
Enterprise
Service Bus

T H E O R Y I N P R A C T I C E

D A V I D A . C H A P P E L L

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

43

Chapter 3

Necessity Is the
Mother of Invention 3

The ESB is a new architecture for integration that is flourishing in corporations around
the world. To many casual observers, the ESB as a technology category seems to have
come out of nowhere. In reality, though, the ESB has not just “happened.” Over time,
many catalysts helped it develop and evolve, and lessons were learned from past tech-
nology approaches that extend back more than a decade.

This chapter will examine some key concepts of the ESB, including the many require-
ments, technology drivers, and forces in the IT climate that led to the creation of the
ESB concept. All of this will be discussed in the context of the recent history and evolu-
tion of the ESB. This discussion will illustrate the point that an ESB is not merely an
academic exercise; it was born out of necessity, based on real requirements arising from
difficult integration problems that couldn’t be solved by any preexisting integration
technology. The discussion will conclude with a study of an ESB deployment, with a
manufacturer exposing inventory management and supply chain optimization func-
tionality to its remote distributors as shared services through an ESB.

Sometimes solving a problem requires looking at previous attempts at solutions and
learning from their drawbacks. Entire trends had to come about as predecessors to ESB
for the IT and vendor communities to have something to point at and say, “I like that,”
“I don’t like that,” or “That’s what I’ve been trying to build on my own.” The Greek phi-
losopher Plato is credited for the phrase “Necessity is the mother of invention.” The ESB
is a shining example of invention fostered by necessity. In this chapter we will explore
those necessities, and how an ESB addresses them.

The ESB concept is the next generation of integration middleware, capable of being
applied to a much broader range of integration projects than what could be handled by
specialized integration brokers. However, it should be stated that ESB is not just EAI
plus web services, nor is it MOM plus web services. A number of recognized trends,
both technology-driven and business-driven, have had an equal share of influence on
the evolution of the ESB.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

44 ■ Chapter 3: Necessity Is the Mother of Invention

Enterprise Application Integration (EAI). A number of lessons, both good and not so
good, have been learned from EAI. As we have seen, there are various downsides
and painful lessons.

Much of the goodness inherited from EAI is in the “best practices” in data transfor-
mation and manipulation that can be carried forward into XML technologies and
brought forward into an ESB architecture.

e-Marketplaces and vertical trading hubs. During the Internet bubble, this technology
category was destined to change the model of how companies do business. The
expectation was that e-Marketplaces would be universally adopted, inevitably
replacing EDI with something more efficient and more accessible, and allowing
companies of all sizes to participate in a supply chain. And while the e-Marketplace
trend didn’t garner the world’s lasting attention as much as its early proponents
had hoped, its existence on the hype curve caused businesses and IT culture to eval-
uate new ways of doing business electronically with other business partners.

This trend also helped foster the recognition of a need for open standards for pro-
tocols and service discovery mechanisms. e-Marketplaces were the first to intro-
duce the model of a loosely coupled, distributed federation of individual companies
operating autonomously, but still working together in a supply chain in a collabora-
tive fashion. The e-Marketplace showed the IT sector that supply chains can be
improved.

Java Message Service. JMS is a standard for APIs and behavioral semantics of MOM.
The popularity of JMS as a part of the J2EE platform has brought messaging into
the mainstream, and has created a marketplace for competing vendors building
new messaging systems from the ground up based on today’s requirement of com-
municating reliably and securely across the Internet.

Application servers. Application servers are important to an enterprise as a means for
hosting business logic. They are not a key foundation component of the ESB per se,
but they can be integrated using an ESB network. They are being listed here as a cat-
alyst of the ESB concept in that they have nurtured the evolution of some impor-
tant standards, such as the servlet environment for dynamic processing of requests,
JDBC for database connectivity, and the J2EE Connector Architecture (JCA) for a
standardized interface to application adapters.

Y2K, and post-Internet-bubble economics. Y2K readiness caused an increase in IT
spending, with a significant shift toward the purchase of packaged Y2K-ready appli-
cations in favor of applications developed in-house. All the hype and excitement
around emerging technologies during the Internet bubble led to continued IT
spending. Nowadays, the post-Internet-bubble period has caused a major corpo-
rate reevaluation of big IT spending, and a shift toward trying to make things work
with the existing applications and with a much smaller budget—even smaller and
more highly scrutinized than in pre-Y2K times. The ESB is well suited for the new
economics of integration, both in a monetary sense and in practical application.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

The Evolution of the ESB ■ 45

Web services and SOA. Web services are an industry effort to provide platform-inde-
pendent SOA using interoperable interface descriptions, protocols, and data com-
munication. Web services are a key core concept of the ESB, and the ESB can be
thought of as a middleware manifestation of SOA design principles as applied to
integration.

