
IN THIS CHAPTER
• Creating a Database Project 0

• Database References 0

• Scripts 0

• Queries 0

CHAPTER

8
Visual Studio.NET
Database Projects

2981_sample.qxd 11/21/02 7:54 AM Page 1

The database project is a special type of Visual Studio.NET project. Its purpose is to create and
manage SQL database scripts. If you’re developing database applications with Visual
Studio.NET, you will want to know about the tools available for making your work with data-
bases easier and faster. This version of Visual Studio features many new tools and contains sig-
nificant improvements to others that existed in previous versions.

The Visual Database tools allow us to view, design, modify, and test database objects (for ex-
ample, tables, views, queries, stored procedures, and so on) quickly without having to jump
from the Visual Studio environment to a different toolset. The main advantage is in design and
development productivity, although licensing and installation issues also have been greatly
simplified.

We have already worked with some of these tools in previous chapters, and their use is usually
quite intuitive. They should also seem very familiar to you if you’ve had experience using simi-
lar tools (even MS Access qualifies). If this is your first time working with such tools, the Visual
Studio help topics will be useful.

In this chapter we continue using some of the Visual Database tools to demonstrate how to uti-
lize the tools and features available in a VS.NET database project.

Creating a Database Project
A special type of VS.NET project of particular interest is the database project. A database proj-
ect is not specific to any .NET programming language, such as Visual Basic or C#, but is meant
to be used to design, test, run, and manage SQL scripts and queries. When you design your
application in multiple layers, as you should, this project type helps you to develop and manage
the database layer closest to the database and the database itself.

In some applications, a database project may be part of the actual application code, and in other
applications, it may be part of a separate administration solution used to set up and maintain the
application’s database.
To add a new database project to a solution, do the following.

1. Launch the Add New Project dialog from either the main File menu or from the context
menu displayed by right-clicking on the solution in the Solution Explorer.

2. The left panel of this dialog box displays a list of folders containing different project
types. Expand the Other Projects folder (click on the “+”).

3. Select the Database Projects folder. It displays a Database Project template in the right
panel of the dialog box.

4. Specify a project name of NoveltyData and a path for saving the project files and then
click on the OK button.

Visual Studio.NET Database Projects

CHAPTER 8
2

s–

o–

2981_sample.qxd 11/21/02 7:54 AM Page 2

5. If you don’t currently have any database connections defined in the Server Explorer, the
Data Link Properties dialog box will be displayed, allowing you to define a new database
connection.

6. If you have at least one database connection defined in the Server Explorer, the Add Data-
base Reference dialog box is displayed. From this dialog choose the database connection
that you want to use (you can add new ones later). Alternatively, you can click on the Add
New Reference button to display the Data Link Properties dialog box, allowing you to
define a new database connection.

7. Select the connection to the Novelty database on the SQL Server and click on the OK
button. If for some reason the connection doesn’t exist, create it from the Data Link Prop-
erties dialog box.

8. Figure 8.1 shows the project and its folders in the Solution Explorer.

Creating a Database Project

CHAPTER 8
3

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.1
The NoveltyScripts database project shown in the Solution Explorer

Note that the created database project contains the following folders:

• Change Scripts

• Create Scripts

• Queries

• Database References

Let’s take at look at these folders and what they contain. We start with Database References
because they’re the prerequisite for everything else.

2981_sample.qxd 11/21/02 7:54 AM Page 3

Database References
A database reference is a pointer to a database. However, this reference doesn’t allow you to
access and view the database objects—that’s the job of the database connection.

A database reference is stored as part of the database project that is saved to disk. Whenever the
project is opened, the project scans the list of database connections currently defined in the
Server Explorer to see if a connection to the referenced database already exists. If such a con-
nection doesn’t exist, the database project automatically creates one.

The first database reference added to a project becomes the default reference for the project.
That is, unless specified otherwise, the scripts and queries that will be designed and/or run will
be against that database reference.

