
1
An Introduction to 
ASP.NET 2.0

WH E N MI C R O S O F T R E L E A S E D the .NET Framework 1.0 Technology
Preview in July 2000, it was immediately clear that Web develop-

ment was going to change. The company’s then current technology, Active
Server Pages 3.0 (ASP), was powerful and flexible, and it made the creation
of dynamic Web sites easy. ASP spawned a whole series of books, articles,
Web sites, and components, all to make the development process even eas-
ier. What ASP didn’t have, however, was an application framework; it was
never an enterprise development tool. Everything you did in ASP was
code oriented—you just couldn’t get away without writing code.

ASP.NET was designed to counter this problem. One of its key design
goals was to make programming easier and quicker by reducing the
amount of code you have to create. Enter the declarative programming
model, a rich server control hierarchy with events, a large class library, and
support for development tools from the humble Notepad to the high-end
Visual Studio .NET. All in all, ASP.NET was a huge leap forward.

What’s Wrong with ASP.NET 1.x?
So if ASP.NET 1.0 and 1.1 are so great, what’s wrong with them? Well,
nothing, actually, but when developing software there is always a trade-off
between how much can be done, how many resources you have, and how

1



much time you have to do it. There is an almost never-ending supply of
features you can add, but at some stage you have to ship the product. You
cannot doubt that ASP.NET 1.0 shipped with an impressive array of fea-
tures, but the ASP.NET team members are ambitious, and they not only
had plans of their own but also listened to their users.

ASP.NET 2.0, code-named “Whidbey,” addresses the areas that both
the development team and users wanted to improve. The aims of the new
version are listed below.

• Reduce the number of lines of code required by 70%. The declara-
tive programming model freed developers from having to write
reams of code, but there are still many scenarios where this cannot
be avoided. Data access is a great example, where the same
Connection, DataAdapter/DataSet, and Command/DataReader
code is used regularly.

• Increase developer productivity. This partly relates to reducing the
amount of code required but is also affected by more server controls
encompassing complex functionality, as well as providing better
solutions for common Web site scenarios (such as portals and per-
sonalized sites).

• Use a single control set for all devices. Mobile devices are becom-
ing more pervasive, with an increasing number of new devices.
Many of the server controls render appropriately for small screens,
but there are two major problems with the current support for mo-
bile devices: (1) having a separate set of server controls purely for
mobile devices is not only confusing but also costly, and (2) adding
support for new devices requires additional development work and
maintenance. ASP.NET 2.0 will provide a single set of controls and
an extensible architecture to allow them (and other controls) to sup-
port multiple devices.

• Provide the fastest Web server platform. Although ASP.NET 1.0
offers a fast server platform, ASP.NET 2.0 will improve areas such as
application start-up times and provide better application tracing
and performance data. Innovative caching features will enhance
application performance, especially when SQL Server is used.

• Provide the best hosting solution. With the large number of Inter-
net applications being hosted, it’s important to provide better solu-
tions for hosters. For example, better management features to

AN INTRODUCTION TO ASP.NET 2.02



identify and stop rogue applications will give hosters more control
over their current environment. More control can also be given to
hosted companies by use of the new Web-based administration tool,
allowing users to easily control the configuration of applications
remotely.

• Provide easier and more sophisticated management features. Ad-
ministration of ASP.NET applications under version 1.x required
manual editing of the XML configuration file, which is not a great
solution for administrators. Version 2.0 brings a graphical user in-
terface–based administration tool that is integrated with the Internet
Information Services (IIS) administration tool.

• Ease implementation of entire scenarios. The better management
features are built on top of a management application programming
interface (API), allowing custom administration programs to be
created. Along with application packaging this will provide support
for easily deployable applications, with or without source.

Even from this broad set of aims you can see that ASP.NET 2.0 is a great
advance from 1.x for both developers and administrators. 

New Features
This chapter isn’t an in-depth look at any specific feature—instead we are
going to give you a taste of what’s to come so you can see how much eas-
ier Web development is going to be. For this outlook we’ve broken down
the new features into rough end-to-end scenarios. 