Evolution and maturation of standards in support of integration and interoperability.

In addition to web services, there are important standards for XML, security, and
reliable messaging. The development and adoption of standards, along with com-
munities of supporting vendor implementations, have matured enough to make the
benefits of standards-based integration become a reality.

The accidental architecture. As we now know, the accidental architecture is something
that nobody sets out to create, yet everybody has. We examined the accidental
architecture in Chapter 2, and explored how the ESB can help a system migrate
away from the accidental architecture in incremental chunks.

The Evolution of the ESB
The creation of the ESB has been an evolutionary process. As we just discussed, a num-
ber of events in the industry had their part in catalyzing the creation of the ESB
(Figure 3-1). This does not mean to imply that the predecessors of ESB were bad or
failed technologies. Each contributing technology in the ESB ancestry was the best avail-
able for its time and continues to have its “meritt”[sic]. The ESB draws positive influ-
ences from its predecessor approaches, and avoids the downsides.

B U I L D A N E S B U S I N G A N A P P L I C A T I O N S E R V E R

One common question I get is “Why isn’t an ESB built on an application server platform?”
In the ESB approach to integration, the integration broker functionality itself is not lay-
ered on top of the application server. Integration capabilities are deployed as independent
services alongside of, or independently of, the application server. There are a number of
reasons for this. One is to avoid the over-bloating of functionality. Application servers are
not necessarily the best place for every new technology trend that comes along. An ESB
requires a lighter-weight container for deploying integration services without having to
install an entire application server stack everywhere. And there are other reasons too: the
core architecture of an application server isn’t designed for hosting loosely coupled ser-
vices. The deployment model isn’t optimized for dynamic reconfiguration and deploy-
ment. The code-centric model embeds things into application code that should be
dynamically configured, either explicitly or implicitly. The deployment and management
model isn’t appropriate for distributed deployment of heterogeneous services. A more
detailed discussion of this issue is found in Chapter 6.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

46 ■ Chapter 3: Necessity Is the Mother of Invention

The invention of the ESB was not an accident. The ESB is a result of vendors working
with forward-thinking customers who were trying to build a standards-based integra-
tion network using a foundation of SOA, messaging, and XML. These customers came
from the end-user IT community in the manufacturing business, and from e-Market-
place infrastructure and trading exchange companies such as CommerceOne and GE
Global Exchange Services (GE GXS).

The ESB in Global Manufacturing
A global company in the manufacturing sector is an example of an end-user IT organi-
zation that helped to catalyze the ESB. This manufacturing company is made up of at
least five different major business units located around the world. Their goal was to have
a common integration backbone based on message-oriented middleware infrastructure
and standards-based interfaces. This effort was started and restarted several times, and
had a resurgence of interest a few years ago, when the Java Message Service was first
introduced as a way of providing standard interfaces to a common messaging back-
bone. This manufacturing company had many “islands of integration” and departmen-
tal pockets of proprietary and third-party message buses, which had been installed and
controlled at a departmental or business-unit level. The requirement was that all depart-
ments and business units be integrated with each other to form a more consistent envi-
ronment in which to plug in applications.

Their IT organization was looking to JMS to provide a standardized interface and com-
mon behavioral semantics across all applications, across all departments, across all busi-
ness units. While many of us in the JMS business were excited about this, the reality is
that JMS alone can’t meet that requirement. The company also needed integration bro-
ker functionality such as routing based on rules and data transformation, all based on
an abstraction of loosely coupled shared service interfaces.