Visual Studio.NET Database Projects

CHAPTER 8
4

s–

o–

The icon for a database reference is a shortcut icon on top of a database icon. For the
default database reference, the shortcut icon is red, green, and white. For the other
references, the shortcut icon is black and white.

You can change the default reference for the project by right-clicking on the refer-
ence that you would like to be the default and selecting Set as Project Default from
the context menu displayed.

NOTE

You can add database references by right-clicking on the Database References node and select-
ing New Database Reference from the context menu displayed.

You can add another database reference and make it the default all at once. Right-
click on the database project name (main node) in the Solution Explorer and then
select the Set Default Reference menu item from the displayed context menu. Doing
so displays the Set Default Reference dialog box. If you choose a database connection
from the list of connections, it is added to the project and set to be the default data-
base reference.

TIP

2981_sample.qxd 11/21/02 7:54 AM Page 4

Scripts

CHAPTER 8
5

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Scripts
The database project template automatically creates two folders for holding SQL scripts. The
Create Scripts folder is meant to hold scripts that are used to re-create the database from scratch,
or to re-create a portion of the database that has undergone changes.

The Change Scripts folder is meant to contain SQL scripts that reflect desired changes that you
haven’t yet made to the database. Changes may be “placed on hold” because, as a developer,
you don’t have sufficient security privileges to modify a production database (sometimes not a
bad idea!) or because changes from multiple sources are to be combined and applied all at once
as a unit.

The folder names given are by convention only. You can change them to something
different that you prefer or find more meaningful. Of course, being able to change
them also means that you have the flexibility to mess things up, or at least confuse
others (or even yourself) who need to use your project.

You can also add other folders to a database project. For example, you may want a
separate folder to store scripts required for upgrading the database to a specific re-
lease version or for other maintenance activities. You may want to have several differ-
ent query folders, each containing different types of queries. You can add a new
folder to the project by right-clicking on the project and selecting the New Folder
menu item from the context menu that is displayed.

NOTE

You can create any SQL script manually, by right-clicking on a folder (or the project) node in
the Solution Explorer and then selecting the Add New Item or the Add SQL Script menu item
from the displayed context menu. After selecting one of the standard script templates, shown in
Figure 8.2, you can edit it manually in the Visual Studio editor.

What is special about the Create and Change scripts is that you can have them generated auto-
matically.

2981_sample.qxd 11/21/02 7:54 AM Page 5

Create Scripts
As we said previously, Create Scripts are SQL scripts that create new database objects, includ-
ing tables, views, stored procedures, and constraints. They are normally used set up an installa-
tion or revert an existing site (such as a development server) to its pristine state.

Visual Studio.NET Database Projects

CHAPTER 8
6

s–

o–

You can generate Create Scripts only if you are using SQL Server 7.0 or SQL Server
2000. Moreover, to use this feature, the client tools for SQL Server must be installed on
the same machine as Visual Studio. The reason is that Visual Studio utilizes the same
tools and dialogs.

NOTE

To generate Create Scripts, do the following.

1. Open the Server Explorer and right-click on the item for which you want to generate the
script. This item can be either the entire database or an individual database object (table,
view, stored procedure, or function). For this example, select the entire Novelty database.

Figure 8.2
The standard script templates displayed in the Add New Item dialog box

2981_sample.qxd 11/21/02 7:54 AM Page 6

2. Select the Generate Create Script menu item from the context menu displayed. After you
successfully enter your security credentials in the SQL Server Login dialog box, the Gen-
erate Create Scripts dialog box is displayed.

