
Laurence Moroney
Matthew MacDonald (Ed.)

Pro ASP.NET 2.0
in VB 2005

5637ch00FM.qxd 12/23/05 11:03 AM Page i

Pro ASP.NET 2.0 in VB 2005

Copyright © 2006 by Laurence Moroney, Matthew MacDonald (Ed.), K. Scott Allen, James Avery, Russ
Basiura, Mike Batongbacal, Marco Bellinaso, Matt Butler, Andreas Eide, Daniel Cazzulino, Michael Clark,
Richard Conway, Robert Eisenberg, Brady Gaster, James Greenwood, Kevin Hoffman, Erik Johansson,
Angelo Kastroulis, Dan Kent, Sitaraman Lakshminarayanan, Don Lee, Christopher Miller, Matt Milner,
Jan Narkiewicz, Matt Odhner, Ryan O’Keefe, Andrew Reid, Matthew Reynolds, Enrico Sabbadin, Bill Sempf,
Doug Seven, Srinivasa Sivkumar, Thiru Thangarathinam, Doug Thews

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-563-3
ISBN-10 (pbk): 1-59059-563-7

Library of Congress Cataloging-in-Publication data is available upon request.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewer: Andy Olsen
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Linda Marousek
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreaders: Linda Seifert and Nancy Sixsmith
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

5637ch00FM.qxd 12/23/05 11:03 AM Page ii

C H A P T E R 1

■ ■ ■

Introducing ASP.NET

When Microsoft created .NET, it wasn’t just dreaming about the future—it was also worrying
about the headaches and limitations of the current generation of web development technologies.
Before you get started with ASP.NET 2.0, it helps to take a step back and consider these problems.
You’ll then understand the solution that .NET offers.

In this chapter you’ll consider the history of web development leading up to ASP.NET, take
a whirlwind tour of the most significant features of .NET, and preview the core changes in ASP.NET 2.0.
If you’re new to ASP.NET, this chapter will quickly get you up to speed. On the other hand, if you’re
a seasoned .NET developer, you have two choices. Your first option is to read this chapter for a brisk
review of where we are today. Alternatively, you can skip to the section “ASP.NET 2.0: The Story Con-
tinues” to preview what ASP.NET 2.0 has in store.

The Evolution of Web Development
More than ten years ago, Tim Berners-Lee performed the first transmission across HTTP (Hypertext
Transfer Protocol). Since then, HTTP has become exponentially more popular, expanding beyond
a small group of computer-science visionaries to the personal and business sectors. Today, it’s almost
a household term.

When HTTP was first established, developers faced the challenge of designing applications
that could discover and interact with each other. To help meet these challenges, standards such as
HTML (Hypertext Markup Language) and XML (Extensible Markup Language) were created. HTML
established a simple language that could describe how to display rich documents on virtually any
computer platform. XML created a set of rules for building platform-neutral data formats that dif-
ferent applications could use to exchange information. These standards guaranteed that the Web
could be used by anyone, located anywhere, using any type of computing system.

At the same time, software vendors faced their own challenges. They needed to develop not
only language and programming tools that could integrate with the Web but also entire frameworks
that would allow developers to architect, develop, and deploy these applications easily. Major software
vendors including IBM, Sun Microsystems, and Microsoft rushed to meet this need with a host of
products.

ASP.NET 1.0 opened a new chapter in this ongoing arms race. With .NET, Microsoft created an
integrated suite of components that combines the building blocks of the Web—markup languages
and HTTP—with proven object-oriented methodology.

3

5637ch01.qxd 12/16/05 2:18 PM Page 3

CHAPTER 1 ■ INTRODUCING ASP.NET4

The Development World Before ASP.NET
Older technologies for server-based web applications rely on scripting languages or proprietary tag-
ging conventions. Most of these web development models just provide clumsy hooks that allow you
to trigger applications or run components on the server. They don’t provide a modern, integrated
framework for web programming.

Overall, most of the web development frameworks that were created before ASP.NET fall into
one of two categories:

• Scripts that are interpreted by a server-side resource

• Separate, tiny applications that are executed by server-side calls

Classic ASP (Active Server Pages, the version of ASP that predates ASP.NET) and ColdFusion fall
into the first category. You, the developer, are responsible for creating a script file that contains
embedded code. The script file is examined by another component, which alternates between ren-
dering ordinary HTML and executing your embedded code. If you’ve created ASP applications before,
you probably know that scripted applications usually execute at a much slower rate than compiled
applications. Additionally, scripted platforms introduce other problems, such as the lack of ability
to control security settings and inefficient resource usage.

The second approach—used widely by, for example, Perl over CGI (Common Gateway Interface)—
yields an entirely different set of problems. In these frameworks, the web server launches a separate
application to handle the client’s request. That application executes its code and dynamically creates
the HTML that should be sent back to the client. Though these applications execute faster than their
scripted counterparts, they tend to require much more memory. The key problem with this sort of
approach is that the web server needs to create a separate instance of the application for each client
request. This model makes these applications much less scalable in environments with large num-
bers of simultaneous users, unless you code carefully. This type of application can also be quite
difficult to write, debug, and integrate with other components.

ASP.NET is far more than a simple evolution of either type of application. Instead, it breaks the
trend with a whole new development model. The difference is that ASP.NET is deeply integrated
with its underlying framework. ASP.NET is not an extension or modification to the .NET Framework
with loosely coupled hooks into the functionality it provides. Instead, ASP.NET is a portion of the
.NET Framework that’s managed by the .NET runtime. In essence, ASP.NET blurs the line between
application development and web development by extending the tools and technologies previously
monopolized by desktop developers into the web development world.

What’s Wrong with Classic ASP?
If you’ve programmed only with classic ASP before, you might wonder why Microsoft changed
everything with ASP.NET. Learning a whole new framework isn’t trivial, and .NET introduces a slew
of concepts and can pose some serious stumbling blocks.