Figure 3-1. ESB catalysts: a timeline of technology and other events affecting the creation of the ESB

Reasonable maturity of standards

MOM
Integratio

n brokers

Applica
tio

n se
rvers

XML
JM

S
E-Commerce

 hubs

Y2K
Web se

rvice
s

Enterpris
e se

rvice
 bus

internet b
ubble burst

New economics
of integration

1990 1996 1997 1998 1999 2000 2001 2002 2005

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

The ESB in Global Manufacturing ■ 47

At the time, the manufacturing company was faced with a dilemma caused by several
things. While JMS had been selected as part of the solution, not all of the messaging
vendors supported it. The existing messaging vendors and integration broker hubs that
were entrenched in the various business units couldn’t support the highly distributed
approach required to span across global business units in a reasonable and manageable
way. Some of the newer messaging vendors had the right JMS support, as well as the
right security, firewall traversal, and message broker clustering to support the distrib-
uted topologies required to bring the geographically dispersed business units of the
company together. However, there was no model in place for a service abstraction layer
upon which to build an SOA, nor did the rest of the integration-stack layers exist that
were required to integrate all of those applications across the organization.

Some of the forward-thinking IT leaders in this manufacturing company started work-
ing with the forward-thinking JMS and MOM providers. Through the course of such
work in this global company and in others like it, many of the details of what eventually
grew into early blueprints for the ESB were fleshed out.

The need was identified for a loosely coupled design center of event-driven services that
could be coordinated across a common middleware substrate. The solution was to
define a stack of functionality that consisted of a standards-based integration backbone,
making use of JMS, SOA, XML, transformation and routing, and adapters. This
approach went a long way, but still couldn’t solve the connectivity issues.

The IT architects at the company realized that they couldn’t just make a mandate say-
ing, “On this date, all applications will be required to support JMS.” It just was not
practical. The same can also be said for web services. IT staff is too busy just trying to
keep up with their daily work to embark on a mission that takes every application across
the organization and retrofits it into one particular connectivity style.

Common APIs and event-driven service interfaces are a core part of the design center of
an ESB. However, diversity in connectivity options is critical to the adoption of an inte-
gration strategy. Another need that was identified was a way to bring the infrastructure
to the applications, allowing the applications to plug into the infrastructure in whatever
manner made sense for them and facilitating an incremental approach to adoption. This
is how the requirement of multiple client types, connectivity protocols, application
adapters, and MOM bridges became a core part of the definition of an ESB. The various
IT departments across the business units needed to protect their investments in existing
messaging and integration broker installations, and be able to reach the other corporate
applications as shared services in a nonintrusive way.

Putting It to the Test
In an effort to provide customers, suppliers, and vendors with one unified view of their
diversified business units, the manufacturing company embarked on a major strategic
operations initiative. The goal of the initiative was to provide one-stop shopping for

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

48 ■ Chapter 3: Necessity Is the Mother of Invention

customer service, invoice and payment tracking, inventory management and ordering,
and so on, as opposed to forcing constituents to deal with five different product units
(Figure 3-2).

The overall goal of the project was the creation of a single corporate IT backbone for
integrating the payment processing applications across all the various product divisions
worldwide.

The manufacturing company built its “payment automation” application on top of an
early rendition of an ESB. This was the first test of the vision of a shared services net-
work. The payment automation is based on an ESB-like implementation that serves as
an enterprise-scale, centralized payment processing clearinghouse for all product
divisions.

The payment automation backbone is a standard corporate payment service used by all
divisions that allows the company to centrally manage, track, and clear orders for pay-
ment to vendors and suppliers worldwide. Because this project used an early ESB proto-
type, a corporate-wide payment service could be shared by all the business units, as a
service plugged into the bus. Payment processing could now be routed through one
shared business function, versus having to be cleared through a variety of geographi-
cally dispersed banks and banking systems.

Finding the Edge of the Extended Enterprise
For the past decade, through the era of EAI and the evolution of the Internet and appli-
cation server technology, a clear dividing line has developed between the communica-
tions and application integration infrastructure within the four walls of a corporation,
and the “external” communication with business partners, vendors, and customers.

Figure 3-2. Loosely coupled, autonomous business units sharing a common integration backbone based
on messaging and standard interfaces

Global enterprise

Medical systems Consumer electronics Domestic appliances

HQ - Corporate apps Lighting Semiconductors

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Finding the Edge of the Extended Enterprise ■ 49

This separation has been driven largely by the capabilities and limitations of the tech-
nology. To date, technology such as application server infrastructure has been specifi-
cally designed to make clear distinctions between what’s inside the firewall and what’s
outside the firewall. This distinction is evidenced by completely separate architectural
approaches, with different programming models required for building applications. In
the J2EE application server architecture, for example, this is manifested as a web con-
tainer versus an EJB container.

