
CHAPTER

5
Building Database
Applications with

ADO.NET

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 /

133

IN THIS CHAPTER:

Demonstrated Topics

A Quick Review of ADO.NET Namespaces

Connecting to DataSources

Understanding the Role of the Adapter

Working with the DataSet

Using the DataTable

Using the DataView

Using the DataReader for Read-Only Data

Displaying Information in the DataGrid

Using the Command Object

Generating SQL with the CommandBuilder

Summary

P:\010Comp\ApDev\417-7\ch05.vp
Wednesday, July 31, 2002 10:50:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

T he current version of ADO incorporates revisions designed to accommodate the
world we live in today. In the 21st century, information is big business. Speedy
access to mountains of data by thousands or even millions of simultaneous users

is the reality. ADO.NET was revised to mirror this reality.
Previous versions of ADO were based largely on aconnectedmodel. Each user held

a connection to a data source while interacting with the data. The result were bottlenecks
caused by the large number of possible physical connections. Assuming clients are PCs
connected to the Internet and the servers are web servers, then database problems can be
exacerbated by distance and bandwidth.

Generally, the number of transactions per interval of time can be used to determine total
throughput. At one completed transaction per minute, an application could support 1,440 trans-
actions per day. One transaction per second and an application could support 86,400 transactions
per day. Clearly, these numbers are not in the millions. ADO.NET was revised to address the
problem of limited physical connections to a data source, to increase reliability, and to work
in the world as it exists today—a connected world.

The current ADO.NET is based on a disconnected model and centers around the DataSet
and XML. In short, the ADO.NET model follows the pattern of connecting to the data
source, performing a short transaction, and disconnecting from the data source. There are
some new capabilities and classes that were introduced with ADO.NET. This chapter will
demonstrate how to use ADO.NET to write database applications.

Demonstrated Topics
Chapter 2 introduced the subject of Reflection by demonstrating how to explore the CLR.
A tools provider could use such a utility to completely document the CLR and provide a
reference application that associated specific aspects of the CLR with example code. For this
concept to work, we would need to write the information we discovered by Reflection to a
database and then add code examples to that database.

Based on a discussion I had with a Microsoft program manager, Microsoft has an internal
application that fills the role of a resource tool for developers internally working with .NET.
Fortunately, Microsoft has released Rotor, which is the shared source code for the common
language infrastructure (CLI), a significant part of the base classes for .NET. Rotor is available
for download from Microsoft.

We can create our own reference application as a reasonable means of demonstrating
ADO.NET. The demonstrated topics in this chapter are set against the backdrop of a CLR
reference application and will show you how to

þ Use connections

þ Use adapters

þ Program with the new DataSet class

þ Fill and interact with the DataTable

þ Use the DataView class

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

1 3 4 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

þ Speed up database access with the DataReader

þ Execute SQL commands using the Command object

þ Automatically generate SQL statements with the CommandBuilder

þ Create data bound graphical user interfaces with the DataGrid

The Secondary Topics section will borrow from the demonstrated topics and describe how
to use the DataSet as a return type for an XML Web Service, binding data to controls on
Web Pages and inheriting the TraceListener to facilitate debugging and testing.

A Quick Review of ADO.NET Namespaces
ADO.NET is comprised of assemblies, namespaces, and classes that are part of the bigger
.NET Framework. The main namespace for ADO.NET is the System.Data namespace.
System.Data contains classes like the DataSet and DataTable. Within the System.Data
namespace is System.Data.Common, System.Data.OleDb, System.Data.SqlClient, and
System.Data.SQLTypes. Additionally, System.XML is fundamental to ADO.NET and to
.NET in general.

The System.Data.Common namespace contains classes that are shared by ADO.NET
providers. For example, both the System.Data.OleDb and System.Data.SQLClient
namespaces contain adapters that inherit from a common adapter in the System.Data.Common
namespace.

System.Data.OleDb and System.Data.SQLClient are namespaces that contain symmetric
capabilities. The SQLClient namespace contains classes for working with MS SQL Server 7.0
or higher databases, and the OleDb namespace contains classes for working with all other
OleDb-compatible databases, including MS Access.

System.Data.SQLTypes contains classes that represent native SQL data types.
Last but not least is System.XML. XML is used to describe data. For example, if you

specify the DataSet as a return type for a Web Service, then the DataSet will be serialized
as XML to facilitate transporting the DataSet. XML is used to define data schemas (XSD
schemas).

As we proceed with the examples in this chapter, I will indicate where specific classes
come from, and you can use this short section as a resource to explore additional information
about ADO.NET.

Let’s approach ADO.NET systematically, beginning with the first thing we must do:
create a connection to a data source.

Connecting to DataSources
Programmers experienced with prior versions of ADO know that ADO supported
a disconnected database model. However, ADO prior to .NET was fundamentally a
connected model and was not based on XML. The disconnected ADO.NET will not hold

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 3 5

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

connections—we say it is disconnected—and uses XML, which makes it easy to move data
across networks because XML is just hypertext.

However, you will need to create and use a connection to get at the data. You can create
an SqlConnection for MS SQL Server 7.0 data sources or higher or an OleDbConnection for
any other data source that supports OLE DB.

To optimize connection usage, you will want to take advantage of connection pooling.
Connection pooling is a collection, or pool, of connections that applications can share.
An OleDbConnection uses connection pooling automatically. An SqlConnection manages
connection pooling implicitly. An SqlConnection that uses the same connection string can
be pooled. You must close connections to take advantage of connection pooling.

Connecting to an OLE DB Data Store
ADO.NET creates an environment where the conditions of working with various data
sources are similar from the perspective of the code you write. To learn how to program
using ADO.NET, you can use any data source that is available. One such data source that
supports OLE DB is the Microsoft Access Jet Engine. (MS Access ships with Microsoft
Office Professional.) We’ll use Access as our OLE DB example.

To connect to an OLE DB provider you will need to provide a specific connection string.
There are a couple of good strategies that you can employ to obtain a working connection
string. If you are adding the connection in the presentation layer, then you can drag an
OleDbConnection right out of Server Explorer onto the Windows Form or Web Form
(see Figure 5-1). Another good strategy for creating a second string has to do with creating
a Microsoft Data Link file.

If you create a text file with a .UDL extension (for example, in Windows Explorer) and
double-click that file, then you can use the Data Link Properties applet (see Figure 5-2) to
configure a connection. The Data Link Properties applet provides you with a visual interface
to create the connection. Complete the information on each tab and the .UDL file will contain
a valid connection string. To create a connection to a Microsoft Access 2000 or 2002 database,
follow these steps:

1. Create a blank text file with a .UDL extension. Double-click the file to open the file
with the Data Link Properties applet.

2. On the Provider tab, select the Microsoft Jet 4.0 OLE DB Provider. Click the Next
button, shown in Figure 5-2.

3. On the Connection tab, use the browse button—a button with an ellipses caption—to
browse to your database file. Access databases have an .MDB extension. (You can use
Windows Explorer to search for an Access database.) You can ignore item 2, leaving
the default user name “Admin” in the user name field unless you know this isn’t valid
for the database you selected.

4. You can use the Test Connection button to determine if you have a valid connection.

5. If the Test succeeds, then you can click OK to save the configuration changes.

1 3 6 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 3 7

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Figure 5-1 Drag a connection from the Data Connections in Server Explorer to automatically
add an OleDbConnection component to your project.

Figure 5-2 Use the Data Link Properties applet to quickly and accurately configure a
connection string.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

The Advanced tab of the Data Link Properties applet allows you to specify access
permissions. The default is shared, read-write access to the database through this connection.
The All tab contains name and value pairs that allow you to modify every connection value.
Generally, the defaults will do, unless you have a specific reason for modifying initialization
values, such as Jet OLEDB: Encrypt Database.