Overall, classic ASP is a solid tool for developing web applications using Microsoft technologies.
However, as with most development models, ASP solves some problems but also raises a few of its
own. The following sections outline these problems.

Spaghetti Code
If you’ve created applications with ASP, you’ve probably seen lengthy pages that contain server-side
script code intermingled with HTML. Consider the following example, which fills an HTML drop-
down list with the results of a database query to get author details from the Pubs database in SQL
Server:

5637ch01.qxd 12/16/05 2:18 PM Page 4

CHAPTER 1 ■ INTRODUCING ASP.NET 5

<%
Set dbConn = Server.CreateObject("ADODB.Connection")
Set rs = Server.CreateObject("ADODB.Recordset")
dbConn.Open "PROVIDER=SQLOLEDB;DATA SOURCE=(local);

DATABASE=Pubs;User=sa;Password=sa"
%>

<select name="cboAuthors">
<%
rs.Open "SELECT * FROM Authors", dbConn, 3, 3
Do While Not rs.EOF

%>
<option value="<%=rs("au_id")%>"><%=rs("au_lname") & ", " &
rs("au_fname")%></option>

<%
rs.MoveNext
Loop

%>
</select>

This example needs an unimpressive 16 lines of code to generate one simple HTML control.
But what’s worse is the way this style of coding diminishes application performance because it min-
gles HTML and script. When this page is processed by the ASP ISAPI (Internet Server Application
Programming Interface) extension that runs on the web server, the scripting engine needs to switch
on and off multiple times just to handle this single request. This increases the amount of time needed
to process the whole page and send it to the client.

Furthermore, web pages written in this style can easily grow to unmanageable lengths. If you
add your own custom COM components to the puzzle (which are needed to supply functionality ASP
can’t provide) and aren’t careful about how you design your application, the management nightmare
grows. The bottom line is that no matter what approach you take, ASP code tends to become beastly,
long, and incredibly difficult to debug—if you can even get ASP debugging working in your environ-
ment at all.

In ASP.NET, these problems don’t exist. Web pages are written with traditional object-oriented
concepts in mind. Your web pages contain controls that can be programmed against in a way simi-
lar to desktop applications. This means you don’t need to combine a jumble of HTML markup and
inline code. If you opt to use the code-behind approach when creating ASP.NET pages, the code and
presentation are actually placed in two different files; simplifies code maintenance and allows you
to separate the task of web-page design from the heavy-duty work of web coding.

Script Languages
At the time of its creation, ASP seemed like a perfect solution for desktop developers who were mov-
ing to the world of the Web. Rather than requiring programmers to learn a completely new language
or methodology, ASP allowed developers to use familiar languages such as VBScript on a server-based
programming platform. By leveraging the already-popular COM (Component Object Model) pro-
gramming model as a backbone, these scripting languages also acted as a convenient vehicle for
accessing server components and resources. But even though ASP was easy to understand for
developers who were already skilled with scripting languages such as VBScript, this familiarity came
with a price.

Performance wasn’t the only problem. Every object or variable used in a classic ASP script is
created as a variant data type. As most Visual Basic programmers know, variant data types are weakly
typed. They require larger amounts of memory, are late-bound, and result in slower performance.
Additionally, the compiler and development tools can’t identify them at design time. This made it all
but impossible to create a truly integrated IDE (integrated development environment) that could pro-
vide ASP programmers with anything like the powerful debugging, IntelliSense, and error checking

5637ch01.qxd 12/16/05 2:18 PM Page 5

CHAPTER 1 ■ INTRODUCING ASP.NET6

found in Visual Basic and Visual C++. And without debugging tools, ASP programmers were hard-
pressed to troubleshoot the problems in their scripts.

ASP.NET circumvents all these problems. For starters, ASP.NET web pages (and web services)
are executed within the CLR (common language runtime), so they can be authored in any language
that has a CLR-compliant compiler. No longer are you limited to using VBScript or JavaScript—
instead, you can use modern object-oriented languages such as Visual Basic and C#.

It’s also important to note that ASP.NET pages are not interpreted but are instead compiled into
assemblies (the .NET term for any unit of compiled code). This is one of the most significant enhance-
ments to Microsoft’s web development model in ASP.NET 2.0. What actually happens behind the scenes
is revolutionary. Even if you create your code in Notepad and copy it directly to a virtual directory
on a web server, the application is dynamically compiled as soon as a client accesses it (in previous
versions you had to precompile the application into a DLL), and it is cached for future requests. If
any of the files are modified after this compilation process, the application is recompiled automati-
cally the next time a client requests it.

The Death of COM
Though Microsoft claims undying support for COM, the technology that underlies the Windows
operating system, and almost every application that runs on it, it’s obvious that .NET is the start of
a new path for modern development. Future versions of the Windows operating system (including
the elusive Longhorn) will integrate the .NET Framework more deeply into the operating system
kernel, making it the first-class language of all application development. And as COM applications
wane in popularity and applications are converted to .NET, classic ASP will become a thing of the
past. Even though .NET includes robust support for COM interoperability, the fact remains that
classic ASP applications have no real place in a .NET world.

ASP.NET 1.0
Microsoft developers have described ASP.NET as their chance to “hit the reset button” and start from
scratch with an entirely new, more modern development model. The traditional concepts involved
in creating web applications still hold true in the .NET world. Each web application consists of web
pages. You can render rich HTML and even use JavaScript, create components that encapsulate
programming logic, and tweak and tune your applications using configuration settings. However,
behind the scenes ASP.NET works quite differently than traditional scripting technologies such as
classic ASP or PHP (PHP: Hypertext Preprocessor). It’s also much more ambitious than JSP (Java
Server Pages).

Some of the differences between ASP.NET and earlier web development platforms include the
following:

• ASP.NET features a completely object-oriented programming model, which includes an event-
driven, control-based architecture that encourages code encapsulation and code reuse.

• ASP.NET gives you the ability to code in any supported .NET language (including Visual
Basic, C#, J#, and many other languages that have third-party compilers).

