 show the output for this code.

Listing 16.10 Mobile:TextBox Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <script language=”vb” runat=”server”>
04
05 protected sub Button_OnClick(o as Object, e as EventArgs)
06 ActiveForm=form2
07 lblName.Text = “Name: “ + txtName.Text
08 lblPassword.Text = “Password: “ + txtPassword.Text
09 lblBalance.Text = “Bank Balance: “ + txtBalance.Text
10 end sub
11 </script>
12 <mobile:Form runat=”server”>
13 <mobile:Label runat=”server” font-Bold=”True”>
14 Enter your name</mobile:Label>
15 <mobile:TextBox runat=”server” id=”txtName” />
16
17 <mobile:Label runat=”server” font-Bold=”True”>Enter your password</mobile:Label>
18 <mobile:TextBox runat=”server” id=”txtPassword” password=”true”/>
19
20 <mobile:Label runat=”server” font-Bold=”True”>Enter your Bank Balance</mobile:Label>
21 <mobile:TextBox runat=”server” id=”txtBalance” numeric=”true” />
22
23 <mobile:Command runat=”server” id=”Button” OnClick=”Button_OnClick”>
24 OK
25 </mobile:Command>
26 </mobile:Form>
27 <mobile:Form id=”form2” runat=”server”>
28 <mobile:Label runat=”Server” font-bold=”True” Text=”You entered” />
29 <mobile:Label runat=”server” id=”lblName” />
30 <mobile:Label runat=”server” id=”lblPassword” />
31 <mobile:Label runat=”server” id=”lblBalance” />
32 </mobile:Form>

21 1356 CH16 10/22/01 1:08 PM Page 494

495Enter ASP.NET

Figure 16.14 Mobile:TextBox example, name.

Figure 16.15 Mobile:TextBox example, password.

Figure 16.16 Mobile:TextBox example, bank balance.

21 1356 CH16 10/22/01 1:08 PM Page 495

496 Chapter 16 Mobile Device Development with ASP.NET

Figure 16.17 Mobile:TextBox example, display all entered text.

The Mobile:List Control

The Mobile:List control can be used to render a list of items to the mobile
device user.These are either static or loaded into the control from a data
source.

The syntax of the Mobile:List control is as follows:

01 <mobile:List
02 runat=”server”
03 id=”id”
04 DataTextField=”dataTextField”
05 DataValueField=”dataValueField”
06 OnItemCommand=”onItemCommandHandler”
07 …Mobile item controls that make up the list control
08 </mobile:List>

The specific attributes and property of the Mobile:List control include:
n DataTextField—Specifies which property of a data bound item to use

when determining an item’s text property.
n DataValueField—Specifies which property of a data bound item to use

when determining an item’s value property.
n OnItemCommand—Holds the name of the event handler to be called when an

individual list item generates an event.
n Datasource—Holds the data source to which the control is bound.

Listing 16.11 uses a Mobile:List control to display a list of books.After an
item is selected, the selected book title and the author who wrote it are
displayed.

21 1356 CH16 10/22/01 1:08 PM Page 496

497Enter ASP.NET

Listing 16.11 Mobile:List Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <script runat=”server” language=”vb”>
04 protected sub List_EventHandler(o as Object, e as ListCommandEventArgs)
05 lblBook.Text = e.ListItem.Text
06 lblAuthor.Text = e.ListItem.Value
07 ActiveForm = form2
08
09 end sub
10 </script>
11 <mobile:Form id=”myList” runat=”server”>
12 <mobile:Label runat=”server” id=”label1” text=”Select Book”/>
13 <mobile:List runat=”server” id=”ListProduce” OnItemCommand=”List_EventHandler” >
14 <item Text=”Inside ASP.NET” Value=”Scott Worley” />
15 <item Text=”Inside XSLT” Value=”Steven Holzner” />
16 <item Text=”Inside XML” Value=”Steven Holzner” />
17 </mobile:List>
18 </mobile:Form>
19 <mobile:Form id=”form2” runat = “server”>
20 <mobile:Label runat=”server” font-bold=”True” Text=”Book Selected”/>
21 <mobile:Label runat=”server” id=”lblBook”/>
22 <mobile:Label runat=”server” font-bold=”True” Text=”Author”/>
23 <mobile:Label runat=”server” id=”lblAuthor”/>
24 </mobile:Form>

On line 13, I have created a simple Mobile:List control and assigned the
event handler sub List_EventHandler to process any selection made from the
list. On lines 14–16, I have assigned items to the list.When the form is run,
the list is displayed, and when an item has been selected, the eventhandler
will call the List_EventHandler sub at the beginning of the code listing.This
sub reads information from the Mobile:List control and assigns its value to a
Mobile:Label control on the form form2. Figures 16.18 and 16.19 show the
output to this code.