After you close the Data Link Properties applet, you open the .UDL file with Notepad and
copy the connection string created by the applet. Here is an example of the connection string
value created by the UDL applet for the Reference.mdb sample database available with the
source code for this book.

Provider=Microsoft.Jet.OLEDB.4.0;DataSource=C:\Temp\Reference.mdb;

Persist Security Info=False

Wrap the preceding statement in quotes and you can use it to initialize an OleDbConnection
object without having to remember the provider name, Microsoft.Jet.OLEDB.4.0. Listing 5-1
demonstrates how to write code that will open the database described by our example
connection string.

Listing 5-1 The following demonstrates how to open an OleDbConnection and ensure it is
closed using a resource protection block.

public static void TestConnection()

{

OleDbConnection connection = new OleDbConnection();

connection.ConnectionString =

@"Provider=Microsoft.Jet.OLEDB.4.0;" +

@"Data Source=C:\Temp\Reference.mdb;" +

@"Persist Security Info=False";

connection.Open();

try

{

Console.WriteLine(connection.State.ToString());

Console.ReadLine();

}

finally

{

connection.Close();

}

}

TIP
Strings in C# can be @-quoted or quoted. A quoted string will treat a single backslash as an escape
character and a double backslash as a backslash. An @-quoted string will prevent escape characters
from being processed.

1 3 8 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Add ausingstatement to refer to the System.Data.OleDb namespace to use the OleDb
providers in Listing 5-1. You can create the OleDbConnection object passing the connection
string to the constructor or assigning the connection string to the ConnectionString property
after the object is created. Invoke the Open method to open the connection. The code in the
try part of thetry finally handler—also referred to as aresource protection block—represents
work. In Listing 5-1, we are simply writing the state of the connection object to the console.
Thefinally block is always invoked, which is what we want. We always want to close the
connection, and thefinally block will ensure that the connection is closed even in the event
of an exception.

Connecting to an MS SQL Server Data Store
From the perspective of the code needed to connect an SQL database, the code is almost
identical to Listing 5-1. The biggest difference resides in the connection string. The
connection string will need to contain information that is relevant to an MS SQL Server
database. You can use the same two techniques described in the previous section—drag
a connection from Server Explorer or create a .UDL file and use the Data Link Properties
applet—to define a connection string to an SQL Server database.

We can use almost the identical code to that found in Listing 5-1 to open a connection to
an SQL Server database. (The Microsoft Desktop Engine [MSDE] is a good SQL Sever database
to use in a development environment, because you can perform initial software writing on
a disconnected PC. This is especially useful when you are programming at the beach or in a
hammock.) When connecting to an SQL Server database, you will need to include the
System.Data.SqlClient namespace and create an instance of the SqlConnection object.

SqlConnection connection = new SqlConnection();

connection.ConnectionString =

@"data source=LAP800\VSDOTNET;initial catalog=master;" +

@"integrated security=SSPI;persist security info=False;" +

@"workstation id=LAP800;packet size=4096";

There are huge benefits to be reaped when using a well-architected framework. Let’s take
a moment to look at one such benefit that is offered to us in ADO.NET.

Using ADO.NET Interfaces to Declare Types
A reasonable thing you may want to do is to make it easy to switch between data providers.
There are several scenarios where this is likely, and I will describe one next.

Working on a project in Portland, Oregon, we were building an enterprise solution in C#
to IBM’s Universal Database. Residing in Michigan, I found it nice to occasionally go home
and telecommute. (It helps me get caught up on yard work.) I want to work from the home
office—for the multi-processor workstations with flat screens, a great library, a huge office
chair, and, best of all, family—but I don’t want to install every database a customer may be
using. Instead, I will write my applications to allow me to quickly and simply switch to an
alternate data provider. Combine ADO.NET with CASE tools for databases and you can
easily replicate a production database in a non-production environment. Of course, if your

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 3 9

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

employer doesn’t buy my arguments, then you could present the alternate database scenario
as a flexibility issue.

The basic idea is that you define methods that return ADO.NET interfaces (instead of
specific provider classes) and then construct a specific provider class. You can combine
CASE tools to replicate a production database with ADO.NET interfaces rather than classes
and a Boolean switch managed with an external XML file, and you have a versatile application-
development environment and database heterogeneity.

Switching Between Databases Using an IDbConnection
Listing 5-2 demonstrates how we can declare variables as interfaces realized by the
ADO.NET providers and create an instance of a specific provider based on dynamic
criterion. Listing 5-2 uses a conditional compiler directive to switch between databases.
This solution requires a recompile. In a moment, I will demonstrate how to achieve the
same result without recompiling.

Listing 5-2 Use the IDbConnection interface to declare your types and you can assign any
ADO.NET connection that realizes the interface.

1: public class MultiConnection

2: {

3: private static string GetConnectionString()

4: {

5: #if DEBUG

6: return @"Provider=Microsoft.Jet.OLEDB.4.0;" +

7: @"Data Source=C:\Temp\Refernce.mdb;" +

8: @"Persist Security Info=False";

9: #else

10: return @"data source=LAP800\VSDOTNET;initial catalog=master;" +

11: @"integrated security=SSPI;persist security info=False;" +

12: @"workstation id=LAP800;packet size=4096";

13: #endif

14: }

15: private static IDbConnection GetConnection()

16: {

17: #if DEBUG

18: return new OleDbConnection(GetConnectionString());

19: #else

20: return new SqlConnection(GetConnectionString());

21: #endif

22: }

23:

24: public static void Test()

25: {

26: IDbConnection connection = GetConnection();

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

1 4 0 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

27: connection.Open();

28: try

29: {

30: Console.WriteLine(connection.State.ToString());

31: Console.ReadLine();

32: }

33: finally

34: {

35: connection.Close();

36: }

37: }

38: }

The only real change made to the code is to declare the connection as an IDbConnection
instead of an SqlConnection or an OleDbConnection. The balance of the code is consistent
with the previous example in Listing 5-1. You can toggle the conditional compiler statements
on lines 5 and 17 of Listing 5-2 to switch between the SQL and OLE databases.

A common framework makes it possible to write code once, and switch between something
as significant as a database without writing multiple versions of the code for each database.
A great framework puts this kind of flexibility at your fingertips. The .NET framework is
a superlative framework. We can use a BooleanSwitch to externalize switching databases
without recompiling.

Switching Between Data Providers with a BooleanSwitch
A second scenario where it may be beneficial to allow a user to switch between databases is
when you are writing a consumer product, and you don’t want to force your customer to use
a specific database provider. Suppose you write a consumer application and want to allow
the customer to choose between databases. By the time the customer has the application, it
is too late to recompile. You can use a BooleanSwitch internally and an XML file externally
to support switching between data providers (as well as supporting any kind of externalized
dynamic switching).

Listing 5-3 is a revision of Listing 5-2. The revision demonstrates the addition of a
BooleanSwitch, and Listing 5-4 provides the listing for the XML file that defines the switch.

Listing 5-3 This code (a revision of Listing 5-2) demonstrates using a BooleanSwitch.

1: public class SwitchedMultiConnection

2: {

3: private static BooleanSwitch Switch =

4: new BooleanSwitch("Provider",

5: "Supports switching between data providers");

6:

7: private static string GetConnectionString()

8: {

9: if(Switch.Enabled)

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 4 1

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

10: {

11: return @"Provider=Microsoft.Jet.OLEDB.4.0;" +

12: @"Data Source=C:\Books\Osborne\Instant C#" +

13: @"\Source\Chapter 5\Database\Reference.mdb;" +

14: @"Persist Security Info=False";

15: }

16: else

17: {

18: return @"data source=LAP800\VSDOTNET;initial catalog=master;" +

19: @"integrated security=SSPI;persist security info=False;" +

20: @"workstation id=LAP800;packet size=4096";

21: }

22: }

23:

24: private static IDbConnection GetConnection()

25: {

26: if (Switch.Enabled)

27: {

28: return new OleDbConnection(GetConnectionString());

29: }

30: else

31: {

32: return new SqlConnection(GetConnectionString());

33: }

34: }

35:

36: public static void Test()

37: {

39: IDbConnection connection = GetConnection();

40: connection.Open();

41: try

42: {

43: Console.WriteLine(connection.State.ToString());

44: Console.ReadLine();

45: }

46: finally

47: {

48: connection.Close();

49: }

48: }

49: }

Lines 3 through 5 of Listing 5-3 declare and initialize a BooleanSwitch as a static member.
Making the switch static means that we will only instantiate one BooleanSwitch and share it

1 4 2 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 4 3

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

between all instances of the class using the switch. Lines 9 and 26 use the BooleanSwitch in
place of the conditional compiler directive to determine whether we should use the OleDb or
SqlClient connection.