Templates for a Consistent Look and Feel
ASP.NET 1.x provides an easy way to develop Web sites, but one thing that
has become apparent is the lack of an architecture for applying a consistent
look and feel. Several workaround techniques emerged:

• Creating a custom class object that inherits from Page and having
this custom page preload controls

• Creating a templated server control, where the templates provide
the layout areas for each page, and using this control on every page

• Having User Controls for common areas of the site, such as head-
ings, menus, and footers

1.2 NEW FEATURES 3



Of these, the first two require knowledge of creating server controls, and
while this is a topic most ASP.NET developers could master, it may not be
one they’ve had experience with. Therefore a solution using custom server
controls tends to be avoided. The last option, though, is a simple solution,
easy to create and implement. User Controls were created to provide
reusable functionality, and this is a great use for them. However, to apply
a consistent look and feel you need to first place the User Controls on each
page, then ensure that they are placed in the same place on each page. In
other words, you really need a page template, and in reality this manifests
itself as an ASP.NET file that you simply copy for each new page. The dan-
ger of this approach is that it’s too easy to modify a page and change the
layout for that single page.

AN INTRODUCTION TO ASP.NET 2.04

<%@ Master %> <%@ Page
Master="MySite.master"%>

Master file
“MySite.master”

Content file
“Page2.aspx”

<asp:Content
runat="server"
ContentName="Main">

</asp:Content>

Resulting
Pages

<asp:ContentPlaceHolder
runat="server"

ContentName="Main" />

<%@ Page
Master="MySite.master"%>

Content file
“Page1.aspx”

<asp:Content
runat="server"
ContentName="Main">

</asp:Content>

Figure 1.1. Combining a master page and a child page



To provide a templating solution, ASP.NET 2.0 has the concept of mas-

ter pages, which provide a template for the look and implementation of a
page. A master page is an ASP.NET page that provides a template for other
pages, giving shared page-level layout and functionality. The master page
defines placeholders for the content, which can be overridden by child
pages. The resultant page is a combination of the master page and the
child page, as shown in Figure 1.1.

Master pages are covered in Chapters 2 and 5.

Styles for Controls
The second major feature of ASP.NET 2.0 that deals with the look and feel
of a site is that of themes. Theming, or skinning, has become very popular,
allowing users to create a customized look for applications. On the Win-
dows desktop two of the most popular themed applications are audio
players (WinAmp and Windows Media Player), and with some additional
software, even Windows XP can be themed.

The popularity of theming is due to the nature of humans—we like to
choose the way things look, and we like to express our individuality. This
is easy on the desktop, where users generally have a single machine each.
With Web sites, however, theming becomes a harder issue because of the
number of users. Tracking which users have which themes and managing
those themes becomes an overhead that site administrators don’t want to
get involved with.

Some Web sites provide forms of theming, but these are relatively lim-
ited in terms of customization, perhaps allowing only a choice of color
scheme. Other sites provide a selection of stylesheets for users to pick
from, assuming their browsers support this feature, or alternatively change
the stylesheet on the server. This allows not only color schemes to be se-
lected but also complete style choices, such as fonts, style of borders, and
so on.

In ASP.NET 2.0 the goals for theming are quite simple.

• Make it simple to customize the appearance of a site or page, using
the same design tools and methods used when developing the page
itself. This means there’s no need to learn any special tools or tech-
niques to add themes to a site.

1.2 NEW FEATURES 5



• Allow themes to be applied to controls, pages, and even entire sites.
For example, this allows users to customize parts of a site while en-
suring that other parts (such as corporate identity) aren’t customized.

• Allow all visual properties to be customized, thus ensuring that
when themed, pages and controls can achieve a consistent style.

The implementation of this in ASP.NET 2.0 is built around two areas:
skins and themes. A skin is a set of properties and templates that can be ap-
plied to controls. A theme is a set of skins and any other associated files
(such as images or stylesheets). Skins are control specific, so for a given
theme there could be a separate skin for each control within that theme. Any
controls without a skin inherit the default look. The implementation is sim-
ple because a skin uses the same definition as the server control it is skin-
ning, and themes are just a set of files in a directory under the application
root. For example, consider the sample directory structure shown below:

default.aspx

\Themes

\MyTheme

MySkin.skin

\YourTheme

YourSkin.skin

Each theme consists of a directory under the Themes directory. Within each
theme there is a file with a .skin suffix, which contains the skin details for
that theme. For example, MySkin.skin might contain:

<asp:Label SkinID="Normal" runat="server"

Font-Bold="True" BackColor="#FFC080" />

<asp:Label SkinID="Comic" runat="server"

Font-Italic="True" Font-Names="Comic Sans MS" />

This defines two skins for the Label control, each with different visual prop-
erties. The theme can be chosen by setting a page-level property, and the
skin is chosen by setting a control-level property, as demonstrated below.