Hub-and-spoke EAI brokers could get as far as the corporate boundaries, but were not
really built for scaling beyond that. Various bridging technologies were designed to
bridge the gap at the “edge” of the network. In many legacy cases, this is “bolted on” as
an afterthought. The majority of the work being done in the area of web services has
also been focused on this “edge” of the network.

But just where exactly is this “edge” of the network anyhow? Before we get to that, let’s
explore another ancestor of the ESB, the e-Marketplace, also known as the e-Commerce
Trading Hub.

e-Commerce Trading Hubs
In a trading network of business partners, there is the desire to move away from expen-
sive EDI Value Added Networks (VANs) and use the public Internet as a means of com-
munications wherever possible, and to lower the barrier of entry such that small to
medium enterprises can afford to participate. This was the impetus behind the creation
of e-Marketplaces and trading exchanges such as those powered by CommerceOne and
GE Global eXchange Services (GXS).

A trading exchange acts as an intermediary, or semiprivate business portal, that facili-
tates electronic commerce between buyers and suppliers in a supply chain. The major-
ity of the interactions within the “portal” are not browser-based—they are performed
directly between specialized applications that require little or no human interaction.
The interactions occur between applications residing in a trading partner, and backend
applications residing in the trading hub. These backend trading hub applications pro-
vide value-added functions such as the dispersion of Requests For Quote (RFQs)
between a buyer and multiple suppliers, or Availability To Promise (ATP) data from
suppliers to buyers (Figure 3-3).

This environment introduced some rather challenging requirements, some of which
seemed at odds with each other. For example, e-Marketplace deployment topology
depicted in Figure 3-3 requires secure access between the applications at the partner
sites and the applications in the trading partner hub, using the public Internet as the
vehicle for communication. This scenario also requires reliable messaging, but the tradi-
tional MOM vendors did not have a MOM infrastructure that was capable of spanning
across the public Internet in a scalable and secure fashion.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

50 ■ Chapter 3: Necessity Is the Mother of Invention

The suppliers communicating through the same trading hub are often fierce competi-
tors with each other, so it is imperative that they not be able to see each other’s data.
This requires full authentication and access control between the trading partners and
the trading hub. Functionality in the trading hub must be exposed to trading partners
through a service interface. A supplier must also be able to freely share its data with the
trading hub, and the trading hub applications must be able to selectively pass that data
along to buyers, but not to other suppliers. A supplier must never be able to masquer-
ade as another supplier and get access to its sensitive data.

An e-Marketplace community could potentially consist of thousands of trading part-
ners, all communicating through the same trading hub. Trading partners need to be
able to asynchronously communicate with the trading hub in a “fire-and-forget” mode
using reliable messaging.

Some very important ESB capabilities were born out of these requirements. For
example:

• Strict authentication and access control between the entities connecting to each
other

• Scalable clustering of message servers (Figure 3-3) to handle large volumes of mes-
sage traffic from potentially thousands of concurrently connected trading partners

• Complete segregation of data channels

• Selective control over which channels can be opened up between application end-
points, across intermediary hubs

Figure 3-3. Deployment topologies of e-Commerce trading hubs encountered some interesting technical
challenges

Buyer

Procurement Inventory

Broker

ATP

Catalog

Inventory

Supplier

Broker

Broker

Cluster

Catalog Logistics

Broker

Cluster

Broker

Broker Procurement

RFP

e-Commerce marketplace

Cluster

Marketplace
Supplier

Broker

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Finding the Edge of the Extended Enterprise ■ 51

• Selective access to shared service interfaces and endpoint destinations

• Coordination of the business-level message exchange between applications that are
separated by physical network domains and geographical location

• Secure MOM communication through all the firewalls that exist between the trad-
ing hub and the suppliers and buyers

Another contributor to the vision of the ESB architecture was the requirement for a
trading hub to do business with other industry-related vertical trading hubs. This means
that segregated groups of applications (the trading hub backend apps) need to selec-
tively expose and share their interfaces and data with groups of applications residing in
other trading hubs. Each trading hub and each trading partner needed to be able to
maintain their own autonomy and local integration environments while communicat-
ing in a larger e-Commerce network. This network of trading hubs and trading part-
ners could potentially fan out ad infinitum.