3. If you select a specific database object, the Generate Create Scripts dialog box appears,
configured for only that object. If you select the entire database, as here, the dialog box

Create Scripts

CHAPTER 8
7

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.3
The Generate Create Scripts dialog box for the entire Novelty database

You can also display the Generate Create Scripts dialog box by dragging and dropping
from the Server Explorer to a folder in the Solution Explorer. Here, too, you can drag
either the entire database or individual database objects. If you select one or more
individual objects, such as a table and its relevant stored procedures, the Generate
Create Scripts dialog appears configured for just the selected object(s). However, if
you select the entire database, or even a single folder within the database, such as the
Tables or Views folder, it in fact behaves as if you dragged the entire database. If you
want to script more than just a single object, you can also start by right-clicking on the
Create Scripts folder and selecting the Generate Create Script menu item from there.

TIP

2981_sample.qxd 11/21/02 7:54 AM Page 7

appears, showing all the objects available on the database but without any of them selected
for scripting. This result is shown in Figure 8.3.

4. On the General tab, you can specify which objects are to be included in the generated
script by selecting one or more objects from the Objects on the Novelty panel and adding
them to the Objects to be scripted panel by either double-clicking on an object or the Add
button. Entire groups of objects, such as all tables or all views (or even all the database
objects), can be specified by checking one or more of the checkboxes in the top portion of
the tab. For this example, check the Script all objects checkbox.

5. Select the Formatting tab. In addition to the default settings, check the Include descriptive
headers in the script files checkbox.

6. Click on the OK button. Doing so displays the Browse for Folder dialog box so that you
can specify where to save the script file(s). Note that it defaults to the Create Scripts direc-
tory of the current project, but you can change this setting to whatever you want. Accept
the default by clicking on the OK button.

7. Because we had you choose to script all the database objects, many script files are created
and added to the project, as shown in Figure 8.4. We could have had you choose to have
all the scripts in a single file by selecting the Create one file option on the Options tab of
the Generate Create Scripts dialog box.

Visual Studio.NET Database Projects

CHAPTER 8
8

s–

o–

Figure 8.4
The Solution Explorer filled with Create Scripts for the Novelty database

2981_sample.qxd 11/21/02 7:54 AM Page 8

8. You can view (and modify) the contents of a script file by double-clicking on it in the
Solution Explorer. Figure 8.5 shows the script dbo.tblOrder.tab that creates the tblOrder
table in the Novelty database.

Note, however, that these scripts create only the database schema and do not populate the
newly created tables with any data. In the Command Files section, we show how to copy a
table’s data.

Create Scripts

CHAPTER 8
9

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.5
The generated script to create the tblOrder table.

You can even generate the script for creating the database itself by checking the
Script database option on the Options tab of the Generate Create Scripts dialog box.
Our database project, NoveltyData, now contains a set of scripts that we can run to
create all the database objects for the Novelty database. In the Running the Scripts
section, we show how to do so.

TIP

2981_sample.qxd 11/21/02 7:54 AM Page 9

Change Scripts
Change scripts are used to apply changes to an existing database schema. Although these scripts
could be written manually, it is preferable to use a tool to generate them. When we use the Vi-
sual Database tools that we used in Chapters 1 and 2, Visual Studio automatically maintains a
script of any changes made to the database schema that haven’t yet been applied to the database.

Let’s say that you want to add a new field, StartDate, to the tblEmployee table to track the start
date of each employee. Do the following.

1. Open the Server Explorer, expand the Tables node of the Novelty database, and right-click
on tblEmployee.

2. Select the Design Table menu item from the context menu to open tblEmployee in the
Table Designer.

3. Add a new column named StartDate, of type datetime, as shown in Figure 8.6.

Visual Studio.NET Database Projects

CHAPTER 8
10

s–

o–

Figure 8.6
Adding the StartDate column to the tblEmployee table

2981_sample.qxd 11/21/02 7:54 AM Page 10

Because you will want to apply this change to all the databases already installed and deployed at
different sites in the field, you need to create a change script for what you just did.

1. Select the Generate Change Script menu item from the main Diagram menu or click on
the Generate Change Script button on the Table toolbar. Doing so displays the Save
Change Script dialog box, with a preview of the script, as shown in Figure 8.7.