• ASP.NET is also a platform for building web services, which are reusable units of code that
other applications can call across platform and computer boundaries. You can use a web
service to do everything from web-enabling a desktop application to sharing data with a Java
client running on Unix.

• ASP.NET is dedicated to high performance. ASP.NET pages and components are compiled
on demand instead of being interpreted every time they’re used. ASP.NET also includes,
in ADO.NET, a fine-tuned data access model and flexible data caching to further boost
performance.

5637ch01.qxd 12/16/05 2:18 PM Page 6

CHAPTER 1 ■ INTRODUCING ASP.NET 7

These are only a few of the features, which include enhanced state management, practical data
binding, dynamic graphics, and a robust security model. You’ll look at these improvements in detail
in this book and see what ASP.NET 2.0 adds to the picture.

Seven Important Facts About ASP.NET
If you’re new to ASP.NET (or you just want to review a few fundamentals), you’ll be interested in the
following sections. They introduce seven touchstones of .NET development.

Fact 1: ASP.NET Is Integrated with the .NET Framework
The .NET Framework is divided into an almost painstaking collection of functional parts, with
a staggering total of more than 7,000 types (the .NET term for classes, structures, interfaces, and
other core programming ingredients). Before you can program any type of .NET application, you
need a basic understanding of those parts—and an understanding of why things are organized the
way they are.

The massive collection of functionality that the .NET Framework provides is organized in a way
that traditional Windows programmers will see as a happy improvement. Each one of the thousands
of data types in the .NET Framework is grouped into a logical, hierarchical container called a name-
space. Different namespaces provide different features. Taken together, the .NET namespaces offer
functionality for nearly every aspect of distributed development from message queuing to security.
This massive toolkit is called the class library.

Interestingly, the way you use the .NET Framework classes in ASP.NET is the same as the way
you use them in any other type of .NET application (including a stand-alone Windows application,
a Windows service, a command-line utility, and so on). In other words, .NET gives the same tools to
web developers that it gives to rich client developers.

If you’ve programmed extensively with ASP.NET 1.x, you’ll find that the same set of classes is
available in ASP.NET 2.0. The difference is that ASP.NET 2.0 adds even more classes to the mix, many in
entirely new namespaces for features such as configuration, health monitoring, and personalization.

■Tip One of the best resources for learning about new corners of the .NET Framework is the .NET Framework
class library reference, which is part of the MSDN Help library reference. If you have Visual Studio 2005 installed,
you can view the MSDN Help library by selecting Start ➤ Programs ➤ Microsoft Visual Studio 2005 ➤ Microsoft
Visual Studio 2005 Documentation (the exact shortcut depends on your version of Visual Studio). Once you’ve
loaded the help, you can find class reference information grouped by namespace under the .NET Development ➤
.NET Framework SDK ➤ Class Library Reference node.

Fact 2: ASP.NET Is Compiled, Not Interpreted
One of the major reasons for performance degradation in ASP scripts is that all ASP web-page code
uses interpreted scripting languages. This means that when your application is executed, a scripting
host on the server machine needs to interpret your code and translate it to lower-level machine code,
line by line. This process is notoriously slow.

■Note In fact, in this case the reputation is a little worse than the reality. Interpreted code is certainly slower
than compiled code, but the performance hit isn’t so significant that you can’t build a professional website using ASP.

5637ch01.qxd 12/16/05 2:18 PM Page 7

CHAPTER 1 ■ INTRODUCING ASP.NET8

ASP.NET applications are always compiled—in fact, it’s impossible to execute C# or VB .NET
code without it being compiled first.

ASP.NET applications actually go through two stages of compilation. In the first stage, the
C# code you write is compiled into an intermediate language called Microsoft Intermediate
Language (MSIL) code, or just IL. This first step is the fundamental reason that .NET can be language-
interdependent. Essentially, all .NET languages (including C#, Visual Basic, and many more) are
compiled into virtually identical IL code. This first compilation step may happen automatically when
the page is first requested, or you can perform it in advance (a process known as precompiling). The
compiled file with IL code is an assembly.

The second level of compilation happens just before the page is actually executed. At this point,
the IL code is compiled into low-level native machine code. This stage is known as just-in-time (JIT)
compilation, and it takes place in the same way for all .NET applications (including Windows appli-
cations, for example). Figure 1-1 shows this two-step compilation process.

.NET compilation is decoupled into two steps in order to offer developers the most convenience
and the best portability. Before a compiler can create low-level machine code, it needs to know what
type of operating system and hardware platform the application will run on (for example, 32-bit or
64-bit Windows). By having two compile stages, you can create a compiled assembly with .NET code
but still distribute this to more than one platform.

Figure 1-1. Compilation in an ASP.NET web page

5637ch01.qxd 12/16/05 2:18 PM Page 8

CHAPTER 1 ■ INTRODUCING ASP.NET 9

■Note One day soon, this model may even help business programmers deploy applications to non-Microsoft
operating systems such as Linux. This ambitious goal hasn’t quite been realized yet, but if you’d like to try the
first version of .NET for the Linux platform (complete with a work-in-progress implementation of ASP.NET), visit
http://www.go-mono.com to download the latest version of this open-source effort.

Of course, JIT compilation probably wouldn’t be that useful if it needed to be performed every
time a user requested a web page from your site. Fortunately, ASP.NET applications don’t need to be
compiled every time a web page or web service is requested. Instead, the IL code is created once and
regenerated only when the source is modified. Similarly, the native machine code files are cached in
a system directory that has a path like c:\[WinDir]\Microsoft.NET\Framework\[Version]\Temporary
ASP.NET Files, where [WinDir] in the Windows directory and [Version] is the version number for the
currently installed version of the .NET Framework.