There are a few differences between a BooleanSwitch and conditional compiler directives.
The conditional compiler directive must be changed and recompiled. The code that fails
evaluation is excluded from the compiled assembly. Code in both parts of the BooleanSwitch
code block is written to the compiled assembly, and to switch between different versions of
the code we change the external definition of the switch in an XML file without recompiling.
The .config file containing the switch definition is provided in Listing 5-4.

Listing 5-4 This code defines the .config file containing the BooleanSwitch.

<configuration>

<system.diagnostics>

<switches>

<add name="Provider" value="1" />

</switches>

</system.diagnostics>

</configuration>

Name the configuration file the same name as the assembly that will use it, adding
a .config extension. For example, if your assembly is named myapp.exe, then your
configuration file will be myapp.exe.config. Create the configuration file in the same
directory as the one containing the assembly. A complete description of the contents of
a BooleanSwitch defined in a configuration file is provided in Chapter 7, in the section
entitled “Using Switches.”

Combining provider interfaces with BooleanSwitch objects provides us with a convenient
way to switch between providers without recompiling our code. The next piece of the
ADO.NET puzzle is the adapter.

Understanding the Role of the Adapter
ADO.NET separates data access from data manipulation. Adapters are part of the data access
layer of ADO.NET. Adapters are used to move data between a connection and classes that
store cached data for manipulation, including the DataSet and DataTable. To read data from
a connection to a data source, you can use the Fill method. To read the schema only, you can
invoke the FillSchema method, and Update will accept the modified revisions to data in a
DataTable or DataSet and update the data source with the revisions.

There is an OleDbDataAdapter for OLE DB providers, an SqlDataAdapter for MS SQL
Server providers, and an IDbAdapter interface that allows you to write provider-independent
code, as we did with IDbConnection in the preceding section.

Adapters are initialized with SQL and connection objects. The adapter provides the bridge
from the connection to the data manipulation objects. In this section, I will demonstrate the
Fill, FillSchema, and Update methods of an adapter.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Initializing an Adapter
Adapters are initialized with an SQL SELECT command and a connection object of the same
provider type. Use an OleDbDataAdapter with an OleDbConnection and a SqlDataAdapter
with a SqlConnection. (I won’t repeat this information. Assume that, if one or the other of the
OleDb provider or SqlClient provider has a specific class, there is a symmetric class for the
other provider type.)

To initialize an adapter, create an instance of the adapter with an SQL SELECT command
and a like connection. Here is an example of an adapter object being created with an
OleDbConnection referring to the Reference.mdb MS Access database available with this book.

OleDbConnection connection = new OleDbConnection();

connection.ConnectionString =

@"Provider=Microsoft.Jet.OLEDB.4.0;" +

@"Data Source=C:\Temp\Reference.mdb;" +

@"Persist Security Info=False";

OleDbDataAdapter adapter = new OleDbDataAdapter(

"SELECT * FROM METHOD", connection);

The last statement demonstrates one of the four possible ways to initialize an adapter object.
The other three overloaded constructors for the adapter are variations of the one shown; you
can use the Visual Studio help documentation for examples of the other variations.

Connection Pooling Strategy
If you recall, we spoke about connection pooling earlier. Connection pooling is implicitly
based on the connection string. To take advantage of the more optimal use of connections via
connection pooling, you can use a simple technique for ensuring that your code isn’t littered
with literal connection strings. Listing 5-5 provides an example of a factored class that supports
maintaining only one instance of a connection string.

Listing 5-5 This code demonstrates how to use a class to ensure that you have only one
instance of a connection string.

1: public class FactoredConnection

2: {

3: private static BooleanSwitch booleanSwitch =

4: new BooleanSwitch("PKimmel",

5: "Used to switch between connection strings");

6:

7: public static string GetOleDbConnectionString()

8: {

9: if(booleanSwitch.Enabled)

10: {

11: return @"Provider=Microsoft.Jet.OLEDB.4.0;" +

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

1 4 4 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12: @"Data Source=C:\Books\Osborne\Instant C#" +

13: @"\Source\Chapter 5\Database\Reference.mdb;" +

14: @"Persist Security Info=False";

15: }

16: else

17: {

18: return @"Provider=Microsoft.Jet.OLEDB.4.0;" +

19: @"Data Source=C:\Temp\Reference.mdb;" +

20: @"Persist Security Info=False";

21: }

22: }

23:

24: public static string GetSqlConnectionString()

25: {

26: if(booleanSwitch.Enabled)

27: {

28: return @"data source=LAP800\VSDOTNET;initial catalog=master;" +

29: @"integrated security=SSPI;persist security info=False;" +

30: @"workstation id=LAP800;packet size=4096";

31: }

32: else

33: {

34: throw new Exception(

35: "Make sure you have a MS SQL Server instance available.");

36: }

37: }

39: public static OleDbConnection GetOleDbConnection()

40: {

41: return new OleDbConnection(GetOleDbConnectionString());

42: }

43:

44: public static SqlConnection GetSqlConnection()

45: {

46: return new SqlConnection(GetSqlConnectionString());

47: }

48: }

Again, in Listing 5-5 we use a BooleanSwitch—on lines 9 and 26—to support easy
switching between versions of the connection string. This is consistent with an approach we
might take for a connected versus a disconnected development environment. Notice that the
elsecondition for GetSqlConnectionString throws an exception. You will need to ensure that
you have access to MS SQL Server or MSDE installed on your desktop and have an instance
accessible to your application.

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 4 5

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 6 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Using the approach demonstrated in Listing 5-5, we can be sure that we are facilitating
connection pooling by using the same connection string. This approach does not prohibit
you from creating a new instance of a connection without the FactoredConnection class.

General Programming Strategy
The preceding section demonstrated a FactoredConnection class that facilitates connection
pooling by creating a separate class containing the connection string. There is another
strategic reason to write code like that demonstrated. I refer to it asKimmel’s Theory of
Convergent Code.

NOTE
Kimmel’s Theory of Convergent Code: Code that converges on a single instance of an algorithm or class
is good because it promotes reuse, consistency, and a high degree of re-orchestrated dynamic behavior.

The basic idea behind convergent versus divergent code is that the smallest piece of code
that can be reused without replicating the code is themethod. Anything below a method must
be duplicated to be reused. That is, lines of code must be copied and pasted to be reused.
Copied and pasted code is divergent code for the simple reason that there is more than one
instance of an algorithm. The negative result of divergent code is that for each instance of the
divergent code, a programmer must replicate, individually test, and separately maintain the
individuated lines of code. The result is that divergent code tends to decay over time according
to the number of times the code is copied and pasted. The result is that divergent code tends
toward semantically similar operations diverging in behavior, yielding the perception of
unreliable performance.

To summarize: relative to our FactoredConnection class, we have only one instance of
the connection string to maintain. If the connection changes, we propagate the change in one
place. If we want the behavior of the FactoredConnection to change then, we again only need
to change the code in place. Consider the case where we want to read the connection string
from an external resource like the registry. Again, we only need change the code in one place.