<%@ Page Theme="MyTheme" %>

<form runat="server">

<asp:Label SkinID="Comic" Text="A Label" />

</form>

AN INTRODUCTION TO ASP.NET 2.06



Both of these can be set at runtime as well as design time, so this provides
an extremely powerful solution, especially when connected with the new
Personalization features.

Personalization and themes are covered in Chapter 7.

Securing Your Site
With the large amount of business being done on the Web, security is vi-
tally important for protecting not only confidential information such as
credit card numbers but also users’ personal details and preferences. Thus
you have to build into your site features to authenticate users. This was
easy to do in ASP.NET 1.x, although you still had to write code. Security
was created by picking your preferred security mechanism (most often
Forms Authentication) and then adding controls to your page to provide
the login details—user name, password, “remember me” checkbox, and so
on. There was no built-in mechanism for storing personal details, so this
was a roll-it-yourself affair.

With ASP.NET 2.0, the pain has been taken out of both areas. For login
functionality, there is now:

• A Login control, providing complete functionality for logging into a
site

• A LoginStatus control, which indicates the login status and can be
configured to provide automatic links to login and logout pages

• A LoginName control to display the current (or anonymous) name

• A LoginView control, providing templated views depending on the
login status

• A PasswordRecovery control, encompassing the “I forgot my pass-
word” functionality

For example, to add login features to your page all you need to do is
add the following code:

<form runat="server">

<asp:Login runat="server" />

</form>

1.2 NEW FEATURES 7



This gives us the simple interface shown in Figure 1.2.
This could be achieved easily in previous versions of ASP.NET, but not

with such simplicity. You needed labels, text entry boxes, buttons, and val-
idation, whereas it’s now all rolled into one control. Sure it looks raw, but
this is the basic unformatted version. Using the design tool Visual Studio
.NET (more on that in Chapter 2), you can auto-format this for a better
look. You can also skin the interface, as shown in Figure 1.3, or even tem-
plate it to provide your own customized look. Along with the other login
controls you get a complete solution for handling user logins.

The user interface isn’t the only part of logging into a site; there’s also
the code needed to validate the user against a data store. With ASP.NET 1.x
this required not only code to be written but also knowledge of what that
data store was and how it stored data. ASP.NET 2.0 introduces a new
Membership API, whose aim is to abstract the required membership func-
tionality from the storage of the member information. For example, all of
the data handling we’d have done in previous versions to validate a user
can now be replaced with the code shown in Listing 1.1.

Listing 1.1. Validating User Credentials

Sub Login_Click(Sender As Object, E As EventArgs)

If Membership.ValidateUser(Email.Text, Password.Text) Then

FormsAuthentication.RedirectFromLoginPage(Email.Text, False)

Else

LoginMessage.Text = "Invalid credentials. Please try again."

End If

End Sub

AN INTRODUCTION TO ASP.NET 2.08

Figure 1.2. The Login control

Figure 1.3. A skinned Login control



What’s even better is that when using the Login control you don’t even
have to do this—the control handles it for you.

The great strength of the MembershipAPI is that it is built on the idea of
Membership Providers, with support for Microsoft SQL Server and Access
supplied by default. To integrate custom membership stores you simply
need to provide a component that inherits from the Membership interface
and add the new provider details to the configuration file.

The Membership API has some simple goals.

• Offer an easy solution for authenticating and managing users, re-
quiring no knowledge of the underlying storage mechanism.

• Provide support for multiple data providers, allowing data stored
about users to come from different data stores.

• Provide comprehensive user management in a simple-to-use API,
giving an easy way for developers to store and access user details.

• Give users a unique identity, allowing integration with other serv-
ices such as the Personalization and Role Manager features.

Security, membership, and role management are covered in Chapter 6.

Personalizing Your Site
One of the areas driving changes on the Internet is that of communities.
People like to belong, and the Internet is a big, lonely place. Community
sites give you a home, a sense of belonging. Part of that comes from being
in contact with like-minded people, and part comes from the features some
of these sites offer. Our houses are decorated to our style, and many of us
customize our Windows desktop, so why shouldn’t our favorite Web sites
offer the same opportunity?