Change Scripts

CHAPTER 8
11

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.7
The Save Change Script dialog box, showing the script to add the StartDate column to
tblEmployee

2. Click on the Yes button. The standard Save As dialog is displayed and defaults to the
Change Scripts folder of the current database project.

3. Click on the Save button to save the script with the default name of tblEmployee.

4. Close the table designer where you modified tblEmployee. When prompted to save
changes to the table, click on the No button. In the next section we show you how to apply
the changes by running the SQL script that you just created.

5. Double-click on tblEmployee.sql in the Solution Explorer to view the saved script, as
shown in Figure 8.8.

2981_sample.qxd 11/21/02 7:54 AM Page 11

Running the Scripts
You can run a script directly within the Solution Explorer. The easiest way to do so is to drag the
script that you want to run and drop it on the database reference that you want to run it against.
Alternatively, you can right-click on the script that you want to run. The context menu displayed
has both a Run and a Run On menu items. Selecting the Run item executes the script against the
default database reference. Selecting the Run On menu item, as shown in Figure 8.9, allows you
to specify a database other than the current default. Note that you can choose from existing
database references or use this opportunity to add a new one.

Visual Studio.NET Database Projects

CHAPTER 8
12

s–

o–

Figure 8.8
Viewing the tblEmployee.sql script.

2981_sample.qxd 11/21/02 7:54 AM Page 12

To apply the changes that you previously designed and saved in the script tblEmployee.sql, do
the following.

1. Verify that the tblEmployee table does not contain the StartDate field. In the Server
Explorer, expand the node for tblEmployee to list the fields of the table, as shown in
Figure 8.10.

2. Expand the Change Scripts folder in the Solution Explorer and select the tblEmployee.sql
script.

3. Drag and drop the script onto the reference for the Novelty database in the Solution
Explorer.

4. The Execute Scripts or Queries dialog box is shown, giving you a chance to confirm that
you want to run the script on the specified database. Click on the Yes button to continue
and to run the script.

Running the Scripts

CHAPTER 8
13

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.9
The Run On dialog box

You can also choose to define a temporary database reference to run this script on.
Double-clicking on the last item in the list, <temporary reference>, displays the famil-
iar Data Link Properties dialog for you to use to define the connection. However, this
reference won’t be added to the project or to the Server Explorer.

NOTE

2981_sample.qxd 11/21/02 7:54 AM Page 13

5. Repeat step 1 to again display the fields of the table (or just click on the Refresh button on
Server Explorer toolbar if it remained open). The newly added StartDate field now ap-
pears.

Command Files
Now that you have created all these scripts to create and modify the different database objects,
wouldn’t it be nice if you could organize multiple scripts into a logical group to be run as a
single unit? Yes it would be, and VS.NET can create command files to do just that. These com-
mand files, which have the .cmd extension, are meant to be used on the Windows 2000 or Win-
dows XP operating systems, which recognize and can execute such files. These files can also
load a newly created table with data that we exported from an existing database.

Visual Studio.NET Database Projects

CHAPTER 8
14

s–

o–

Figure 8.10
Displaying the fields of tblEmployee

The ability to easily and automatically create a script that loads table data in addition
to creating database schema and objects is a VS.NET feature not found in the SQL
Server Enterprise Manager.

NOTE

2981_sample.qxd 11/21/02 7:54 AM Page 14

Let’s say that we want to create a single command file that will automatically run all the Create
Scripts that we need to create a brand new version of our Novelty database on another computer.
Although this new system will have its own customers, employees, and orders, the inventory
information in tblInventory will be the same. We therefore want to populate the new database’s
tblInventory table with the data currently in our existing tblInventory table.

Because you will want to have the command file load the inventory data from the existing data-
base to the newly created one, you must first export the data and then continue with the process
of creating the command file, as follows.