Convergent code in the form of methods yields the following good rule of thumb: prefer
singular, short, well-named, highly reusable methods to lines of code, which represent plural,
monolithic, non-reusable methods. William Opdikes’ doctoral dissertation from 1990 was the
impetus for the subject ofrefactoring,which supports my theory of convergence. You can
read about refactoring in Martin Fowler’s superlativeRefactoring: Improving the Design of
Existing Code(Addison-Wesley).

Invoking the Adapter Fill Method
The Fill method is used to move data between a connection and a DataSet. To fill a DataSet,
you will need to create a connection and an adapter and invoke the adapter’s Fill method.
A DataSet object is passed as an argument to the Fill method. You do not need to specifically
create an instance of a connection to use an adapter. You may pass a connection string
instead of a connection object to the adapter, and the adapter will internally create an instance

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 4 7

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

of a connection and then open and close the connection automatically. Here are a couple of
examples that demonstrate using the Fill command.

public static void TestFill()

{

OleDbConnection connection = FactoredConnection.GetOleDbConnection();

OleDbDataAdapter adapter = new OleDbDataAdapter(

"SELECT * FROM METHOD", connection);

DataSet dataSet = new DataSet();

connection.Open();

try

{

adapter.Fill(dataSet);

}

finally

{

connection.Close();

}

WalkDataSet(dataSet);

}

The preceding example verbosely creates an OlDbConnection, OleDbDataAdapter,
and a DataSet, opens the connection and then fills the DataSet. WalkDataSet represents
a method that performs useful work. (You can find the code for WalkDataSet in the
ADOSampleCode.sln available online atwww.osborne.com.)

The second example, which follows, demonstrates a concise version that passes a
connection string to the OleDbDataAdapter constructor, and the adapter will be responsible
for opening and closing the connection.

private static void TestFill2()

{

OleDbDataAdapter adapter = new OleDbDataAdapter(

"SELECT * FROM METHOD",

FactoredConnection.GetOleDbConnectionString());

DataSet dataSet = new DataSet();

adapter.Fill(dataSet);

WalkDataSet(dataSet);

}

(The FactoredConnection class was introduced in the earlier section “Connection Pooling
Strategy.”) The preceding example demonstrates a concise way to fill a DataSet. More
important, notice that in both instances we are operating on the DataSet after the connection
is closed. (The first example closes the DataSet explicitly, and the second example closes the
DataSet after the Fill operation.) This demonstrates the connectionless mode of operation in
ADO.NET. The data has been cached in the DataSet and is available completely independent
of the connection and adapter.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 8 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Invoking the Adapter FillSchema Method
If you are performing a large number of insert statements and aren’t interested in existing
rows of data, then you can request the schema only. To read schema—a description of a
table—into a DataSet only, employ the FillSchema method.

As is true with the Fill method, you can actually fill a single DataTable or add a table to a
DataSet. The DataSet is a collection of tables and optional relationships between those tables.
(Refer to the later sections “Working with the DataSet” and “Using the DataTable” for more
information.) FillSchema takes a DataSet or DataTable argument and a SchemaType enumerated
value, either Mapped or Source. Here is an example of a method that reads the description of
a table only into a DataSet.

public static void TestFillSchema()

{

OleDbDataAdapter adapter = new OleDbDataAdapter(

"SELECT * FROM METHOD",

FactoredConnection.GetOleDbConnectionString());

DataSet dataSet = new DataSet();

adapter.FillSchema(dataSet, SchemaType.Source);

}

The DataSet in the preceding fragment will contain a single table with columns only; the
columns represent the schema information. The enumerated value SchemaType.Source—
of two possible values, the other being SchemaType.Mapped—instructs the adapter to use
the schema described by the source table. The alternative is to use the schema transformed
by column mappings. (Refer to the section “Working with the DataSet” later in the chapter
for more information on column mappings.)

Updating Changes to Data
An adapter plays the role of bridge between a connection and a DataSet. Just as we used an
adapter to read data from a data source via a connection into a DataSet, we use the adapter to
update changes made to the data. Updating includes SQL UPDATE, SQL INSERT, and SQL
DELETE operations.

The means by which we instruct the adapter to update data is to provide SQL commands
for the operations we want to perform. For example, if we have added new rows, then we
need to provide an INSERT command to the adapter before we call the Update method. The
basic steps for updating data are to open a connection, create an adapter providing an SQL
SELECT statement and the connection as initial values, fill a DataSet with data, modify the
data, create SQL commands that describe how to perform updates, and invoke the adapter
Update method. One version of these steps is demonstrated in Listing 5-6.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 4 9

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Listing 5-6 This code demonstrates how to update a DataSet using an adapter.

1: public static void TestUpdate()

2: {

3: OleDbConnection connection =

4: FactoredConnection.GetOleDbConnection();

5:

6: OleDbDataAdapter adapter = new OleDbDataAdapter(

7: "SELECT * FROM METHOD", connection);

8:

9: DataSet dataSet = new DataSet();

10: connection.Open();

11: adapter.Fill(dataSet);

12: connection.Close();

13:

14: DataRow row = dataSet.Tables[0].NewRow();

15: row["Name"] = "TestUpdate";

16: dataSet.Tables[0].Rows.Add(row);

17:

18: OleDbCommandBuilder commandBuilder =

19: new OleDbCommandBuilder(adapter);

20:

21: connection.Open();

22: adapter.Update(dataSet);

23: connection.Close();

24: }

Lines 3 and 4 of Listing 5-6 create a connection object. Lines 6 and 7 use the connection
object to create the adapter. Line 9 creates an instance of a DataSet. Line 10 opens the
connection, line 11 fills the DataSet, and line 12 closes the connection. We don’t need an
open connection to manage the DataSet, and it is better if we close the connection immediately.
In a real application, it is unlikely that the code actually adding data will be this simple.

Lines 14 through 16 of Listing 5-6 demonstrate how to add a new row to the tables in a
DataSet. Line 14 adds the row. Line 15 updates one field in the row, and line 16 adds the row
to the table’s collection of Rows using the Rows.Add command.

Line 18 of Listing 5-6 uses the adapter to construct an OleDbCommandBuilder. The
command builder automatically uses the schema information for a table to generate INSERT,
DELETE, and UPDATE SQL commands. Refer to the section “Generating SQL with the
CommandBuilder” later in this chapter for more information on the OleDbCommandBuilder.

Lines 21 through 22 of Listing 5-6 opens the connection, updates the database, and closes
the connection. The DataSet knows that we inserted a new row; hence, the adapter knows to
use the adapter’s InsertCommand property to write the row of data we added on lines 14
through 16.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 0 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Working with the DataSet
The DataSet is an evolution of the ADO RecordSet. The DataSet is a connectionless repository
for ADO.NET, and you can use DataSet objects without ever connecting to a data source. We
have only briefly introduced the DataColumn, DataRow, and DataTable, but these objects can
exist and you can programmatically interact with them without ever connecting to a data source.

In general, the DataSet model is consistent with how we think about a relational
database. The DataSet contains a DataRelationCollection and a DataTableCollection.
The DataTableCollection contains a DataRowCollection, DataColumnCollection,
ChildRelations, ParentRelations, and ExtendedProperties. The DataRowCollection
contains instances of DataRow objects, and the DataColumnCollection contains
DataColumn objects. There is also a view of data represented by the DataView class.

You can use the DataSet and contained objects in the traditional way by connecting to
data providers as demonstrated earlier in this chapter, or you can use the DataSet as an
in-memory repository to store data in an organized way. This next section demonstrates
how to employ aspects of the DataSet.

Adding DataTable Objects to a DataSet
When you create a DataSet object and fill it from a DataAdapter based on a single SQL
SELECT statement, what really happens is that a DataTable is created and is added to
the DataSet’s DataTableCollection. The premise is that for ADO.NET to support a
connectionless model for database management, it must support storing and managing
data in relations that are likely to exist.