Hand in hand with the Membership API lie the Personalization fea-
tures. These provide a simple programming model for storing user details
(including those of anonymous users), with easy customization. Like
Membership, Personalization can be configured to work with multiple
data providers and provides an easy way to define custom properties for
each user. This leads to a user profile with strong types, allowing easy ac-
cess within ASP.NET pages. For example, you can create a profile with
Name, Address, and Theme as properties and a page that allows the user to
update them, as shown in Listing 1.2.

1.2 NEW FEATURES 9



AN INTRODUCTION TO ASP.NET 2.010

Listing 1.2. Using the Profile Custom Properties

<script runat="server">

Sub Page_Load(Sender As Object, E As EventArgs)

Name.Text = Profile.Name

Address.Text = Profile.Address

Theme.Text = Profile.Theme

End Sub

Sub Update_Click(Sender As Object, E As EventArgs)

Profile.Name = Name.Text

Profile.Address = Address.Text

Profile.Theme = Theme.Text

End Sub

</script>

<form runat="server">

Name:    <asp:TextBox id="Name" runat="server" /> <br />

Address: <asp:TextBox id="Address" runat="server" /> <br />

Theme:   <asp:TextBox id="Theme" runat="server" /> <br />

<asp:Button Text="Update" onClick="Update_Click" runat="server" />

</form>

The simplicity of this method means we only have to deal with the user
profile. We don’t need to know how it stores the data—we just deal with
the properties each profile has. This personalization also allows us to eas-
ily use the theming capabilities, changing the theme when the page is cre-
ated, as demonstrated below.

Sub Page_PreInit(Sender As Object, E As EventArgs)

Me.Theme = Profile.Theme

End Sub

To ensure that the theme customization is applied before the controls are
created we use the new PreInit event.

Personalization is covered in Chapter 7.



Creating Portals
As if customization of a site’s look weren’t enough, ASP.NET 2.0 also
brings a way to alter the structure with its new portal framework.

The success of the ASP.NET IBuySpy portal application and its off-
shoots shows that customized sites are popular. The trouble has always
been how to provide a consistent look while still allowing user customiza-
tion not only of the style but also of the content and placement of content.
Microsoft has already implemented solutions to provide this functionality,
including SharePoint Server and Outlook Web Parts.

In ASP.NET 2.0, Web Parts become the underlying technology for all Mi-
crosoft portal applications, allowing a single easy-to-use, extensible frame-
work. The concept revolves around two key controls—the WebPartZone
and the WebPart. The WebPartZone identifies areas on the page in which
content can be changed, and the WebPart identifies the part (or module)
within the zone. There are different types of WebPart controls for different
purposes, for example:

• ContentWebPart, for arbitrary controls and content

• CatalogPart, which contains a catalog of parts not currently on 
the page

• EditorPart controls, such as AppearanceEditorPart and
LayoutEditorPart, allowing customization of the parts

For example, consider an intranet site that needs a selection of areas of
content—links, announcements, and so on. Figure 1.4 shows a sample site.

This site has two main areas of content—the left area with the welcome
message and the announcements, and the right area showing weather and
links. Each of these main areas is a WebPartZone and the content with
them a ContentWebPart. The code for this page appears in Listing 1.3.

Listing 1.3. Sample Intranet Site Using Web Parts

<table>

<tbody>

<tr>

<td valign="top" align="left">

<asp:WebPartZone id="LeftZone" runat="server"

Title="Left Zone" partFrameType="TitleOnly"

lockLayout="False" borderColor="White">

<ZoneTemplate>

<asp:ContentWebPart id="ContentWebPart1"

title="Welcome" runat="server">

<ContentTemplate>

1.2 NEW FEATURES 11

continues



This project …

</ContentTemplate>

</asp:ContentWebPart>

<uc1:Announcements id="Announcements1" runat="server" />

</ZoneTemplate>

</asp:WebPartZone>

</td>

<td valign="top" align="left">

<asp:WebPartZone id="RightZone" runat="server"

title="Right Zone" width="100%"

partFrameType="TitleOnly" lockLayout="False"

borderColor="White"> 

<ZoneTemplate>

<sample:WeatherWebPart runat="server" id="WeatherWebPart"

Title="My Weather" width="250px" />

<uc1:dailylinkswebpart id="DailyLinksWebPart1"

runat="server" title="Daily Links" /> 

</ZoneTemplate>

</asp:WebPartZone>

</td>

<td valign="top" align="left">

</td>

</tr>

</tbody>

</table>

AN INTRODUCTION TO ASP.NET 2.012

Figure 1.4. Sample intranet site using the portal framework



Here you can see two WebPartZone controls separating the left and right
content. Within each there is a mixture of content, including static text,
user controls, and custom server controls.