■Note Although benchmarks are often controversial, you can find an interesting comparison of Java and ASP.NET
at http://gotdotnet.com/team/compare. Keep in mind that the real issues limiting performance are usually
related to specific bottlenecks, such as disk access, CPU use, network bandwidth, and so on. In many benchmarks,
ASP.NET outperforms other solutions because of its support for performance-enhancing platform features such as
caching, not because of the speed boost that results from compiled code.

Although the compilation model in ASP.NET 2.0 remains essentially the same, it has one impor-
tant change. The design tool (Visual Studio 2005) no longer compiles code by default. Instead, your
web pages and services are compiled the first time you run them, which improves the debugging
experience. To avoid the overhead of first-time compilation when you deploy a finished application
(and prevent other people from tampering with your code), you can use a new precompilation
feature, which is explained in Chapter 18.

Fact 3: ASP.NET Is Multilanguage
Though you’ll probably opt to use one language over another when you develop an application,
that choice won’t determine what you can accomplish with your web applications. That’s because
no matter what language you use, the code is compiled into IL.

IL is a stepping-stone for every managed application. (A managed application is any application
that’s written for .NET and executes inside the managed environment of the CLR.) In a sense, IL is
the language of .NET, and it’s the only language that the CLR recognizes.

To understand IL, it helps to consider a simple example. Take a look at this example, written in
VB .NET:

Namespace HelloWorld
Public Class TestClass

Private Shared Sub Main(Args() As String)
Console.WriteLine("Hello World")

End Sub
End Class

End Namespace

This code shows the most basic application that’s possible in .NET—a simple command-line
utility that displays a single, predictable message on the console window.

Now look at it from a different perspective. Here’s the IL code for the Main method:

5637ch01.qxd 12/16/05 2:18 PM Page 9

CHAPTER 1 ■ INTRODUCING ASP.NET10

.method public static void Main() cil managed
{
.entrypoint
.custom instance void [mscorlib]System.STAThreadAttribute::.ctor() =
(01 00 00 00)
// Code size 14 (0xe)
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello World"
IL_0006: call void [mscorlib]System.Console::WriteLine(string)
IL_000b: nop
IL_000c: nop
IL_000d: ret

} // end of method TestClass::Main

It’s easy enough to look at the IL for any compiled .NET application. You simply need to run the
IL Disassembler, which is installed with Visual Studio and the .NET SDK (software development kit).
Look for the file ildasm.exe in a directory like c:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin.
Once you’ve loaded the program, use the File ➤ Open command, and select any DLL or EXE that
was created with .NET.

If you’re patient and a little logical, you can deconstruct the IL code fairly easily and figure out
what’s happening. The fact that IL is so easy to disassemble can raise privacy and code control
issues, but these issues usually aren’t of any concern to ASP.NET developers. That’s because all
ASP.NET code is stored and executed on the server. Because the client never receives the compiled
code file, the client has no opportunity to decompile it. If it is a concern, consider using an obfusca-
tor that scrambles code to try to make it more difficult to understand. (For example, an obfuscator
might rename all variables to have generic, meaningless names such as f__a__234.) Visual Studio
includes a scaled-down version of one popular obfuscator, called Dotfuscator.

The following code shows the same console application in C#:

namespace HelloWorld
{

public class TestClass
{

private static void Main(string[] args)
{

Console.WriteLine("Hello World");
}

}
}

If you compile this application and look at the IL code, you’ll find that every line is semantically
equivalent to the IL code generated from the VB .NET version. Although different compilers can
sometimes introduce their own optimizations, as a general rule of thumb no .NET language outper-
forms any other .NET language, because they all share the same common infrastructure. This
infrastructure is formalized in the CLS (Common Language Specification), which is described in
the “The Common Language Specification” sidebar.

It’s important to note that IL was recently adopted as an ANSI (American National Standards
Institute) standard. This adoption could quite possibly spur the adoption of other common language
frameworks. The Mono project at http://www.go-mono.com is an example of one such project.

5637ch01.qxd 12/16/05 2:18 PM Page 10

CHAPTER 1 ■ INTRODUCING ASP.NET 11

THE COMMON LANGUAGE SPECIFICATION

The CLS defines the standard properties that all objects must contain in order to communicate with one another in
a homogenous environment. To allow this communication, the CLR expects all objects to adhere to a specific set
of rules.

The CLS is this set of rules. It defines many laws that all languages must follow, such as types, primitive
types, method overloading, and so on. Any compiler that generates IL code to be executed in the CLR must adhere
to all rules governed within the CLS. The CLS gives developers, vendors, and software manufacturers the opportu-
nity to work within a common set of specifications for languages, compilers, and data types. As time goes on, you’ll
see more CLS-compliant languages and compilers emerge, although several are available so far.

Given these criteria, the creation of a language compiler that generates true CLR-compliant code can be com-
plex. Nevertheless, compilers can exist for virtually any language, and chances are that there may eventually be one
for just about every language you’d ever want to use. Imagine—mainframe programmers who loved COBOL in its
heyday can now use their knowledge base to create web applications!

Fact 4: ASP.NET Runs Inside the Common Language Runtime
Perhaps the most important aspect of ASP.NET to remember is that it runs inside the runtime
engine of the CLR. The whole of the .NET Framework—that is, all namespaces, applications, and
classes—are referred to as managed code. Though a full-blown investigation of the CLR is beyond
the scope of this chapter, some of the benefits are as follows:

Automatic memory management and garbage collection: Every time your application creates an
instance of a class, the CLR allocates space on the managed heap for that object. However, you
never need to clear this memory manually. As soon as your reference to an object goes out of
scope (or your application ends), the object becomes available for garbage collection. The garbage
collector runs periodically inside the CLR, automatically reclaiming unused memory for inacces-
sible objects. This model saves you from the low-level complexities of C++ memory handling
and from the quirkiness of COM reference counting.

Type safety: When you compile an application, .NET adds information to your assembly that
indicates details such as the available classes, their members, their data types, and so on. As
a result, your compiled code assemblies are completely self-sufficient. Other people can use
them without requiring any other support files, and the compiler can verify that every call is
valid at runtime. This extra layer of safety completely obliterates low-level errors such as the
infamous buffer overflow in C++.