The most common relationship is the simple master-detail relationship. One table plays
the role of the master table and the other table plays the role of detail table. In a typical
master-detail relationship, you will need a master table, a detail table, and a DataRelation.
The AssemblyViewer.sln for this chapter available for download demonstrates one such
relationship between a table containing CLR TypeInfo objects and ConstructorInfo objects.
Listing 5-7 demonstrates how to fill DataTable objects and add those objects to a DataSet.

Listing 5-7 This code demonstrates how to add DataTable objects to a DataSet.

1: OleDbConnection connection = new OleDbConnection(connectionString);

2: OleDbDataAdapter adapter = new OleDbDataAdapter(

3: "SELECT * FROM TYPE", connection);

4: DataSet dataSet = new DataSet();

5:

6: DataTable typeTable = new DataTable("TYPE");

7: adapter.Fill(dataTable);

8: dataSet.Tables.Add(typeTable);

9:

10: DataTable constructorTable = new DataTable("CONSTRUCTOR");

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 5 1

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

11: adapter = new OleDbDataAdapter(

12: "SELECT * FROM CONSTRUCTOR", connection);

13: adapter.Fill(constructorTable);

14:

15: dataSet.Tables.Add(constructorTable);

Line 1 of Listing 5-7 creates a connection object. Because we don’t explicitly open the
connection, the adapter will take care of opening and closing the connection for us. (You
have seen several examples of a connection string to the Reference.mdb database. The
variable connectionString was used to represent the actual connection string.) The second
statement creates an OleDbDataAdapter to bridge between the connection and a DataTable.

Line 4 of Listing 5-7 creates a DataSet. When we want to represent a collection of tables,
we use the DataSet, although it is acceptable and possible to use a single DataTable if we
only need one table. Line 6 creates a new DataTable object, and line 7 demonstrates how
easy it is to fill a DataTable directly without using a DataSet. Line 8 adds the DataTable to
our DataSet object. Lines 10 through 15 repeat the process for the CONSTRUCTOR table.

When the last statement in line 15 of Listing 5-7 finishes executing, the DataSet contains
two tables. There is no relationship between the tables yet. We need to define the relationship
as a separate object and add it to the DataSet.

Creating Master-Detail Relationships
In the preceding section, we added two tables to a DataSet. To logically join those tables, we
need to create a DataRelation object and add that to the table. Listing 5-8 demonstrates the
code that, when combined with the code in Listing 5-7, defines a master-detail relationship
within the DataSet.

Listing 5-8 Add a DataRelation to a DataSet.

DataColumn parent =

dataSet.Tables["TYPE"].Columns["UnderlyingSystemType"];

DataColumn child =

dataSet.Tables["CONSTRUCTOR"].Columns["DeclaringType"];

DataRelation relation = new DataRelation(

"TypesAndConstructors", parent, child);

dataSet.Relations.Add(relation);

NOTE
Generally, I prefer to name my related columns identically to facilitate identifying relationships
between tables in the same database. However, the Reference.mdb database represents the types
defined in the CLR, and the columns are created from the names of actual properties in the CLR.
For example, UnderlyingSystemType is a property in the TypeInfo type defined in the CLR.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 2 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Just as with JOIN statements in SQL, a DataRelation relies on columns. In Listing 5-8 we
initialize two DataColumn objects by selecting a column from each DataTable that represents
a logical relationship between two disparate tables. In the Common Language Runtime, a
TypeInfo object has an UnderlyingSystemType property that is logically related to the
ConstructorInfo’s DeclaringType property. We use the TYPE table’s UnderlyingSystem
Type column and the CONSTRUCTOR table’s DeclaringType column to initialize a new
DataRelation, providing a name and the two logically related columns as arguments to
the DataRelation constructor.

When the last statement—dataSet.Relations.Add(relation)—runs in Listing 5-8, you have
a logical master-detail relationship in the DataSet. This relationship is depicted Figure 5-3.

Figure 5-3 was created from the Relationships dialog in MS Access 2002 but is an
accurate visualization of the DataSet after the code in Listing 5-7 and Listing 5-8 runs.
Each table shown represents a DataTable, and the line between the tables represents the
DataRelation object.

You can bind the DataSet to a Windows Forms or Web Forms DataGrid, and the DataGrid
will accurately manage the master-detail aspects by presenting the data in a hierarchical
relationship. You can explore the AssemblyViewer.sln for an example. The code to bind the
DataSet to a DataGrid requires a single statement:

dataGrid1.DataSource = dataSet;

Figure 5-3 The Relationships dialog in MS Access is an accurate depiction of the two DataTables
related by a single DataRelation.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 5 3

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Creating Data Column Mappings
Another common thing that you might want to do is clean up unsightly column names.
I have encountered a large number of databases with obscure column names, like the
NAME_SEQ_TS. It is often very difficult to figure out the role of such columns after the
original DBA has left the project. Unfortunately, you may not always be in a position to
re-design a database.

NOTE
Documenting and managing databases are good reasons for using CASE tools. ERwin, DataArchitect,
and Select are all good CASE tools that make it easy to design, document, and maintain databases.

One such instance where we elected not to re-design the database was where the
customer’s motivation for re-implementing the system was not dissatisfaction with the
existing implementation. The customer simply no longer wanted to be held hostage by
a hardware vendor that charged exorbitant rent. Our mission statement was to provide a
new system with behavior that duplicated the behavior of the existing system. There were
supposed to be no new features. The existing system was implemented in Natural and
Adabas, and we were porting it to C#, ASP.NET, and UDB. In essence, we were porting
a non-object–oriented system implemented as a terminal application to a thin client Web
application. Our charter did not really permit re-engineering the database, so we did the
next best thing. We used column mappings to more clearly name older legacy columns
that had obscure names. Listing 5-9 demonstrates how we can use DataTableMapping and
DataColumnMapping objects in concert to support providing alternate names for columns.

Listing 5-9 Using DataTableMapping and DataColumnMapping objects

OleDbConnection connection = new OleDbConnection(connectionString);

OleDbDataAdapter adapter = new OleDbDataAdapter(

"SELECT * FROM PARAMETER_TABLE", connection);

DataSet dataSet = new DataSet();

DataTableMapping tableMapping =

adapter.TableMappings.Add("Parameter", "PARAMETER_TABLE");

tableMapping.ColumnMappings.Add("ParameterType", "Parameter Type");

adapter.Fill(dataSet, "Parameter");

dataGrid1.DataSource = dataSet.Tables[0];

Listing 5-9 creates a table mapping named Parameter that maps to the Reference.mdb
PARAMETER_TABLE table. The DataColumnMapping is implicitly created when we
invoke the DataTableMapping.ColumnMappings.Add method. The source table column
ParameterType is mapped to the reader-friendly “Parameter Type” column. Invoking the

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 4 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Fill method on adapter and using the DataTableMapping name will fill the data table with
the columns from the source table, PARAMETER_TABLE, using the mapped column names.

Of course, you can accomplish this much with SQL statements that describe column
aliases—usually with anAsclause in the SELECT statement. The DataTableMapping and
DataColumnMappings can be used for updates too. Listing 5-10 demonstrates how to use
the mapped table and column to perform an update using the mapped values.

Listing 5-10 A revised version of Listing 5-9 demonstrates how to perform an update against
the mapped table and column.

OleDbConnection connection = new OleDbConnection(connectionString);

OleDbDataAdapter adapter = new OleDbDataAdapter(

"SELECT * FROM PARAMETER_TABLE", connection);

DataSet dataSet = new DataSet();

DataTableMapping tableMapping =

adapter.TableMappings.Add("Parameter", "PARAMETER_TABLE");

tableMapping.ColumnMappings.Add("ParameterType", "Parameter Type");

adapter.Fill(dataSet, "Parameter");

// Demonstrates updating using the mapped objects

DataRow dataRow = dataSet.Tables[0].NewRow();

dataRow["Parameter Type"] = "Test";

dataSet.Tables[0].Rows.Add(dataRow);

adapter.InsertCommand = (new

OleDbCommandBuilder(adapter)).GetInsertCommand();

adapter.Update(dataSet, "Parameter");

dataGrid1.DataSource = dataSet.Tables[0];

TIP
It is perfectly acceptable to create an inline object to avoid littering your code with temporary variables,
as demonstrated by the OleDbCommandBuilder created inline in Listing 5-10. Use an inline object if you
don’t need a reference to that object later in the same code.