At first glance this doesn’t look like much improvement over existing
layout methods such as user controls—in fact, it looks more complex.
However, the framework on which Web Parts is built is great for develop-
ers and users alike. Developers only have to drop user controls or server
controls into a ZoneTemplate to automatically receive Web Parts function-
ality. To enhance this functionality you can add verbs to the WebPartZone
to indicate which features the framework should add to each part within
the template. Listing 1.4 shows an example.

Listing 1.4. Web Part Verbs

<WebPartCloseVerb checked="False"

imageUrl="images/CloseVerb.gif"

enabled="True" text="Close"

description="Closes the WebPart"

visible="True" />

<WebPartRestoreVerb checked="False"

imageUrl="images/RestoreVerb.gif"

enabled="True" text="Restore"

description="Restores the WebPart"

visible="True" />

<WebPartMinimizeVerb checked="False"

imageUrl="images/MinimizeVerb.gif"

enabled="True" text="Minimize"

description="Minimizes the WebPart"

visible="True" />

<WebPartHelpVerb checked="False"

enabled="True" text="Help"

description="Shows help for the WebPart"

visible="True" />

<WebPartEditVerb checked="False"

imageUrl="images/EditVerb.gif"

enabled="True" text="Edit"

description="Edits the WebPart"

visible="True" />

Here there are verbs that allow minimizing and maximizing the WebPart
controls, editing, help, and so on.

For the user, the Personalization features allow each WebPart to be
moved to other WebPartZone controls or edited. For example, moving a

1.2 NEW FEATURES 13



WebPart is simply a matter of drag and drop, as shown in Figure 1.5,
where the Daily Links section is being moved to the Left Zone.

Editing of WebPart controls is also part of the portal framework, where
by default the user can alter the title, height, width, and frame style. Each
WebPart can also provide custom properties that can be edited. For exam-
ple, the WebPart for the My Weather section allows the zip code to be set,
upon which the weather for that zip code is displayed. Editing of WebPart
controls is provided by the inclusion of an EditorZone, which details what
can be edited. For example, for our sample intranet site, the EditorZone
might include the code shown in Listing 1.5.

Listing 1.5. Adding Editor Parts to an EditorZone

<asp:EditorZone id="EditorZone1" title="Edit WebParts"

runat="server" partFrameType="TitleOnly"

cssClass="EditorZoneBody">

<ZoneTemplate>

<asp:AppearanceEditorPart id="AppearanceEditorPart1"

runat="server" font-size="8pt" font-bold="true" /> 

<asp:PropertyGridEditorPart id="PropertyGridEditorPart1"

title="Custom Settings" font-size="8pt" runat="server" />

AN INTRODUCTION TO ASP.NET 2.014

Figure 1.5. Dragging a WebPart to another location



</ZoneTemplate>

</asp:EditorZone>

This indicates that there are two editor parts—one for the appearance, and
one for the property grid—for properties of the WebPart that are marked
as personalizable. Selecting the edit button invokes the editing features
and the EditorZone is made visible, as shown in Figure 1.6. Once edited
for zip code 02116, the WebPart shows the weather for Boston (Figure 1.7).

The portal framework is covered in Chapter 8.

Setting Up and Managing Your Site
ASP.NET 1.x made deployment of Web sites easy with its xcopy deploy-
ment model. This removed the need for some administrative tasks, such as
registering COM components, but still left other tasks, such as site adminis-
tration, as more manual affairs. The XML-based configuration file obeyed
the xcopy rule, but there are three major problems with it. First, there is no
easy-to-use administration tool, meaning you must have knowledge of the

1.2 NEW FEATURES 15

Figure 1.6. Editing the My Weather WebPart

Figure 1.7. The My Weather WebPart



XML schema before you can modify it. Second, you need some way to actually
fetch the file, edit it, and then upload it. This is a problem particularly for
hosted scenarios, where users are always remote, and administration of many
sites can become a management nightmare. Finally, you cannot create a Web
Application, which is required for sites that require security.

Three features in ASP.NET 2.0 help solve these issues. The first is the
Microsoft Management Console (MMC) Snap-in for configuration, as shown
in Figure 1.8.

The second feature is a Management API, providing a programmable in-
terface to manage a site. For example, Listing 1.6 sets the authorization mode
using the API.