Extensible metadata: The information about classes and members is only one of the types of
metadata that .NET stores in a compiled assembly. Metadata describes your code and allows
you to provide additional information to the runtime or other services. For example, this meta-
data might tell a debugger how to trace your code, or it might tell Visual Studio how to display
a custom control at design time. You could also use metadata to enable other runtime services
(such as web methods or COM+ services).

Structured error handling: If you’ve ever written any moderately useful Visual Basic or VBScript
code, you’ll most likely be familiar with the limited resources these languages offer for error
handling. With structured exception handling, you can organize your error-handling code logi-
cally and concisely. You can create separate blocks to deal with different types of errors. You can
also nest exception handlers multiple layers deep.

Multithreading: The CLR provides a pool of threads that various classes can use. For example,
you can call methods, read files, or communicate with web services asynchronously, without
needing to explicitly create new threads.

Figure 1-2 shows a high-level look at the CLR and the .NET Framework.

5637ch01.qxd 12/16/05 2:18 PM Page 11

CHAPTER 1 ■ INTRODUCING ASP.NET12

Fact 5: ASP.NET Is Object-Oriented
ASP provides a relatively lightweight object model, albeit one that is extensible using heavy COM
objects. It provides a small set of objects; these objects are really just a thin layer over the raw details
of HTTP and HTML. On the other hand, ASP.NET is truly object-oriented. Not only does your code
have full access to all objects in the .NET Framework, but you can also exploit all the conventions of
an OOP (object-oriented programming) environment, such as encapsulation and inheritance. For
example, you can create reusable classes, standardize code with interfaces, and bundle useful func-
tionality in a distributable, compiled component.

One of the best examples of object-oriented thinking in ASP.NET is found in server-based controls.
Server-based controls are the epitome of encapsulation. Developers can manipulate server controls
programmatically using code to customize their appearance, provide data to display, and even react
to events. The low-level HTML details are hidden away behind the scenes. Instead of forcing the devel-
oper to write raw HTML manually, the control objects render themselves to HTML when the page is
finished rendering. In this way, ASP.NET offers server controls as a way to abstract the low-level details
of HTML and HTTP programming.

Figure 1-2. The CLR and .NET Framework

5637ch01.qxd 12/16/05 2:18 PM Page 12

CHAPTER 1 ■ INTRODUCING ASP.NET 13

Here’s a quick example with a standard HTML text box in an ASP.NET web page:

<input type="text" id="myText" runat="server" />

With the addition of the runat="server" attribute, this static piece of HTML becomes a fully
functional server-side control that you can manipulate in your code. You can now work with server-
side events that it generates, set attributes, and bind it to a data source.

For example, you can set the text of this box when the page first loads using the following code:

Private Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
myText.Value = "Hello World!"

End Sub

Technically, this code sets the Value property of an HtmlInputText object. The end result is that
a string of text appears in a text box on the HTML page that’s rendered and sent to the client.

HTML CONTROLS VS. WEB CONTROLS

When ASP.NET was first created, two schools of thought existed. Some ASP.NET developers were most interested in
server-side controls that matched the existing set of HTML controls exactly. This approach allows you to create
ASP.NET web-page interfaces in dedicated HTML editors, and it provides a quick migration path for existing ASP
pages. However, another set of ASP.NET developers saw the promise of something more—rich server-side controls
that didn’t just emulate individual HTML tags. These controls might render their interface from dozens of distinct
HTML elements while still providing a simple object-based interface to the programmer. Using this model, develop-
ers could work with programmable menus, calendars, data lists, and validators.

After some deliberation, Microsoft decided to provide both models. You’ve already seen an example of HTML
server controls, which map directly to the basic set of HTML tags. Along with these are ASP.NET web controls, which
provide a higher level of abstraction and more functionality. In most cases, you’ll use HTML server-side controls for
backward compatibility and quick migration and use web controls for new projects.

ASP.NET web control tags always start with the prefix asp: followed by the class name. For example, the fol-
lowing snippet creates a text box and a check box:

<asp:TextBox ID="myASPText" Text=”Hello ASP.NET TextBox" runat="server" />
<asp:CheckBox ID="myASPCheck" Text="My CheckBox" runat="server" />

Again, you can interact with these controls in your code, as follows:

myASPText.Text = "New text"
myASPCheck.Text = "Check me!"

Notice that the Value property you saw with the HTML control has been replaced with a Text property. The
HtmlInputText.Value property was named to match the underlying value attribute in the HTML <input> tag.
However, web controls don’t place the same emphasis on correlating with HTML syntax, so the more descriptive
property name Text is used instead.

The ASP.NET family of web controls includes complex rendered controls (such as the Calendar and TreeView),
along with more streamlined controls (such as TextBox, Label, and Button), which map closely to existing HTML
tags. In the latter case, the HTML server-side control and the ASP.NET web control variants provide similar function-
ality, although the web controls tend to expose a more standardized, streamlined interface. This makes the web
controls easy to learn, and it also means they’re a natural fit for Windows developers moving to the world of the
Web, because many of the property names are similar to the corresponding Windows controls.

5637ch01.qxd 12/16/05 2:18 PM Page 13

CHAPTER 1 ■ INTRODUCING ASP.NET14

Fact 6: ASP.NET Is Multidevice and Multibrowser
One of the greatest challenges web developers face is the wide variety of browsers they need to support.
Different browser brands, versions, and configurations differ in their support of HTML. Web devel-
opers need to choose whether they should render their content according to HTML 3.2, HTML 4.0,
or something else entirely—such as XHTML 1.0 or even WML (Wireless Markup Language) for mobile
devices. This problem, fueled by the various browser companies, has plagued developers since the
World Wide Web Consortium proposed the first version of HTML. Life gets even more complicated
if you want to use a client-side HTML extension such as JavaScript to create a more dynamic page
or provide validation.