The comment beginning with the word “Demonstrates” is where the new code has been
inserted to revise Listing 5-9. This code is very similar to performing an update without
mappings. We request a new DataRow. We use the indexer for the DataRow to modify a
single field by referring to the mapped column name. We add the modified row to the Rows
collection and wrap it up by creating an OleDbCommandBuilder to write our SQL for us and
invoking the OleDbDataAdapter.Update command. Remember to use the mapped table name
for the update just as we did with the Fill operation.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 5 5

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Using the DataTable
The DataTable maps to a table in a database. You can also use a DataTable as an in-memory
data store for data that will never see the inside of a database. As my good and smart friend
Eric Cotter says, “Think of a DataTable as just a convenient way to store data.”

Although you are not required to limit the use of a DataTable to database applications, the
DataTable was primarily defined for this purpose. DataTable objects are primarily composed
of DataRowCollection and DataColumnCollection objects. Logically, a DataTable looks
like a single spreadsheet where the intersection of a column and row represents a field.
Operations you are likely to want to perform on a DataTable include filling a table from
a data source and updating that data source after you modify the data in the table. We
have already looked at several examples demonstrating this use of the DataTable, and the
AssemblyViewer.sln for this chapter has several more. Another task you may want to
perform is to create and define a DataTable programmatically, including creating keyed
and incremented columns.

The AssemblyViewer.sln defines several types that inherit from the DataTable. Each of
these types is capable of creating an in-memory DataTable or a table in an Access database
that represents a type object. For example, the PropertyTable defined in Database.cs is
capable of reading all of the properties from a PropertyInfo object, defining a DataTable,
and adding all of the PropertyInfo details to the DataTable. (For discussions on Reflection,
see Chapter 2 and Chapter 11.)

The basic idea is that a type is passed to the PropertyTable’s CreateNew method.
Reflection is used to get all of the PropertyInfo—the property descriptions—objects for that
type. A table is dynamically created using the property names and types of the PropertyInfo
object, then each of the PropertyInfo objects representing the properties of the type passed
to CreateNew is iterated, and the values of each of the PropertyInfo objects is added to the
dynamic table. (I’d like to add the complete listing here for the AssemblyViewer.sln, but
the Refactored Database module alone is 728 lines of code. You will have to download the
example solution and step through the application to explore all of the code.) To facilitate
your understanding, the following bulleted list describes the Reflection algorithm used with
all of the members of a type.

þ Determine the elements of the type you want to explore. In this instance, we will
explore the Properties of a type only.

þ Properties are described by the System.Reflection.PropertyInfo class.

þ Iterate all of the properties of a PropertyInfo class, adding a column to a DataTable for
each property defined by the PropertyInfo class. Every property will itself be described
by the same properties.

þ Iterate all of the properties of the type you want to explore, writing the value associated
with each property’s PropertyInfo.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A property is described by the PropertyInfo object. A PropertyInfo object has several
properties that describe a property. (A bit of a tongue twister.) A property is described by
MemberType, PropertyType, Attributes, IsSpecialName, CanRead, CanWrite, Name,
DeclaringType, and ReflectedType. Every property in a type is initialized with a value for
each of these elements of its type record, if you will. To create a table that describes a class
relative to its properties, we can store the value for each property of the PropertyInfo object.
When adding this data to a table it is helpful to add a keyed column and columns for each of
the PropertyInfo properties. This is what the AssemblyViewer.sln does. We’ll examine each
part of this process in the sections that follow by walking through the code that creates the
Property table in the Reference.mdb database.

Creating a DataTable Object
Creating the DataTable is easy. Ensure that you have the System.Data.dll assembly referenced,
which it is by default in new projects. Add ausingstatement that refers to the System.Data
namespace to the module that you will be declaring a DataTable in. Construct a new instance
of a DataTable providing a name for the DataTable.

DataTable table = new DataTable("PROPERTY");

Recall that I said that you can use a DataTable independent of providers and DataSets.
The preceding code is all you need to create a new DataTable.

Creating a Primary Key, Auto-Incremented Column
For our purposes, we can use a simple auto-increment column as the primary key for our
property table. We add a DataColumn to the table created in the preceding section and provide
some specific information for that data column. The updated code follows in Listing 5-11.

Listing 5-11 This code demonstrates how to create an auto-incremented primary key column
in a DataTable.

DataTable table = new DataTable("PROPERTY");

DataColumn column = table.Columns.Add();

column.ColumnName = columnName;

column.AutoIncrement = true;

column.AutoIncrementSeed = 1;

column.AutoIncrementStep = 1;

column.Unique = true;

table.PrimaryKey = new DataColumn[]{column};

After we create the DataTable, we create a new column by invoking the
DataTable.Columns.Add method. Provide a ColumnName as demonstrated, indicate that this
column is auto- incremented by setting the DataColumn.AutoIncrement property to True. You
can optionally set the DataColumn.AutoIncrementSeed and DataColumn.AutoIncrementStep

1 5 6 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

properties or use the default value 1 for each. The AutoIncrementSeed value is the starting
number for the automatically incremented column, and the AutoIncrementStep value defines
the value added to each increment. Indicate that the column must be unique, as demonstrated
in the preceding fragment.

Finally, a DataTable’s primary key can be composed of multiple columns. For this reason
we must initialize the DataTable.PrimaryKey property with an array of DataColumn objects.
In our example—on the last line of code in Listing 5-11—the array of columns that make up
the key is composed of our single column.

Walking the Properties of the PropertyInfo Class
Adding your basic vanilla column is much easier than adding keyed and incremented
columns. All we need to do is create a DataColumn object by requesting it from the
DataTable and provide a name and data type for the column. Following this logic, we
cancreate a DataTable that maps to a PropertyInfo record with the code in Listing 5-12.

Listing 5-12 This code demonstrates how to create a table that mirrors the PropertyInfo class.

DataTable table = new DataTable("PROPERTY");

DataColumn column = table.Columns.Add();

column.ColumnName = columnName;

column.AutoIncrement = true;

column.AutoIncrementSeed = 1;

column.AutoIncrementStep = 1;

column.Unique = true;

table.PrimaryKey = new DataColumn[]{column};

PropertyInfo[] infos = typeof(PropertyInfo).GetProperties(

BindingFlags.Public | BindingFlags.NonPublic |

BindingFlags.Instance | BindingFlags.Static);

foreach(PropertyInfo info in infos)

{

column = table.Columns.Add();

column.ColumnName = info.Name;

column.DataType = typeof(string);

column.ReadOnly = true;

}

The new code retrieves the array of PropertyInfo objects for a PropertyInfo class itself.
The BindingFlags indicate that we should get both public and non-public as well as instance
and static members of the type. Theforeachstatement works under the covers by requesting
an Enumerator from a type. The implication is that the type must implement the IEnumerable
interface. System.Array types—anything declared with the [] array operator—implicitly

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 5 7

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 8 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

implement the IEnumerable interface. For each PropertyInfo, a DataColumn is requested
from the DataTable; the ColumnName, DataType, and ReadOnly properties are set. (The
ReadOnly property is set because we can’t really change the implementation of a type by
modifying our database; hence, it makes no sense to allow users to modify PropertyInfo
values.)

When we are all finished, we have a table whose schema mirrors the properties of a
PropertyInfo class. A similar approach can be used to add rows of data to the DataTable.
Refer to Listings 5-6 and 5-10 for examples of adding rows of data to a DataTable. You can
also refer to the AssemblyViewer.sln for several examples of adding data to a DataTable.