1. In the Server Explorer, right-click on tblInventory and select the Export Data menu item
from the context menu displayed.

2. The Browse for Folder dialog box appears and defaults to the Create Scripts folder of the
database project. Click on the OK button to accept this folder.

3. After proceeding through the SQL Server Login dialog, the script dbo.tblInventory.dat is
created.

4. Decide which folder in the database project to use to store the new command file. Again
use the Create Scripts folder.

5. In the Solution Explorer, right-click on the Create Scripts folder and select the Create
Command File menu item from the pop-up menu. Doing so displays the Create Command
File dialog box shown in Figure 8.11.

Command Files

CHAPTER 8
15

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.11
The Create Command File dialog box for the Novelty database.

2981_sample.qxd 11/21/02 7:54 AM Page 15

6. The Available Scripts list of the Create Command File dialog box contains all the SQL
scripts in the selected folder that can be included in the command file. You can add all the
scripts, or just individual ones, to the list of Scripts to be added to the command file. Click
on the Add All button to add all the Create Scripts to the command file.

7. Because at least one Create Table Script (with the .tab extension) was included in the list of
scripts to be added to the command file—and there is at least one exported data file in the
folder—the Add Data button is enabled on the Create Command File dialog box.

8. Click on the Add Data button to display the Add Data dialog box shown in Figure 8.12.
This dialog lists all the create table scripts that were selected to be added to the command
file and allows choosing the corresponding data file for each script.

Visual Studio.NET Database Projects

CHAPTER 8
16

s–

o–

Figure 8.12
The Add Data dialog box

9. The dialog recognizes and automatically matches the tblInventory data file with the script
that creates the tblInventory table. Click on OK to return to the Create Command File
dialog box.

10. Now that the scripts and the exported data files have been specified, click on the OK but-
ton to generate the command file. The Create Scripts.cmd command file is added to the
Create Scripts folder and its contents are displayed, as shown in Listing 8.1.

LISTING 8.1—The contents of the Create Scripts.cmd command file

@echo off
REM: Command File Created by Microsoft Visual Database Tools
REM: Date Generated: 08-Feb-02
REM: Authentication type: Windows NT
REM: Usage: CommandFilename [Server] [Database]

2981_sample.qxd 11/21/02 7:54 AM Page 16

if ‘%1’ == ‘’ goto usage
if ‘%2’ == ‘’ goto usage

if ‘%1’ == ‘/?’ goto usage
if ‘%1’ == ‘-?’ goto usage
if ‘%1’ == ‘?’ goto usage
if ‘%1’ == ‘/help’ goto usage

osql -S %1 -d %2 -E -b -i “dbo.tblCustomer.tab”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblDepartment.tab”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblEmployee.tab”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblInventory.tab”
if %ERRORLEVEL% NEQ 0 goto errors
bcp “%2.dbo.tblInventory” in “dbo.tblInventory.dat” -S %1 -T -k -n -q
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrder.tab”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrderItem.tab”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblCustomer.kci”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblDepartment.kci”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblEmployee.kci”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblInventory.kci”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrder.kci”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrderItem.kci”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblCustomer.fky”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblDepartment.fky”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblEmployee.fky”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblInventory.fky”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrder.fky”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrderItem.fky”
if %ERRORLEVEL% NEQ 0 goto errors

Command Files

CHAPTER 8
17

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

2981_sample.qxd 11/21/02 7:54 AM Page 17

osql -S %1 -d %2 -E -b -i “dbo.tblCustomer.ext”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblDepartment.ext”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblEmployee.ext”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblInventory.ext”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrder.ext”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.tblOrderItem.ext”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.Employee_view.viw”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.EmployeeDepartment_view.viw”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.DeleteEmployee.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.GetCustomerFromID.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.InsertEmployee.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.InsertEmployeeOrg.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.LastNameLookup.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.procEmployeesSorted.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.SelectEmployees.prc”
if %ERRORLEVEL% NEQ 0 goto errors
osql -S %1 -d %2 -E -b -i “dbo.UpdateEmployee.prc”
if %ERRORLEVEL% NEQ 0 goto errors

goto finish

REM: How to use screen
:usage
echo.
echo Usage: MyScript Server Database
echo Server: the name of the target SQL Server
echo Database: the name of the target database
echo.
echo Example: MyScript.cmd MainServer MainDatabase
echo.
echo.
goto done