Listing 1.6. Setting the Authorization Mode

Dim cfg As Configuration

Dim ms As AuthenticationSection

cfg = Configuration.GetConfigurationForUrl(Request.ApplicationPath)

ms = CType(cfg.GetConfigurationSection("system.web/authentication"),

AuthenticationSection)

ms.Mode = HttpAuthenticationMode.Windows

cfg.Update()

AN INTRODUCTION TO ASP.NET 2.016

Figure 1.8. ASP.NET Configuration MMC Snap-in



The Management API provides access to all areas of the configuration,
both at the machine level (machine.config) and the application level
(web.config). This allows utilities to be written not only to manage a single
site but also to manage all sites.

The third aspect of site management is the creation of a Web-based tool,
wrapping much of the Management API. This provides a simple way to re-
motely administer a site, as shown in Figure 1.9.

Here you have a simple Web interface that allows configuration of all
aspects of a site. The interface is designed to be customized, so corpora-
tions and hosts can give it a company look.

Administration is covered in Chapter 13.

Using Images on Your Site
Using images isn’t a particularly difficult area of site design, but their use
has been eased with two new server controls. First, the ImageMap control
provides easy support for image maps, as demonstrated on the next page.

1.2 NEW FEATURES 17

Figure 1.9. The Web management tool



<asp:ImageMap runat="server"

onClick="Map_Click"

ImageUrl="images/states.jpg">

<asp:CircleHotSpot X="100" Y="100" Radius="25"

Value="Other State" />

<asp:RectangleHotSpot Top="200" Left="150" Right="200" Bottom="150"

Value="More State"/>

<asp:PolygonHotSpot Coordinates="3,4, 15,18, 45,18, 15,70, 3,4"

Value="State 1" />

</asp:PolygonHotSpot>

The detection of the hot spot is handled in the postback event:

Sub Map_Click(Sender As Object, E As ImageMapEventArgs)

Select Case e.Value

Case "State 1"

' ...

Case "Other State"

' ...

Case "More States"

' ...

End Select

End Sub

The second new image-handling feature is that of dynamic images, de-
signed specifically to render images appropriate to the calling browser.
This is necessary because images displayed in Web browsers generally
aren’t suitable for smaller devices, such as PDAs or phones. The new
DynamicImage control uses an HttpHandler to sniff the browser type and
render the appropriate image. For example, consider the following code:

<form runat="server">

<asp:DynamicImage DynamicImageType="ImageFile"

ImageFile="car.gif" runat="server" />

</form>

For a standard Web browser the image is rendered as expected, but for a
Wireless Access Protocol (WAP) phone, the image is rendered as a Wireless
Bitmap (WBMP). This removes any need for the developer to specifically
target images to browser types.

Images are covered in Chapter 12.

AN INTRODUCTION TO ASP.NET 2.018



Using Data on Your Site
It’s probably no exaggeration to say that most, if not all, Web sites use
some form of data to drive them. Whether XML files, a database, or an-
other dynamic form of storage, the data allows a site to respond to the user
and to be up to date. ASP.NET 1.x provided some great data binding capa-
bilities, but they always involved code, often the same code used over and
over. One of the key goals of ASP.NET 2.0 is to reduce code and to ease the
use of databases, especially for beginner programmers. To achieve this a
new set of data controls has been introduced, removing the need for in-
depth knowledge of ADO.NET.

Data source controls provide a consistent and extensible method for de-
claratively accessing data from Web pages. There are several data source
controls, including AccessDataSource, SqlDataSource, XmlDataSource,
and ObjectDataSource, and it’s likely that others (perhaps for Excel and
Exchange Server) will appear as ASP.NET 2.0 nears release, along with
third-party data sources. The use of data controls is simple, as shown below.

<asp:SqlDataSource id="ds1" runat="server"

ConnectionString="localhost;database=pubs;Trusted_Connection=True"

SelectCommand="SELECT * FROM authors"/>

<asp:DataGrid DataSourceId="ds1" runat="server" />

This just encapsulates the code everyone used to put in the Page_Load
event—it connects to the database, fetches the data, and binds the grid.
The contents of the SelectCommand can be a stored procedure as well as a
SQL command, thus preserving the separation of data access from the
page itself. There are commands for updating, inserting, and deleting.

This model is extended by use of a parameter collection, allowing pa-
rameters to be passed into the command from a variety of sources. For ex-
ample, the code in Listing 1.7 automatically takes the value from the
TextBox control txtState and feeds this into the parameter @state.