The evolution of e-Marketplace infrastructure has significantly contributed to the emer-
gence of ESB providers offering the underpinnings to support the requirements of e-
Marketplaces. The vendors building trading exchanges looked at a variety of EAI bro-
kers and application server technology, and turned to the messaging vendors for help.
Some of the newer messaging vendors were already beginning to provide the required
underpinnings for the routing, segregation, and fan-out deployment topology. This
process of defining requirements, talking to vendors, and designing this infrastructure
took more than a year. During this time, a number of messaging vendors and EAI bro-
ker vendors put a great deal of effort into ensuring that their next-generation products
would be able to support the requirements of e-Marketplace vendors, and this helped to
contribute to the emergence of the ESB concept.

The Extended Enterprise: The Ever-Changing Edge
Fast-forward a couple of years, and it turns out that the technology requirements of
large-scale trading exchanges are the same requirements of corporations building out
their own integration networks. While the e-Marketplace never really took hold as a
business model, there remained a need to provide common shared services across
departmental and corporate boundaries. This need expands well beyond supply chain
scenarios.

Due to mergers and acquisitions, collaborating business partners, and globally distrib-
uted business units, varying modes of communication are based on the degree of trust
between the business entities. This model represents the “extended enterprise.” In the
extended enterprise, the “edge” of the network is always changing—or perhaps there
was never really a single outer edge to begin with. For example, in a global organization
of semi-independent business units, there are many firewalls, but also a need to have a
distributed integration backbone that transcends the underlying topology (Figure 3-4).

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

52 ■ Chapter 3: Necessity Is the Mother of Invention

There are different levels of trust when dealing with business partners. Reliable messag-
ing requires that a piece of MOM software be installed on either side of the communica-
tion link. Sometimes it is acceptable business practice to tell a business partner, “If you
want to do business with me, you must install this software at your site.” In such a case,
it’s perfectly acceptable, from a technology point of view, to have an efficient, reliable
MOM link between the two organizations. Chapter 5 will provide more information
about MOM wire protocols, and new reliable SOAP protocols that can help (but not
completely alleviate) the requirement to have MOM software installed on both sides of
the wire. When your relationship with a business partner is not as close, you may
instead need to supply clear instructions on how to send business documents over a
secure HTTP link, and manage business message exchanges using a layered service that
specializes in partner links.

Corralling the Ever-Changing Edge of the Network
The ESB provides the architecture that separates the higher-level SOA and integration
fiber, which includes the management of physical destinations as abstract endpoints and
the transformation and routing, from the details of the underlying protocols. This means
that the network boundaries can change over time, and an ESB can support the changing
of the underlying protocol (i.e., from MOM to SOAP-over-HTTP to WS-Rel*) without
affecting the higher-level integration functions that sit above all of that. In the trading
hub example, SOA, data transformation, and routing of messages based on context was
the job of the value-added services that resided inside the hub. As we take the lessons
learned and the concepts of trading hubs and apply them toward in-house IT integra-
tion, we can make those same concepts available as independently deployed services.

Figure 3-4. Corporate IT domains: intra-corporate requirements have technology challenges very similar
to e-Marketplaces

Operations (HQ)

Business
application

Business
application

Partner

Business
application

Business
application

Business
application

Regional sales

Business
application

Business
application

Business
application

Business
application

Acquired co.

Warehouse

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Standards-Based Integration ■ 53

Standards-Based Integration
The maturity and adoption of relevant standards for integration have helped to foster
the emergence of the ESB as a technology trend. The ESB makes full use of standards for
integration wherever possible. The use of such standards can have significant effects on
a business, as follows:

• Allows you to leverage existing IT staff, rather than specialist consultants. The
amount of information available on XML and web services standards such as
SOAP, WSDL, XSLT, XPath, and XQuery is expanding at an ever-increasing rate.
There is an educational ecosystem in which information about standards (and bud-
ding specifications) becomes available as the standards evolve. The introduction of
a popular specification creates a fertile ground for industry experts to write articles,
tutorials, and O’Reilly books on the subject, which in turn allows IT professionals
to learn more and stay current. This means that the average IT professional can
readily attain the expertise he or she needs to become the in-house integration
architect.