Using the DataView
A DataView is by default a read-only view of data in a DataTable. You can enable modifying
a DataView by changing the AllowNew, AllowEdit, and AllowDelete properties of the
DataView to True. A DataView is initialized with a DataTable and can be used to sort, filter,
and modify data.

We can create a DataView that shows read-only properties by filtering the CanWrite field
of our Property table. Listing 5-13 demonstrates how to create a DataView and apply a row
filter using syntax roughly equivalent to a predicate in aWhereclause.

Listing 5-13 This code demonstrates how to create a DataView and apply a row filter.

OleDbConnection connection = new OleDbConnection(connectionString);

OleDbDataAdapter adapter =

new OleDbDataAdapter("SELECT * FROM PROPERTY", connection);

DataTable table = new DataTable();

adapter.Fill(table);

DataView dataView = new DataView(table);

dataView.RowFilter = "CanWrite = 'False'";

dataGrid1.DataSource = dataView;

The big difference between Listing 5-13 and earlier listings is the creation of the
DataView. As mentioned, we initialize a DataView with a DataTable. Optionally, we can
filter and sort the DataView without requerying the data source. The example demonstrates a
DataView.RowFilter that filters rows in the PROPERTY table by the string value of ‘False’
for CanWrite.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 5 9

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

The last step demonstrates how to bind the DataView to a Windows Forms DataGrid.
Refer to the AssemblyViewer.sln for a complete code listing. Check out the section “Binding
a DataSet to a DataGrid” later in this chapter for more on using ADO.NET with controls.

Using the DataReader for Read-Only Data
A DataReader can be used to obtain a forward-only and read-only view of data without the
overhead of a DataSet. A DataReader requires a connection and a command and is initialized
by invoking a command object’s ExecuteReader method. Listing 5-14 provides a brief example
of using an OleDbDataReader.

Listing 5-14 Using an OleDbDataReader to read all of the rows returned by an SQL command

OleDbConnection connection = new OleDbConnection(connectionString);

OleDbCommand command =

new OleDbCommand("SELECT * FROM FIELD", connection);

connection.Open();

OleDbDataReader reader = command.ExecuteReader();

while(reader.Read())

{

Debug.WriteLine(reader.GetValue(0));

}

reader.Close();

connection.Close();

We can’t bind the DataReader to the grid because a DataReader does not implement the
IList or IListSource interfaces. That is the technical reason. The logical reason is that a grid
can be scrolled forward and backward, and a DataReader is forward-only.

You must maintain an open connection while a DataReader is active, as demonstrated
by the code. Ensure that you call Close on the reader when you have finished with it, because
the connection cannot be reused until the reader has been closed. The benefit of using a
DataReader is that it performs very fast read operations.

Displaying Information in the DataGrid
Object-oriented frameworks tend to be very flexible because there is a certain amount of
commonality throughout the framework. One example is the Windows Forms DataGrid
control. The DataGrid control has a DataSource property. You can assign a variety of objects

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

to a DataSource because the DataSource is implemented to work with any object that
implements the IList or IListSource interfaces. (IListSource has two members, one of which
returns an object that implements IList.) As a result, there is a tremendous flexibility when it
comes to binding to the DataSource property.

In general, the DataSource property can be assigned to a DataTable, DataSet, DataView,
DataViewManager, and any object that implements IList or IListSource. The net effect of the
generic implementation of the DataSource is that you can obviously bind to objects defined
in ADO.NET, but you can also bind to a list of any kind of object.

Recall that in Listing 5-12 we invoked the GetProperties method. GetProperties returned an
array of PropertyInfo objects, represented in code as PropertyInfo[]. An array’s underlying type
is System.Array. Interestingly enough, System.Array implements the IList interface. The
implication, then, is that we should be able to bind the DataGrid.DataSource property directly
to the PropertyInfo[] returned by GetProperties. In fact, if you write the following code, you
will get almost an identical result to the one you would get if you assigned the DataTable in
Listing 5-12 to a DataGrid’s DataSource property.

dataGrid1.DataSource = this.GetType().GetProperties();

The preceding single statement produces the view shown in the DataGrid in Figure 5-4.
Try binding to the arrays returned by invoking GetMembers, GetFields, and GetMethods.

1 6 0 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Figure 5-4 A DataGrid that has been bound directly to an array of PropertyInfo objects

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 6 1

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Using the Command Object
Command objects are used to encapsulate SQL commands in an object. Use the SqlCommand
for MS SQL Server providers and the OleDbCommand for OLE DB providers. Command
objects store the SQL text that represents SELECT, UPDATE, INSERT, and DELETE
statements, as well as provide you with an object for other SQL commands for particular
providers. Examples of other commands include CREATE TABLE, ALTER TABLE, and
DROP TABLE.

To create an OleDbCommand object, we can construct an instance of the object by
passing the SQL text and an instance of an OleDbConnection object. The OleDbCommand
object can be used as an instruction to an OleDbDataAdapter or directly to execute SQL
commands that don’t return a result set. Listing 15-4 provides an example of creating
an OleDbCommand used to request a DataReader. You can look at that example and
OleDbCommand objects created in the AssemblyViewer.sln for more examples.

One kind of command that we haven’t looked at yet are commands used to create entities
in a database. We can use an OleDbCommand and an SQL CREATE TABLE statement to
add a new table to a database. The code in Listing 5-15 demonstrates how to create a table
in an Access database. (You will need to vary the SQL slightly to match the syntax of the
provider that you are using; the provider’s user’s guide is the best resource for specific
SQL syntax.)

Listing 5-15 This code demonstrates how to create a table in an OLE DB provider.

const string connectionString =

@"Provider=Microsoft.Jet.OLEDB.4.0;Password=;" +

@"User ID=;Data Source=C:Temp\Reference.mdb;";

OleDbConnection connection = new OleDbConnection();

const string SQL =

@"CREATE TABLE Constructor ([ID] COUNTER (1,1), " +

@"[MemberType] string,[MethodHandle] string, " +

@"[Attributes] string,[IsPublic] string, " +

@"[IsPrivate] string,[IsFamily] string, " +

@"[IsAssembly] string,[IsFamilyAndAssembly] string, " +

@"[IsFamilyOrAssembly] string,[IsStatic] string, " +

@[IsFinal] string,[IsVirtual] string,[IsHideBySig] string, " +

@"[IsAbstract] string,[IsSpecialName] string, " +

@"[IsConstructor] string,[CallingConvention] string, " +

@"[Name] string,[DeclaringType] string, " +

@"CONSTRAINT [Index1] PRIMARY KEY ([ID]))";

OleDbCommand command = new OleDbCommand(SQL, connection);

command.ExecuteNonQuery();

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 2:01:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 2 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Most of the code in Listing 5-15 is the SQL text. (We’ll see a better way to manage SQL
statements in a moment.) The first statement is a literal connection string for the Jet OLE DB
provider, including the Provider, Password, User ID, and Data Source clauses. The second
statement creates an instance of an OleDbConnection. The third statement is a literal
CREATE TABLE SQL statement that is appropriate for a Jet OLE DB provider. (Jet is the
name of MS Access’ database engine.) The OleDbCommand object is created by initializing
an instance with the SQL text and the connection object. Finally, we send the query to the
database engine with the command object.

The CREATE TABLE statement is specific to the database we are sending the SQL text
to. The basic syntax is CREATE TABLE (tablename fielddefinitions [fielddefinition1, ...
fielddefinition(n)] constraints),where the table name is a valid name, and the field definitions
indicate the field name and data type and any constraints such as a primary key.

The CREATE TABLE statement demonstrates how to create an auto-increment column.
The ID column described as [ID] COUNTER (1,1) defines an auto-increment column that
uses a seed value of 1 and an increment value of 1. The CONSTRAINT [Index1] PRIMARY
KEY ([ID]) defines an index named Index1 as the primary key based on the ID column.