Listing 1.7. Using a ControlParameter

<asp:SqlDataSource id="ds1" runat="server"

ConnectionString="localhost;database=pubs;Trusted_Connection=True"

SelectCommand="SELECT * FROM authors WHERE state=@state">

<SelectParameters>

<ControlParameter name="@state" ControlID="txtState" />

</SelectParameters>

</asp:SqlDataSource>

<asp:TextBox id="txtState" runat="server" />

<asp:DataGrid DataSourceId="ds1" runat="server" />

1.2 NEW FEATURES 19



There are also other parameter types, allowing parameter information
to be taken directly from Session variables, Cookies, the Request (Query-
String), and the HTML Form.

Data Binding
Data binding in ASP.NET 1.x was simple, but it did cause confusion in
some areas. For example, should you use early binding, for which you
have to know the underlying data structure? Or should you take the de-
velopment shortcut and use late binding, like this:

<%# DataBinder.Eval(Container.DataItem, "au_lname") %>

With ASP.NET 2.0 this syntax has been simplified:

<%# Eval("au_lname") %>

There is also an equivalent XPath syntax for XPath expressions when bind-
ing to XML documents:

<%# XPath("@au_lname") %>

Binding to Objects
One of the most requested features has been the ability to bind data di-
rectly to objects. Good design dictates that you separate your data access
layer from your presentation layer, and this is often done as a set of classes.
The new ObjectDataSource allows you to simply bind directly to existing
objects, such as classes, thus allowing you to have a strongly typed data
layer but still participate in the easy data binding that ASP.NET 2.0 brings.

Data source controls and data binding are covered in Chapter 3.

Adding Mobility Support
Mobile devices are becoming more pervasive. It seems everyone has a mo-
bile phone, many people have PDAs, and some great devices now com-
bine the functionality of both. From the development perspective the
problem with these devices is their screen size and rendering capabilities.
Not only do many of them not accept HTML, but with their tiny screens
some also can’t display images, tables, and so on.

AN INTRODUCTION TO ASP.NET 2.020



In ASP.NET 1.x, the Microsoft Mobile Internet Toolkit (MMIT in version
1.0 and ASP.NET Mobile Controls in version 1.1) provided this support, in-
cluding separate controls for building Web pages suitable for small-screen
browsers. In ASP.NET 2.0, the MMIT is no longer required because mobile
support is built into all controls. This reduces not only the amount of code
required but also the need for specialist knowledge about mobile plat-
forms. This might seem relatively unimportant while the number of sites
that target mobile browsers is small, but this is bound to increase as the
features of small devices improve and prices drop.

The really important part of the changes is to the infrastructure of the
ASP.NET server controls. All controls are now built on a control adapter
architecture, where there is an adapter for each specific device. The
adapters have knowledge of each device and perform the rendering ap-
propriate for its markup language and screen size. Since the controls are
derived from adapters, they don’t need to perform any special action to
choose what to render—the adapter intelligently renders the appropriate
content based on the calling device. New devices are easily supported be-
cause they require only the addition of an adapter, which the controls can
then take advantage of.

Device Filters
This architecture is taken further by allowing adapter-specific attributes for
controls, enabling the page designer to provide different content for spe-
cific devices. For example, the following code shows how different text
and cascading style sheet (CSS) styling can be defined for a mobile device.

<asp:Label id="MyLabel" runat="server"

Text="Welcome to our site"

Nokia:Text="Time to upgrade your Nokia phone!"

cssClass="StandardStyleClass" 

Nokia:cssClass="SpecialNokiaStyleClass" />

Device Templates
Along with modified attributes, we also have the ability to provide tem-
plates for specific devices. We know that mobile devices have a small
screen size, so repeated controls such as grids and lists either aren’t ap-
propriate or need different output. By using specific templates for devices
we can now provide different content to different devices, as shown in
Listing 1.8.