ASP.NET addresses this problem in a remarkably intelligent way. Although you can retrieve
information about the client browser and its capabilities in an ASP.NET page, ASP.NET actually
encourages developers to ignore these considerations and use a rich suite of web server controls.
These server controls render their HTML adaptively by taking the client’s capabilities into account.
One example is ASP.NET’s validation controls, which use JavaScript and DHTML (Dynamic HTML)
to enhance their behavior if the client supports it. This allows the validation controls to show dynamic
error messages without the user needing to send the page back to the server for more processing.
These features are optional, but they demonstrate how intelligent controls can make the most of
cutting-edge browsers without shutting out other clients. Best of all, you don’t need any extra coding
work to support both types of client.

■Note Unfortunately, ASP.NET 2.0 still hasn’t managed to integrate mobile controls into the picture. As a result, if
you want to create web pages for smart devices such as mobile phones, PDAs (personal digital assistants), and so
on, you need to use a similar but separate toolkit. The architects of ASP.NET originally planned to unify these two
models so that the standard set of server controls could render markup using a scaled-down standard such as
WML or HDML (Handheld Device Markup Language) instead of HTML. However, this feature was cut late in the
beta cycle.

Fact 7: ASP.NET Is Easy to Deploy and Configure
One of the biggest headaches a web developer faces during a development cycle is deploying
a completed application to a production server. Not only do the web-page files, databases, and
components need to be transferred, but you also need to register components and re-create a slew
of configuration settings. ASP.NET simplifies this process considerably.

Every installation of the .NET Framework provides the same core classes. As a result, deploying
an ASP.NET application is relatively simple. In most cases, you simply need to copy all the files to
a virtual directory on a production server (using an FTP program or even a command-line command
like XCOPY). As long as the host machine has the .NET Framework, there are no time-consuming
registration steps.

Distributing the components your application uses is just as easy. All you need to do is copy the
component assemblies when you deploy your web application. Because all the information about
your component is stored directly in the assembly file metadata, there’s no need to launch a registra-
tion program or modify the Windows registry. As long as you place these components in the correct
place (the Bin subdirectory of the web application directory), the ASP.NET engine automatically
detects them and makes them available to your web-page code. Try that with a traditional COM
component!

Configuration is another challenge with application deployment, particularly if you need to trans-
fer security information such as user accounts and user privileges. ASP.NET makes this deployment
process easier by minimizing the dependence on settings in IIS (Internet Information Services).
Instead, most ASP.NET settings are stored in a dedicated web.config file. The web.config file is placed
in the same directory as your web pages. It contains a hierarchical grouping of application settings

5637ch01.qxd 12/16/05 2:18 PM Page 14

CHAPTER 1 ■ INTRODUCING ASP.NET 15

stored in an easily readable XML format that you can edit using nothing more than a text editor such
as Notepad. When you modify an application setting, ASP.NET notices that change and smoothly
restarts the application in a new application domain (keeping the existing application domain alive
long enough to finish processing any outstanding requests). The web.config file is never locked, so it
can be updated at any time.

ASP.NET 2.0: The Story Continues
When Microsoft released ASP.NET 1.0, even it didn’t anticipate how enthusiastically the technology
would be adopted. ASP.NET quickly became the standard for developing web applications with
Microsoft technologies and a heavy-hitting competitor against all other web development platforms.

■Note Adoption statistics are always contentious, but the highly regarded Internet analysis company Netcraft
(http://www.netcraft.com) suggests that ASP.NET usage doubled in one year and that it now runs on more
web servers than JSP. This survey doesn’t weigh the relative size of these websites, but ASP.NET powers the web-
sites for a significant number of Fortune 1000 companies.

It’s a testament to the good design of ASP.NET 1.0 and 1.1 that few changes in ASP.NET 2.0 are
fixes for existing features. Instead, ASP.NET 2.0 keeps the same underlying plumbing and concen-
trates on adding new, higher-level features. In other words, ASP.NET 2.0 contains more features,
frills, and tools, all of which increase developer productivity. The goal, as stated by the ASP.NET
team, is to reduce the number of lines of code you need to write by 70 percent.

■Note In reality, professional web applications probably won’t achieve the 70 percent code reduction. However,
you’ll probably be surprised to find new features that you can drop into your applications with only a few minor
tweaks. And unlike many half-baked frills, you won’t need to abandon these features and start from scratch to cre-
ate a real-world application. Instead, you can plug your own modules directly into the existing framework, saving
time and improving the flexibility and reusability of the end result.

Officially, ASP.NET 2.0 is backward compatible with ASP.NET 1.0. In reality, 100 percent back-
ward compatibility never exists, because correcting bugs and inconsistencies in the language can
change how existing code works. Microsoft maintains a list of the breaking changes (most of which
are very obscure) at http://www.gotdotnet.com/team/changeinfo/Backwards1.1to2.0. However, you’re
unlikely to run into a problem when migrating an ASP.NET 1.x project to ASP.NET 2.0. It’s much more
likely that you’ll find some cases where the old way of solving a problem still works but ASP.NET 2.0
introduces a much better approach. In these cases, it’s up to you whether to defer the change or try
to reimplement your web application to take advantage of the new features.

Of course, ASP.NET 2.0 isn’t just about adding features. It also streamlines performance and
simplifies configuration with a new tool called the WAT (website administration tool). The following
sections introduce some of the most important changes in the different parts of the .NET Framework.

Visual Basic 2005
Visual Basic 2005 has several new language features. Some of these are exotic features that only
a language aficionado will love, and others are more generally useful. The new features include the
following:

5637ch01.qxd 12/16/05 2:18 PM Page 15

CHAPTER 1 ■ INTRODUCING ASP.NET16

Partial classes: Partial classes allow you to split a class into two or more source code files. This
feature is primarily useful for hiding messy details you don’t need to see. Visual Studio uses
partial classes in some project types to tuck automatically generated code out of sight.