Figure 16.18 Mobile:List example, book selection list.

21 1356 CH16 10/22/01 1:08 PM Page 497

498 Chapter 16 Mobile Device Development with ASP.NET

Figure 16.19 Mobile:List example, display selection details.

You also can bind the Mobile:List control to a data source. Listing 16.12
demonstrates this technique.

Listing 16.12 Databound Mobile:List Example

01 <%@ Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”vb” %>
02 <%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
➥Assembly=”System.Web.Mobile” %>
03 <%@ import namespace=”System.Data.SqlClient” %>
04 <script runat=”server” language=”VB”>
05
06 Protected Sub Page_Load(sender As Object, e As EventArgs)
07 If (Not IsPostBack)
08 Dim connString as String
09 Dim sqlString as String
10 Dim myConn as SQLConnection
11 Dim myCmd as SQLCommand
12 Dim myReader as SQLDataReader
13
14 connString = “Initial Catalog=Pubs;Data Source=p450;uid=sa;pwd=;”
15 sqlString = “SELECT fname+’ ‘+lname as name, hire_date FROM employee”
16 myConn = new SqlConnection(connString)
17 myCmd = new SqlCommand(sqlString, myConn)
18 myConn.Open()
19
20 myReader = myCmd.ExecuteReader()
21 MenuList.DataSource = myReader
22 MenuList.DataBind()
23 myReader.Close()
24
25 End If
26 End Sub
27 Protected Sub Menu_OnItemCommand(sender As Object, e As ListCommandEventArgs)
28 lblEmployee.Text = e.ListItem.Text

21 1356 CH16 10/22/01 1:08 PM Page 498

499Enter ASP.NET

29 lblHireDate.Text = Ctype(e.ListItem.Value, String)
30 ActiveForm = form2
31 End Sub
32 </script>
33 <mobile:Form runat=”server”>
34 <mobile:Label runat=”server” StyleReference=”title”>Select Employee</mobile:Label>
35 <mobile:List runat=”server” id=”MenuList” OnItemCommand=”Menu_OnItemCommand”
36 DataTextField=”name” DataValueField=”hire_date” />
37 </mobile:Form>
38 <mobile:Form id=”form2” runat=”server”>
39 <mobile:Label runat=”server” font-bold=”True” Text=”Employee:” />
40 <mobile:Label runat=”server” id=”lblEmployee” />
41 <mobile:Label runat=”server” font-bold=”True” Text=”Date Hired:” />
42 <mobile:Label runat=”server” id=”lblHireDate” />
43 </mobile:Form>

The preceding listing uses a Page_Load event handler to connect to a SQL
Server database—in this case, the pubs database, which is supplied with
SQLServer.A SQLDataReader is used to get data from the Employees table, and
then subsequently is bound to the Mobile:List control defined on line 47.
The data binding process used with mobile controls is the same as that used
by regular ASP.NET forms. One thing to note are lines 47 and 48.

Of special interest here are the last two attributes, DataTextField and
DataValueField.These attributes are the column names from the SQL query
with which the Mobile:List control is bound. For the binding to work, you
must have these two attributes. See Figures 16.20 and 16.21.

Figure 16.20 Databound Mobile:List example, employee selection.

21 1356 CH16 10/22/01 1:08 PM Page 499

500 Chapter 16 Mobile Device Development with ASP.NET

Figure 16.21 Databound Mobile:List example, display selection details.

Data binding is covered in a lot more detail in Chapter 6,“Using ADO.NET
in ASP.NET Applications.”

Summary
As you have seen, the Mobile Internet Toolkit enables you to create very
functional mobile applications very quickly and without the need to under-
stand the inner workings of the devices you develop. However, in this chap-
ter, I have only scratched the surface of what is possible with the toolkit.You
can get further information from the online documentation.

21 1356 CH16 10/22/01 1:08 PM Page 500