Generating SQL with the CommandBuilder
Writing SQL statements can be a little tedious. There is an easier way to generate SQL with
ADO.NET. Construct an instance of an OleDbCommandBuilder and initialize the command
builder with an adapter that was initialized with a SELECT statement. The schema returned
by the SELECT statement can be used to generate SQL INSERT, DELETE, and UPDATE
statements.

Lines 18 and 19 of Listing 5-6 constructs an OleDbCommandBuilder with an
OleDbDataAdapter instance. The command text used to initialize the OleDbDataAdapter
was “SELECT * FROM METHOD”. From the schema that can be read from the METHOD
table, verbose instances of SQL commands can be generated. When you invoke the
OleDbDataAdapter.Update command, the SQL created by the OleDbCommandBuilder is
necessary to update the data source based on changes made to the tables in the DataSet.

Secondary Topics
You know how to create connections and use adapters to bridge data read via a connection
into a DataTable or DataSet. These objects are seldom used in isolation. In your average
application, you will be using ADO.NET objects in conjunction with visual controls,
applications, and perhaps Web Services.

This part of the chapter introduces contextual ways in which you will use ADO.NET,
including returning a DataSet from a Web Service. You can use the examples in this part
of the chapter as a brief introduction to these subjects and explore the rest of the book for
additional examples. Explore the sample applications that ship with Visual Studio .NET and
thewww.gotdotnet.comandwww.codeguru.comwebsites as additional resources for more
code examples.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 6 3

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

Binding a DataSet to a DataGrid
You can bind data directly to a System.Web.UI.WebControls.DataGrid. The requirement
is that the data must implement the IEnumerable interface. Data can be bound to a
System.Windows.Forms.DataGrid control if the data object implements the IList or
IListSource interfaces. The DataSet class implements IEnumerable, IList, and IListSource,
which means that you can quickly create a user interface to bind a DataSet to DataGrids in
Windows Forms or Web Forms.

These two fragments demonstrate how to bind a DataSet to a Windows Forms and Web
Forms DataGrid.

DataGrid.DataSource = DataSet;

The preceding statement is all you need to bind a DataSet to a Windows Forms DataGrid.

DataGrid.DataSource = DataSet;

DataGrid.DataBind();

The preceding are the basic two statements necessary to bind a DataSet to a Web Forms
DataGrid.

The DataGrid represents a specific instance of a DataGrid, and the DataSet represents a
specific instance of a DataSet object. Additionally, you can bind a DataTable or any other
collection that implements one of the necessary interfaces. For example, System.Array—
which is the underlying type when you declare an array of any type—implements the IList
interface. Hence, as demonstrated earlier in “Displaying Information in the DataGrid,” any
array of types can be displayed in a DataGrid. The public properties of the type of the object
in the array will be used to create columns in the DataGrid.

Returning a DataSet from a Web Service
XML is an integral part of the .NET Framework. ADO.NET employs XML to manage data.
The DataSet was defined with the SerializableAttribute. It is the SerializableAttribute and
XML that support returning a DataSet from a Web Service. Listing 5-16 contains a monolithic
Web Method (defined in the Reference.sln available for download fromwww.osborne.com)
that dynamically explores the methods of the type passed to the Web Method.

Listing 5-16 This code demonstrates a Web Method that returns a DataSet.

[WebMethod, ReflectionPermission(SecurityAction.Demand)]

public DataSet GetMethods(string type)

{

DataTable table = new DataTable("METHOD");

MethodInfo[] methods = Type.GetType(type).GetMethods();

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 4 A d v a n c e d C # P r o g r a m m i n g

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

DataColumn column;

foreach(PropertyInfo propertyInfo

in typeof(MethodInfo).GetProperties())

{

column = table.Columns.Add();

column.ColumnName = propertyInfo.Name;

column.DataType = typeof(string);

}

DataRow dataRow;

foreach(MethodInfo methodInfo in methods)

{

dataRow = table.NewRow();

foreach(PropertyInfo propertyInfo

in methodInfo.GetType().GetProperties())

{

dataRow[propertyInfo.Name] =

propertyInfo.GetValue(methodInfo, null);

}

table.Rows.Add(dataRow);

}

DataSet dataSet = new DataSet();

dataSet.Tables.Add(table);

return dataSet;

}

Pass in the full namespace of a type, and the GetMethods Web Method will create a table
based on the properties of the MethodInfo type. The properties become the columns of the
DataTable. Each method’s properties become the rows for the DataTable. Add the DataTable
to a DataSet, and we can return the dynamically reflected type’s methods.

It is necessary to Demand ReflectionPermission if we are going to use Reflection from a
Web Service. Any code that is downloaded from a network is not guaranteed to be granted
Reflection permission.

Implementing a TraceListener
The AssemblyViewer.sln defines a nested class that inherits from TraceListener. By
inheriting from TraceListener, we can register an instance of our custom TraceListener

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : B u i l d i n g D a t a b a s e A p p l i c a t i o n s w i t h A D O . N E T 1 6 5

AppDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 / Chapter 5

listener with the System.Diagnostics.Trace class’s Listeners collection. The result is that our
custom listener can catch Trace messages and display them as part of our presentation layer.
(This is consistent with the Trace window provided with Terrarium. Refer to Chapter 4 for
information on Terrarium.)

Listing 15-17 demonstrates a private nested TraceListener class added to the main form
of the AssemblyViewer.sln, and we can use the main form as a TraceListener window to
display Trace information while we are testing our application.

Listing 15-17 Implementation of a custom TraceListener

private class Listener : TraceListener

{

private StatusBar statusBar;

public Listener(StatusBar statusBar) : base()

{

this.statusBar = statusBar;

}

public override void Write(string text)

{

statusBar.Text = text;

Application.DoEvents();

}

public override void WriteLine(string text)

{

statusBar.Text = text;

Application.DoEvents();

}

}

To implement a custom TraceListener, you need to override the Write and WriteLine
methods. When we add an instance of our TraceListener, Listener, to the System.Diagnostics
.Trace.Listeners collection, messages written with the Trace object are sent to our listener
too. Based on the implementation of our listener, we store a reference to a StatusBar and
display trace information on the StatusBar control. In effect, the owning form’s StatusBar
control becomes a visual Trace Window.

Rather than inventing new classes, we can find new ways to use existing classes. The
.NET Framework is well organized but extensive. Before you write a significant amount
of new code, leverage as much of the existing framework as you can.

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Summary
Consistent with the general approach of this book, this chapter demonstrated several topics
that you are likely to find in a single application. A large number of applications are database
applications. ADO.NET provides advancements in database programming that are intended
to promote scalability. You can use an older version of ADO with COM Interop—but once
you get used to ADO.NET you will not want to go back in time.

This chapter provided an AssemblyViewer.sln that builds on your knowledge of
Reflection to demonstrate how to create dynamic databases. Reflected properties were
a convenient mechanism for accomplishing this.

After completing this chapter, you should have a good understanding of ADO.NET and
an improved understanding of Reflection; you should also know how to bind data to the
DataGrid control for Windows Forms and Web Forms and how to implement a custom
TraceListener. This chapter also further introduced Web Services. You will find these skills
beneficial in simple Windows applications, as well as in complex enterprise solutions.

ApDev TIGHT /Advanced C# Programming / Kimmel / 222417-7 /
Blind Folio 166

P:\010Comp\ApDev\417-7\ch05.vp
Tuesday, July 30, 2002 1:41:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	In This Chapter:
	Demonstrated Topics
	A Quick Review of ADO.NET Namespaces
	Connecting to DataSources
	Understanding the Role of the Adapter
	Working with the DataSet
	Using the DataTable
	Using the DataView
	Using the DataReader for Read-Only Data
	Displaying Information in the DataGrid
	Using the Command Object
	Generating SQL with the CommandBuilder
	Summary