Generics: Generics allow you to create classes that are flexible enough to work with different class
types but still support strong type checking. For example, you could code a collection class using
generics that can store any type of object. When you create an instance of the collection, you
“lock it in” to the class of your choice so that it can store only a single type of data. The impor-
tant part in this example is that the locking happens when you instantiate the collection class,
not when you code it.

Anonymous methods: Anonymous methods allow you to define a block of code on the fly, inside
another method. You can use this technique to quickly hook up an event handler.

The My object: This object encapsulates some of the most common functionality used by devel-
opers. It exposes several different objects such as My.Application and My.Computer.

You’ll see partial classes in action in Chapter 2, and you’ll use generic classes with collections
later in this book.

Visual Studio 2005
Microsoft provided two separate design tools for creating web applications with ASP.NET 1.x—the
full-featured Visual Studio .NET and the free Web Matrix. Professional developers strongly favored
Visual Studio .NET, but Web Matrix offered a few innovative features of its own. Because Web Matrix
included its own scaled-down web server, programmers could create and test web applications with-
out needing to worry about configuring virtual directories on their computer using IIS.

With .NET 2.0, Web Matrix disappears, but Visual Studio steals some of its best features, including
the integrated web server, which lets you get up and running with a test website in no time, without
the need for IIS or virtual directories on your development machine.

Another welcome change in Visual Studio 2005 is the support for different coding models. While
Visual Studio .NET 2003 locked developers into one approach, Visual Studio 2005 supports a range
of different coding models, making it a flexible, all-purpose design tool. That means you can choose
to put your HTML tags and event-handling code in the same file, or in separate files, without com-
promising your ability to use Visual Studio and benefit from helpful features such as IntelliSense.
(You’ll learn about this distinction in Chapter 2.) You can also use more than one programming
language in the same project, mixing C# web pages with VB web pages, or vice versa.

ASP.NET 2.0
For the most part, this book won’t distinguish between the features that are new in ASP.NET 2.0 and
those that have existed since ASP.NET 1.0. However, in the next few sections you’ll tour some of the
highlights.

Master Pages
Need to implement a consistent look across multiple pages? With master pages, you can define
a template and reuse it effortlessly. For example, you could use a template to ensure that every web
page in your application has the same header, footer, and navigation controls.

Master pages define specific editable regions, called content regions. Each page that uses the
master page acquires its layout and its fixed elements automatically and supplies the content for
just these regions.

Figure 1-3 shows an example content page at design time. The master page supplies the header
and formatting of the outlying page. The content page is limited to inserting additional HTML and
web controls in a specific region.

5637ch01.qxd 12/16/05 2:18 PM Page 16

CHAPTER 1 ■ INTRODUCING ASP.NET 17

On a related note, ASP.NET also adds a new theme feature, which lets you define a standardized
set of appearance characteristics for web controls. Once you’ve defined these formatting presets,
you can apply them across your website for a consistent look.

Interestingly, you can set both master and themes pages at runtime. This means you can write
code to apply different themes and master pages depending on the type of user or on the user’s
preferences. In this way, you can use master pages and themes not just to standardize your website
but to make it customizable. You’ll learn about master pages and themes in Chapter 15.

Data Source Controls
Tired of managing the retrieval, format, and display of your data? With the new data source control
model, you can define how your page interacts with a data source declaratively in your page, rather
than writing the same boilerplate code to access your data objects. Best of all, this feature doesn’t
force you to abandon good component-based design—you can bind to a custom data component
just as easily as you bind directly to the database.

Here’s how the new data-binding model works at its simplest. First, drop the GridView onto
a page using Visual Studio, or code it by hand using this tag:

<asp:GridView id="MyDataGrid" runat="server"/>

Next, you need to add the data source, which will fetch the rows you’re interested in and make
them available to the GridView. This simple example uses the SqlDataSource to connect directly to
a SQL Server database, but a professional application will usually use the ObjectDataSource to go
through a separate layer of custom components. To create the SqlDataSource tag, you need a few
details, including the query used to retrieve the records and the connection string used to access
the database. You can walk through this process with a Visual Studio wizard, or you can code it by
hand. Either way, you’ll end up with something like this (assuming that the SQL Server database you
want to connect to is on the current computer and supports Windows authentication):

<asp:SqlDataSource ID="CustomersList" Runat="server"
SelectCommand="SELECT CompanyName, ContactName, ContactTitle, City FROM Customers"
ConnectionString=

Figure 1-3. A content page at design time

5637ch01.qxd 12/16/05 2:18 PM Page 17

CHAPTER 1 ■ INTRODUCING ASP.NET18

"Data Source=127.0.0.1;Integrated Security=SSPI;Initial Catalog=Northwind">
</asp:SqlDataSource>

This data source defines a connection to the Northwind database and a Select operation that
retrieves all the records in the Customers table.

Finally, you need to bind the data source to the GridView. To do this, set the GridView.DataSourceID
property to the name of the SqlDataSource (in this example, CustomersList). You can do this in code
or using the Visual Studio properties window, in which case you modify the GridView tag to look like
this:

<asp:GridView id="MyDataGrid" DataSourceID="CustomersList" runat="server"/>

Without writing any code or adding special formatting to the GridView control (and there are a lot
of options for doing exactly that), you’ll see the bare-bones table in Figure 1-4. On top of this basic
representation, you can define values for features such as font styling, background colors, header
styles, and much more. You can also enable features for column-based sorting, paging (splitting a table
over multiple pages), selecting, and editing.

Along with the GridView, ASP.NET 2.0 also adds other new controls for displaying data, includ-
ing the DetailsView and FormView controls. Both controls can act as a record browser, showing
detailed information for a single record at a time. They also support editing. You’ll learn about the
new data features throughout Part 2.

Personalization
Most web applications deal extensively with user-specific data. For example, if you’re building an
e-commerce site, you might need to store and retrieve the current user’s address, viewing preferences,
shopping basket, and so on. ASP.NET 1.x allowed you to cache this information for a short amount
of time, but it was still up to you to write this information to a database if you needed it for a longer
period of time and then retrieve it later.