• Reduces proprietary vendor lock-in. With a proprietary integration stack, an orga-
nization can’t simply say, “Well, vendor A wasn’t what we expected, so let’s try ven-
dor B.” This would result in an expensive restart and relearning. Adopting
standards as part of an integration infrastructure means the ability to pick and
choose best-of-breed implementations from different vendors and have them work
together.

• Java standards. While the ESB concept can be Java-free, Java provides a set of speci-
fications that don’t exist elsewhere and that can standardize components and inter-
faces between those components. These standards define application interfaces,
behavioral semantics of middleware and application adapters, and deployment
models. Standards such as JMS, MessageDrivenBeans, and JCA can significantly
increase the ability to interoperate between enterprise applications and J2EE appli-
cation servers. J2EE application servers from various vendors have found their way
into most, or perhaps even all, enterprise organizations.

• Increases the ability to integrate with business partners using standard interfaces
and standard protocols.

• A JMS interface to an ESB is currently the only way that application servers from
different vendors can talk asynchronously using reliable messaging in a common
environment with an SOA. RMI-over-IIOP is (or was) the “blessed” method of
application server interoperability, but it doesn’t provide a model for loosely cou-
pled interfaces or SOA, nor does it work outside of J2EE. While in theory any J2EE
server can interoperate with any other J2EE server using JMS, in practice this
doesn’t really happen out of the box, nor is there any incentive to do so. An ESB
can provide a neutral ground where application servers from multiple vendors can
communicate with each other.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

54 ■ Chapter 3: Necessity Is the Mother of Invention

• J2EE Connector Architecture (JCA) can also provide the standard contract for
application adapters, which can add to your arsenal of integration with any pack-
aged applications that support Java interfaces. Entire suites of application adapters,
available from multiple vendors, use JCA as the unified way of connecting between
the adapter and the middleware infrastructure. Once an application is introduced
into the ESB through a JCA adapter, its functionality is exposed as a standards-
based, event-driven service. This gives you much greater flexibility and reuse than if
it were plugged into a proprietary broker through a proprietary adapter.

An SOA built upon the combination of enterprise messaging with certain key technolo-
gies such as SOAP, WSDL, XPath, and XSLT, with interfaces to Java, .NET, and C++,
collectively defines the means for a platform that allows cleaner solutions based on

W H A T A R E “ S T A N D A R D S , ” E X A C T L Y ?

When talking about the use and adoption of standards, it is hard to tell just exactly what
that word means. We live in a world of multiple overlapping efforts from different stan-
dards bodies to define standard specifications. Vendor alliances are producing web ser-
vices specifications outside the domain of any standards body or consortium.

Every once in a while I am challenged on the use of a Java specification as a “standard.”
The argument is that because the Java Community Process (JCP) is owned by one vendor
(Sun Microsystems), the specifications that come out of that process are not really stan-
dards—they are just specifications.

I tend to use the words “standards” and “specifications” interchangeably. As far as I’m
concerned, any specification that has been through the JCP should be considered standard
enough. That is, it has gone through a formal process in which it was jointly defined by a
group of independent companies and/or individuals, and was posted for public review
prior to ratification.

There are also “de facto standards” such as open source implementations, which either
invented their own ways of doing things or conform to industry-accepted “standard”
specifications. The Apache SOAP and Apache Axis toolkits are examples of such stan-
dards.

The evolving WS-* stack of specs from ad hoc vendor collaborations can also be consid-
ered de facto standards in that they represent the work and statement of direction for a
meaningful constituency of the largest platform vendors. Some of these WS-* specifica-
tions have already been submitted to an official standards body, and the rest have been
part of a program that involves public feedback sessions.

In short, the word “standard,” in terms of standards-based integration, refers to either a
specification or an implementation that has gained enough traction in the industry to
have long-lasting staying power, and is open enough for multiple vendors to implement
or repackage it.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Standards-Based Integration ■ 55

standards. The concept of standards-based integration allows developers to learn and
build a valuable skill set that can be used across a variety of integration projects. Integra-
tion based on standards also provides IT managers with a larger talent pool of devel-
oper resources, and allows for repeatable success patterns that can be carried from
project to project.

A major European food distribution network was an early adopter of an ESB, and suc-
cessfully completed their first supply chain automation project in six weeks. One of
their directors of IT strategy had this to say about the use of standards for integration in
an ESB: “Now we no longer have to worry how long the next integration will take, or
even if it is possible.”