1.2 NEW FEATURES 21



Listing 1.8. Filtered Templates for Mobile Devices

<asp:Repeater runat="server" ..>

<HtmlBrowsers:HeaderTemplate>

<table>

<tr><td>UserName</td><td>Address</td><td>Phone</td></tr>

</HtmlBrowsers:HeaderTemplate>

<HtmlBrowsers:ItemTemplate>

<tr>

<td><%# Container.DataItem("UserName") %></td>

<td><%# Container.DataItem("Address") %></td>

<td><%# Container.DataItem("Phone") %></td>

</tr>

</HtmlBrowsers:ItemTemplate>

<WmlBrowsers:ItemTemplate>

<asp:Panel runat="server">

<%# Container.DataItem("UserName") %>

<%# Container.DataItem("Phone") %>

</asp:Panel>

</WmlBrowsers:ItemTemplate>

<HtmlBrowsers:FooterTemplate>

</table>

</HtmlBrowsers:FooterTemplate>

</asp:Repeater>

These mechanisms provide a way for developers to override the built-
in rendering for mobile devices. Along with automatic mobile support
with the standard controls, there are controls specifically designed for mo-
bile devices, such as PhoneLink (to launch a phone call) and Pager (to pro-
vide paging support). Standard controls also support the SoftKeyLabel
attribute to allow specific text to be targeted to soft keys on phones.

Mobility is covered in Chapter 10.

Compilation and Deployment
Since the release of ASP.NET 1.0 there’s been a fairly standard approach to
Web site architecture. In general there has been a separation of business logic
into separate assemblies, often in a separate directory with a make file. Us-
ing Visual Studio .NET 1.0 and 2003 for this approach is fine since it provides

AN INTRODUCTION TO ASP.NET 2.022



the compilation step for you, but stand-alone tools (such as Web Matrix)
don’t, so you have to handcraft a batch file to make your assemblies.

ASP.NET 2.0 provides automatic compilation for satellite code by sup-
porting a code directory. All files within this directory will be compiled on
the first run, thus removing the need for separate compilation scripts. Files
within the code directory don’t have to be just pure code, such as Visual
Basic .NET or C# files. Support is also included for Web Services Descrip-
tion Language (WSDL) files and strongly typed DataSets (XSD) files. For
WSDL files the proxy will automatically be created, and for XSD files the
appropriate classes will be created.

Along with automatic compilation comes pre-compilation—an entire
site (Web pages and code) can be pre-compiled. This not only provides a
way to deploy compiled applications but also removes the performance hit
taken by the compilation process on the first run. In addition, since only
compiled files are deployed, intellectual property is protected.

Another automatic feature is that of resources, such as those used for
globalization. The resources directory provides a place for these, which are
included as part of the compilation process.

Compilation is covered in Chapter 2.

Development Tools
Having a whole raft of new features in ASP.NET is great, but what about
design tools? Version 2.0 of the .NET Framework will introduce the latest
version of Visual Studio .NET—Visual Studio .NET “Whidbey.” When
ASP.NET 1.0 was released it quickly became apparent that a development
tool targeted at Web developers was required. Visual Studio .NET provides
great project and design features targeted at corporate developers. Web
Matrix was released to appeal to ASP.NET developers who don’t have ac-
cess to Visual Studio .NET. It’s a small stand-alone tool, specifically tar-
geted at ASP.NET development, and provides some features that aren’t in
Visual Studio .NET.

With ASP.NET 2.0, Visual Studio .NET “Whidbey” has undergone
some major enhancements and now provides a far superior environment
for developing Web applications than previous versions. While the design
environment is very familiar, the feature set has improved, making it a pre-
mier Web development tool.

1.4 DEVELOPMENT TOOLS 23



Key design features for Visual Studio .NET “Whidbey” include the fol-
lowing:

• Traditional in-line coding approach, plus a new code-behind model

• Support for all managed languages

• Ability to edit any file anywhere (FTP, File System, Front Page Ex-
tensions, and so on)

• Support for data controls, drag and drop, and database access, with
a rich design surface

• Support for visual inheritance through master pages

• No project files, allowing projects to be manipulated outside of the
tool

• Integrated Web Administration Tool

• IntelliSense included

• Debugging support

• No “build” step—ability to compile on first run

This feature set is really a combination of features from Visual Studio .NET
and Web Matrix. 

Visual Studio .NET “Whidbey” is covered in Chapter 2.

SUMMARY

Of course, there are many changes within ASP.NET 2.0—too many to men-
tion in this introduction, although some highlights were covered in this
chapter. The remainder of the book covers these changes (including items
such as changes to existing controls, changes to page attributes, new con-
trols, and so on) in detail. 

It’s important to remember that this is a preview technology, still evolv-
ing and still in testing. Despite that, the initial feature set is extremely im-
pressive and provides a leap in productivity for Web site developers.

AN INTRODUCTION TO ASP.NET 2.024