Visual Studio.NET Database Projects

CHAPTER 8
18

s–

o–

2981_sample.qxd 11/21/02 7:54 AM Page 18

REM: error handler
:errors
echo.
echo WARNING! Error(s) were detected!
echo ————————————————
echo Please evaluate the situation and, if needed,
echo restart this command file. You may need to
echo supply command parameters when executing
echo this command file.
echo.
pause
goto done

REM: finished execution
:finish
echo.
echo Script execution is complete!
:done
@echo on

Command Files

CHAPTER 8
19

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

The command file makes use of the osql and bcp command line utilities that are part
of the SQL Server installation. The osql utility allows you to execute SQL statements,
system procedures, and script files. The bcp is a bulk copy program that copies data to
and from a data file and an instance of SQL Server.

NOTE

You can run this command file from within the Solution Explorer by right-clicking on it and
then selecting the Run menu item. You can also invoke it externally, independent of Visual Stu-
dio, so long as all the scripts exist together with the command file.

Remember that running this command file against a database will delete all the data
that currently exists in that database!

TIP

2981_sample.qxd 11/21/02 7:54 AM Page 19

Queries
Similar to what we mentioned regarding the Create and Change scripts, you can also create SQL
queries manually within the Visual Studio environment. However, except for the most trivial
queries, using the Query Designer to design the queries graphically is much more efficient and
less error-prone.

We can demonstrate use of the Query Designer by creating a parameter update query that up-
dates the wholesale prices of all of the products in our inventory by a specified percentage.

1. Open the Solution Explorer and right-click on any folder node other than Database Refer-
ences. From the context menu displayed, select the Add Query menu item. Doing so dis-
plays the Add New Item dialog box, shown previously in Figure 8.2.

2. Select the Database Query template, set the name to UpdateWholesale.dtq, and click on
the Open button. The Query Designer is now displayed, as shown in Figure 8.13.

Visual Studio.NET Database Projects

CHAPTER 8
20

s–

o–

Figure 8.13
The Query Designer opened to create a new database query

2981_sample.qxd 11/21/02 7:54 AM Page 20

3. From the Add Table dialog, add the tblInventory table and then click on the close button to
dismiss the dialog.

4. We need to change the query type from a Select to an Update query. We do so by selecting
the Change Type menu item from the main Query menu, or by clicking on the Change
Type button on the Query toolbar, and then selecting the Update menu item.

5. In the Diagram pane of the Query Designer, click on the checkbox for the WholesalePrice
field, as that is the field we’re going to update.

6. In the Grid pane, enter the following formula in the New Value column in the row for the
WholesalePrice field that we just added:

WholesalePrice * (1 + ? / 100)

7. This formula accepts a parameter value, which is the percentage that the wholesale price
should be increased by. When the query is executed, the question mark in the formula will
be replaced by the parameter value that is provided. The query designer should look like
that shown in Figure 8.14.

Queries

CHAPTER 8
21

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.14
The query to update the WholesalePrice field in the tblInventory table

2981_sample.qxd 11/21/02 7:54 AM Page 21

8. Although we could now run and test our query within the query designer, we will (soon)
do it from the Solution Explorer.

9. Close the query designer and click on the Yes button when prompted to save the changes
to the UpdateWholesale.dtq query.

10. Double-click on tblInventory in the Server Explorer to display all the current data in that
table. These are the values before we run the query script to update the wholesale price.