Figure 1-4. A simple data-bound grid

5637ch01.qxd 12/16/05 2:18 PM Page 18

CHAPTER 1 ■ INTRODUCING ASP.NET 19

ASP.NET 2.0 addresses this limitation with personalization, an API for dealing with user-specific
information that’s stored in a database. The idea is that ASP.NET creates a profile object where you
can access the user-specific information at any time. Behind the scenes, ASP.NET takes care of the
tedious work of retrieving the profile data when it’s needed and saving the profile data when it changes.

Most serious developers will quickly realize that the default implementation of personalization
is a one-size-fits-all solution that probably won’t suit their needs. For example, what if you need to
use existing database tables, store encrypted information, or customize how large amounts of data
are cached to improve performance? Interestingly, you can customize personalization to suit your
needs by building your own personalization provider. This allows you to use the convenient person-
alization features but still control the low-level details. Of course, the drawback is that you’re still
responsible for some of the heavy lifting (no more 70 percent code reduction), but you gain the flex-
ibility and consistency of the profile model. You’ll learn about personalization in Chapter 24.

■Tip Many of the features in ASP.NET 2.0 work through an abstraction called the provider model. The beauty of
the provider model is that you can use the simple providers to build your page code. If your requirements change,
you don’t need to change a single page—instead, you simply need to create a custom provider. The provider
model is useful enough that a similar organization pattern was used for similar handcrafted solutions in the first
edition of this book, before ASP.NET 2.0 appeared.

Security and Membership
One of the most useful features in ASP.NET 1.x was forms authentication, a cookie-based system for
tracking authenticated users. Although forms authentication worked perfectly well for securing
a website, it was still up to each web developer to write the code for authenticating the user in a login
page. And forms authentication didn’t provide any functionality for user authorization (testing if the
current user has a certain set of permissions), which meant developers were forced to add these fea-
tures from scratch if they were needed.

ASP.NET 2.0 addresses both of these shortcomings by extending forms authentication with new
features. First, ASP.NET includes automatic support for tracking user credentials, securely storing
passwords, and authenticating users in a login page. You can customize this functionality based on
your existing tables, or you can simply point ASP.NET to your database server and let it manage every-
thing. Additionally, ASP.NET includes a handful of new controls for managing security, allowing users
to log in, register, and retrieve passwords. You can let these controls work on their own without any
custom code, or you can configure them to match your requirements.

Finally, ASP.NET adds support for authorization with a membership API. Membership allows you
to use role-based authorization. You map your users into different groups (like Guest, Administrator,
SalesEmployee) and then you test if a user is a member of the right group before allowing a specific
action. Best of all, membership plugs right into the forms-based security infrastructure. You’ll learn
much more in Part 4.

Rich Controls
All in all, ASP.NET introduces more than 40 controls. Many of these controls support new features,
such as the dedicated security controls and web parts controls for portals. You’ll also find a handy
wizard and MultiView control that allow you to create pages with multiple views. But the two most
impressive controls are probably the new TreeView and JavaScript-powered Menu.

The TreeView allows you to show a hierarchical, collapsible tree view of data with extensive
customization. Figure 1-5 shows a few of your menu options for outfitting the TreeView with differ-
ent node pictures.

5637ch01.qxd 12/16/05 2:18 PM Page 19

CHAPTER 1 ■ INTRODUCING ASP.NET20

The new Menu control also deals with displaying hierarchical data, but it renders itself as
a JavaScript-powered fly-out menu. As you move the mouse, the appropriate submenu appears,
superimposed over the current page (see Figure 1-6).

Figure 1-5. Node styles with the new TreeView control

Figure 1-6. The dynamic Menu control

5637ch01.qxd 12/16/05 2:18 PM Page 20

CHAPTER 1 ■ INTRODUCING ASP.NET 21

Both the TreeView and the Menu are useful for displaying arbitrary data and for showing a nav-
igation tree so that users can surf from one page to another on your website. To make navigation
even easier, ASP.NET also adds an optional model for creating site maps that describe your website.
Once you create a site map, you can use it with the new navigation seamlessly. Best of all, from that
point on you can change the structure of your website or add new pages without needing to modify
anything other than a single site-map file. You’ll see the navigation controls in action in Chapter 16.

Web Parts
One common type of web application is the portal, which centralizes different information using
separate panes on a single web page. Although you could create a portal website in ASP.NET 1.x,
you needed to do it by hand. In ASP.NET 2.0, a new web parts feature makes life dramatically easier
with a prebuilt portal framework. And what a model it is—complete with a flow-based layout, con-
figurable views, and even drag-and-drop support. Indeed, if you’re planning to create a web portal
with these features, it’s safe to say that ASP.NET 2.0 will deliver the promised 70 percent code savings.
You’ll see more of this advanced feature in Chapter 31.

Administration
To configure an application in ASP.NET 1.x, you needed to edit a configuration file by hand. Although
this process wasn’t too difficult, ASP.NET 2.0 streamlines it with a dedicated web administration tool
that works through a web-page interface. This tool, called the WAT, is particularly useful if you’re also
using the personalization and membership features. That’s because the WAT gives you a convenient
(if slightly sluggish) interface for defining user-specific data, adding users, assigning users to roles,
and more. You’ll take your first look at the WAT in Chapter 5.

Summary
So far, you’ve only just scratched the surface of the features and frills that are provided in ASP.NET and
the .NET Framework. You’ve taken a quick look at the high-level concepts you need to understand in
order to be a competent ASP.NET programmer. You’ve also previewed the new features that ASP.NET 2.0
offers. As you continue through this book, you’ll learn much more about the innovations and revo-
lutions of ASP.NET 2.0 and the .NET Framework.

5637ch01.qxd 12/16/05 2:18 PM Page 21

5637ch01.qxd 12/16/05 2:18 PM Page 22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