The New Economics of Integration
In the ESB, you deploy what you need, when and where you need it. The licensing
model being put forth by vendors leading the charge in ESB technology reflects these
physical deployment characteristics.

According to a Forrester Research report, license costs for integration brokers begin at
$100,000 per project and have an average price of $400,000 to $750,000. In contrast, an
ESB license can cost 10 to 15 times less than that. Does this mean that ESB vendors have
an unrealistic licensing model that is incapable of sustaining a business? No. The ESB
licensing trend is based on the philosophy that integration should be pervasive through-
out the enterprise, and a high cost of licensing should not be a hindrance to adoption.
This licensing philosophy reflects the technology model, which is to license only what
you need on a per-project basis, while building toward the strategic goal of corporate-
wide integration. So you can start wherever you need it most, and grow at your own
pace without costly obstacles.

For integration brokers, you typically pay for consulting services that are four to five
times the licensing costs. Because the ESB is based on standards, you can leverage in-
house staff and avoid having to pay high fees for consultants who specialize in propri-
etary integration broker technology. By investing in the adoption of standards and edu-
cating your in-house IT staff on standards for integration, you are future-proofing your
staff as well as your technology.

Driving Down the Cost of Technology
In his book Loosely Coupled, Doug Kaye illustrates his own version of a “technology
adoption curve” in support of a discussion on how the cost of a particular technology
decreases over time. As an example, he talks about the publishing of O’Reilly books on a
particular subject as a significant event in the adoption of a technology, helping to drive
down the cost of the technology by making knowledge about it more readily available.
You are witnessing that now in terms of the ESB.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

56 ■ Chapter 3: Necessity Is the Mother of Invention

Case Study: Manufacturing
As an example of how ESB technology is changing the economics of integration in a real
deployment scenario, let’s take a look at how a building material manufacturer is using
an ESB. We will pay special attention to how they are taking advantage of the selective
deployment model of the ESB.

The manufacturer operates 50 plants in 15 countries. They distribute their products
through large building supply retailers, such as Home Depot and Lowe’s, as well as
through a network of more than 60 independent distributors serving retail and whole-
sale customers in regional markets across the United States. Twenty-eight of their larger
distributors are connected to their headquarters using an EDI VAN.

Connecting one supplier with 60 distributors is a simple challenge for an integration
infrastructure that is capable of scaling out to thousands of diverse endpoints. How-
ever, the point of this case study is not the scale of the deployment, but the traits of the
ESB that it utilizes. Its simplicity highlights yet another characteristic of the ESB—that it
is capable of scaling up to large global integration networks, but is also well suited for
small projects.

Building a Real-Time Business
To improve operations and optimize the distribution chain, this manufacturing com-
pany embarked on building an infrastructure that would enable direct distributor par-
ticipation in inventory management and ATP as a means of achieving real-time order
fulfillment.

Inventory management

The inventory management application allows the manufacturer to better anticipate the
demand of its distributors by tracking each distributor’s monthly inventory consump-
tion and creating a recommended monthly order requisition for each distributor.

By deploying an ESB, the manufacturer can now analyze its distributors’ order and sales
histories, thus allowing inventory to be jointly managed. This was accomplished by
implementing a message exchange that allows the manufacturer to anticipate a distribu-
tor’s inventory requirements. In this scenario, distributors periodically send product
activity data to the manufacturer, which uses that data to anticipate product consump-
tion activity and determine when the distributors need to replenish the stock. They then
generate a shipping schedule message indicating the products and quantities that the
distributor should order to replenish its stock. The distributor will use this data to gen-
erate a purchase order back to the manufacturer.

This process allows the manufacturer to better manage inventory, reducing the quantity
of on-hand product needed for the distributors and achieving more predictable produc-
tion schedules and revenue forecasts.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Case Study: Manufacturing ■ 57

Technical challenges

The manufacturer looked to integrate the 60 disparate ERP systems of their distributors
with their own SAP R/3 inventory management and order processing systems. One of
the challenges they faced was accommodating varying levels of technical sophistication
among their broad range of distributors. They already had an EDI infrastructure for
about half of the larger distributors, but that was a high-cost solution that would not be
viable for the smaller distributors. Some of the larger distributors had the technical
capability to communicate with them using SOAP and web services, but some of the
smaller distributors didn’t have the sophistication or technical know-how to do that.
Most distributors had an ERP system locally, with the extent of their IT expertise lim-
ited to how to operate it. The manufacturer needed a simple solution that could be
installed at each of the distributor sites, and configured and managed remotely by a cen-
tral IT staff.