Visual Studio.NET Database Projects

CHAPTER 8
22

s–

o–

You may want to take a snapshot of the data so that you can easily verify the new
prices after running the update query. You can do so by selecting all the rows that are
being displayed and then copying and pasting them in a Notepad file (or any other
tool of your liking).

TIP

11. Similar to what we showed previously with a script, we can run a query by dragging and
dropping it onto a database reference. We can also run it on the default reference by right-
clicking on the query that we want to run and selecting the Open menu item.

The context menu displayed when you right-click on a query also contains Design and
Design On menu items that open the query designer against the default or a specified
database reference.

NOTE

12. Drag and drop the UpdateWholesale query onto the reference for the Novelty database in
the Solution Explorer.

13. The Execute Scripts or Queries dialog box is shown, giving us a chance to confirm that we
want to run the script on the specified database. Click on the Yes button to continue and to
run the query.

14. The Define Query parameters dialog box is shown because our query contains a parameter.
Enter a value—say, 10—as the percentage increase for the wholesale prices. Click on the
OK button to continue.

15. A message box is displayed, stating the number of rows affected by the query. Click on
OK to dismiss it.

16. Repeat step 9 to again display the data in the tblInventory table. The table should contain
the modified wholesale prices, as shown in Figure 8.15.

2981_sample.qxd 11/21/02 7:54 AM Page 22

Summary
In this chapter we focused on the Visual Studio.NET database project type. This project type
doesn’t include any Visual Basic code; rather, it is meant to be used to create, test, run, and
manage SQL database scripts, queries, and command files. These scripts and commands allow
you to create new database schemas, make changes to existing schemas, and query and update
existing database data. These are important, time-saving tools that should be used as much as
possible during both the development and deployment phases of a project.

In general, you probably won’t bother getting involved with database project scripts and queries
unless you’re developing, maintaining, and enhancing a real-world database application. Fur-
thermore, as an application programmer, you may be used to leaving the tasks discussed in this
chapter to database analysts (DBAs). However, more and more application programmers are
assuming many of the tasks traditionally performed by DBAs. Even if that isn’t the case in your
situation, you may still need to perform many of these tasks for your own private development
environment.

Questions and Answers
Q. I see that many of the same or very similar tools exist in both Visual Studio and the SQL

Server Enterprise Manager. Which ones should I use?

A. The short answer: whichever one(s) you prefer. For many operations, the tools are the same
in either toolset, so you can go with whichever you prefer. However, some operations are
easier, or can only be done, with one tool or the other. In all likelihood, if you are a DBA,

Queries

CHAPTER 8
23

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

Figure 8.15
The data in the tblInventory table, after increasing the WholesalePrice field by 10 percent

2981_sample.qxd 11/21/02 7:54 AM Page 23

you will do most of your work from within the SQL Server Enterprise Manager. If you are a
programmer, you will most likely want to do as much as possible within the Visual Studio
environment. However, if your database is not SQL Server, you will need other tools in order
to design or modify your database objects. The Visual Studio tools allow you to browse and
query such databases but not to modify them.

Visual Studio.NET Database Projects

CHAPTER 8
24

s–

o–

2981_sample.qxd 11/21/02 7:54 AM Page 24

Most Recent A-Level Head

CHAPTER 8
25

8

V
ISU

A
L

S
TU

D
IO.N

ET
D

A
TA

B
A

SE
P

R
O

JEC
TS

–s

–o

5" wide 01fig02.tif
51%

Per your instructions to fit art in approximatley 3" x 5", we chose to fit
to 3" or 5" depending on whether the art is mostly horizontal or mostly
vertical.

2981_sample.qxd 11/21/02 7:54 AM Page 25

Visual Studio.NET Database Projects

CHAPTER 8
26

s–

o–

5" wide, 04fig04.pcx, 66.8%

fig 0310a.tif, 284.8%

2981_sample.qxd 11/21/02 7:54 AM Page 26