Availability To Promise (ATP)

The manufacturer has also deployed an ATP lookup for nonstock items. ATP is a com-
mon business function in supply chains that allows you to accurately predict the deliv-
ery of goods between multiple buyers and suppliers. This is particularly important when
the immediate supplier does not have the item in on-hand inventory and needs to cus-
tom-build it, which could involve another level of special-order items from its own sup-
pliers. Being able to plan and predict the timely delivery of nonstock items can
significantly reduce the unnecessary cost overhead of carrying special inventory items to
effectively meet the demands of customers and avoid lost business.

Flexible Partner Integration
The solution for both the inventory management and ATP issues was to deploy an ESB.
For the inventory management function, they needed a remote integration solution that
was easy to install, deploy, and integrate with the many disparate ERP systems at each
distributor site. For the ATP solution, they decided to expose the ATP function as a ser-
vice and use a direct web services link with the distributors.

The inventory management function is facilitated by an ESB-managed business process
that controls the routing between the partners and the inventory management applica-
tion, which is implemented in SAP. There are no integration brokers or application
servers required at the remote sites. Still, the solution provides standards-based connec-
tivity, reliable and secure messaging, and transformation and service orchestration
between its own systems and the individual ERP systems utilized by the remote distribu-
tors. The “edge” of the ESB network is capable of supporting a variety of connectivity
options as new distributors come on board. Even existing links with distributors can
change their underlying protocol without affecting the higher-level business processes
and XML message exchanges between the manufacturer and the distributors.

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

58 ■ Chapter 3: Necessity Is the Mother of Invention

To manage the link between distributors and headquarters, the manufacturer chose to
deploy an ESB service container at the remote distributor sites (Figure 3-5).

Remote ESB containers located at the distributor sites allow selective deployment of
integration capabilities when and where they are needed, with no integration brokers or
application servers required. In addition, this approach provides both the manufacturer
and their distributors the following advantages:

• A secure, authenticated channel between the distributor and headquarters

• Reliable delivery of messages, both synchronous and asynchronous, between the
distributor and headquarters

• Simple integration at the partner site

• A managed environment, where deployment configuration and management can
be handled remotely by the manufacturer’s IT staff, without requiring any addi-
tional IT expertise at each partner site

• No need to license and install an integration broker, application server, or “partner
server” at each distributor location

Figure 3-5. Remote ESB containers at distributor sites allow selective deployment of integration
capabilities

SAP Custom

SAP application
inventory management

SAP application available
to promised inventory

Manufacturer

Distributors

Distributor ERP Distributor ERP n Distributors

ESB

ESB service
containers

This is the Title of the Book, eMatter Edition

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Summary ■ 59

• A link to an EDI VAN, and transformation between EDI messages and XML mes-
sages

• Integration with SAP within the manufacturer’s inventory management system

Within the ESB network at the manufacturer, data transformation between comma-sep-
arated ASCII (CSV) files, an internal canonical XML format based on Common Busi-
ness Library (xCBL), and SAP’s Intermediate Document (IDOC) format is
accomplished as part of several orchestrated business processes facilitated by the ESB.
More details on the virtues of a canonical XML format are discussed in Chapter 4.
Chapter 8 will explore the more technical details of this deployment.

Summary
In this chapter, we saw that the ESB concept was developed out of necessity, and had
many catalysts. We also explored the following:

• The ESB provides a pervasive, event-driven SOA, which is based on requirements of
IT architects working together with vendors to build broad-scale integration net-
works using messaging, standard integration services, and standard interfaces.

• e-Marketplaces provided a fertile breeding ground for scalable and secure ESB
infrastructure capable of supporting the needs of large trading hubs with poten-
tially thousands of trading partners. Out of this environment, the requirements of
sophistication routing across segregated data channels were identified.

• The proliferation and reasonable maturity of standards has provided the benefits of
standards-based integration.

• Application servers have their place in IT infrastructure as containers for housing
business logic. An ESB architecture can provide a loosely coupled integration fabric
for integrating application servers with other application servers and cross-plat-
form applications at large.

• Remote ESB service containers obviate the need to install integration brokers at
every remote site to be integrated.

